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Abstract. For set functors preserving intersections, a new description of
the final coalgebra and the initial algebra is presented: the former consists
of all well-pointed coalgebras. These are the pointed coalgebras having
no proper subobject and no proper quotient. And the initial algebra
consists of all well-pointed coalgebras that are well-founded in the sense
of Taylor [16]. Finally, the initial iterative algebra consists of all finite
well-pointed coalgebras. Numerous examples are discussed e.g. automata,
graphs, and labeled transition systems.

1 Introduction

Initial algebras are known to be of primary interest in denotational semantics,
where abstract data types are often presented as initial algebras for an endofunc-
tor H expressing the type of the constructor operations of the data type. For
example, finite binary trees are the initial algebra for the functorHX = X×X+1
on sets. Analogously, final coalgebras for an endofunctor H play an important
role in the theory of systems developed by Rutten [13]: H expresses the system
type, i. e., which kind of one-step reactions states can exhibit (input, output,
state transitions etc.), and the elements of a final coalgebra represent the behav-
ior of all states in all systems of type H (and the unique homomorphism from a
system into the final one assign to every state its behavior). For example, deter-
ministic automata with input alphabet I are coalgebras for HX = XI × {0, 1},
the final coalgebra is the set of all languages on I.

In this paper a unified description is presented for (a) initial algebras, (b) final
coalgebras and (c) initial iterative algebras (in the automata example this is the
set of all regular languages on I). We also demonstrate that this new description
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provides a unifying view of a number of other important examples. We work
with set functors H preserving intersections. This is a requirement that many
“everyday” set functors satisfy. We prove that the final coalgebra of H can then
be described as the set of all well-pointed coalgebras, i.e., pointed coalgebras not
having any proper subobject and also not having any proper quotient. Moreover,
the initial algebra can be described as the set of all well-pointed coalgebras which
are well-founded in the sense of Taylor [16]. A coalgebra (A,α) is well-founded
if no proper subcoalgebra (A′, α′) of (A,α) forms a pullback

A HA
α

//

A′

A

� _

m

��

A′ HA′
α′

// HA′

HA

� _

Hm

��

(1.1)

This concept was first studied by Osius [12] for graphs considered as coalgebras
of the power-set functor P: a graph is well-founded iff it has no infinite paths.
Taylor [16, 17] introduced well-founded coalgebras for general endofunctors, and
he proved that for endofunctors preserving inverse images the concepts of initial
algebra and final well-founded coalgebra coincide.

We are going to prove that this result holds for every set functor H; the
step towards making no assumptions on H is non-trivial. And if H preserves
intersections, we describe its final coalgebra, initial algebra, and initial iterative
algebra using well-pointed coalgebras as above. The first result will be proved in
a much more general context, working with an endofunctor of a locally finitely
presentable category preserving finite intersections, but this extra assumption
can be dropped in the case of set functors.

2 Well-founded coalgebras

Throughout this section A denotes an LFP category with a simple initial ob-
ject. And H is an endofunctor preserving monomorphisms. Let us recall these
concepts:

Definition 2.1. 1. A category A is locally finitely presentable (LFP) if
(a) A is complete, and
(b) there is a set of finitely presentable objects whose closure under filtered

colimits is all of A .
2. An object A is called simple if it has no proper quotients. That is, every

epimorphism with domain A is invertible.

Example 2.2. The categories of sets, graphs, posets, and semigroups are locally
finitely presentable. The initial objects of these categories are empty, hence sim-
ple. The category of rings is LFP but the initial object Z is not simple.

Notation 2.3. For every endofunctor H denote by CoalgH the category of
coalgebras α : A // HA and coalgebra homomorphisms, where a homomor-
phism h from (A,α) to (B, β) is a morphism h : A // B such that β·h = Hh·α.
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Remark 2.4. There are some consequences of the LFP assumption that play an
important role in our development. These pertain to monomorphisms.

1. A has (strong epi, mono)-factorizations; see 1.16 in [5]. Recall that an epi-
morphis is strong iff it has the diagonal fill-in property w. r. t. all monomor-
phisms.

2. A is wellpowered, see 1.56 in [5]. This implies that for every object A the
poset Sub(A) of all subobjects of A is a complete lattice.

3. Monomorphisms are closed under filtered colimits; see 1.62 in [5].

Since subcoalgebras play a basic role in the whole paper, and quotients are
important from Section 3 onwards, we need to make clear what we mean by
those. We use the term subcoalgebra of a coalgebra (A,α) to mean a subobject
m : (A′, α′) // (A,α) represented by a monomorphism m in A . Then m is
clearly a monomorphism of CoalgH; however, in general, monomorphisms in
CoalgH need not be carried by monomorphisms from A . As usual, if a subcoal-
gebra m is not invertible, it is said to be proper. What about quotient coalgebras?
A quotient of a coalgebra (A,α) is represented by e : (A,α) // (A′, α′), where e
is a strong epimorphism in A . Since H is assumed to preserve monomorphisms,
CoalgH has factorizations of morphisms f : (A,α) // (B, β) into homomor-
phisms e : (A,α) // (C, γ) and m : (C, γ) // (B, β), i. e., such that (C, γ) is
a quotient of (A,α) and a subcoalgebra of (B, β).

Definition 2.5. A cartesian subcoalgebra of a coalgebra (A,α) is a subcoal-
gebra (A′, α′) forming a pullback (1.1). A coalgebra is called well-founded if it
has no proper cartesian subcoalgebra.

Example 2.6. (1) The concept of well-founded coalgebra was introduced orig-
inally by Osius [12] for the power set functor P. A graph is a coalgebra
(A, a) for P, where a(x) is the set of neighbors of x in the graph. Then
a subcoalgebra of A is an (induced) subgraph A′ with the property that
every neighbor of a vertex of A′ lies in A′. The subgraph A′ is cartesian iff
it contains every vertex all of whose neighbors lie in A′. The graph A is a
well-founded coalgebra iff it has no infinite path.

(2) Let A be a deterministic automaton considered as a coalgebra for HX =
XI×{0, 1}. A subcoalgebra A′ is cartesian iff it contains every state all whose
successors (under the inputs from I) lie in A′. This holds, in particular, for
A′ = ∅. Thus, no nonempty automaton is well-founded.

(3) Coalgebras for HX = X+1 are dynamical systems with deadlocks, see [13].
A subcoalgebra A′ of a dynamical system A is cartesian iff it contains all
deadlocks and every state whose next state lies in A′.

A dynamical system is well-founded iff it has no infinite computation.

Definition 2.7. Every coalgebra α : A // HA induces an endofunction
of Sub(A) (see Remark 2.4.2) assigning to a subobject m : A′ // A the in-
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verse image ©m of Hm under α, i. e., we have a pullback square:

A HA
α

//

©A′

A

©m

��

©A′ HA′
α[m]

// HA′

HA

Hm

��

(2.1)

This function m � // ©m is obviously order-preserving. By the Knaster-
Tarski fixed point theorem, this function has a least fixed point.

Incidentally, the notation ©m comes from modal logic, especially the areas
of temporal logic where one reads ©φ as “φ is true in the next moment,” or
“next time φ” for short.

Example 2.8. Recall our discussion of graphs from Example 2.6 (1). The pullback
©A′ of a subgraph A′ is the set of vertices of A all of whose neighbors belong
to A′.

Remark 2.9. As we mentioned in the introduction, the concept of well-founded
coalgebra was introduced by Taylor [16, 17]. Our formulation is a bit simpler.
In [17, Definition 6.3.2] he calls a coalgebra (A,α) well-founded if for every pair
of monomorphisms m : U // A and h : H // U such that h·m is the inverse
image of Hm under α it follows that m is an isomorphism. Thus in lieu of fixed
points of m 7−→ ©m he uses pre-fixed points.

In addition, our overall work has a methodological difference from Taylor’s
that is worth mentioning at this point. Taylor is giving a general account of
recursion and induction, and so he is concerned with general principles that
underlie these phenomena. Indeed, he is interested in settings like non-boolean
toposes where classical reasoning is not necessarily valid. On the other hand, in
this paper we are studying initial algebras, final coalgebras, and similar concepts,
using standard classical mathematical reasoning. In particular, we make free use
of transfinite recursion. The definitions in Notation 2.10 just below would look
out of place in Taylor’s paper. But we believe they are an important step in our
development.

Notation 2.10. (a) For every coalgebra α : A // HA denote by

a∗ : A∗ // A (2.2)

the least fixed point of the function m � // ©m of Definition 2.7. (Thus,
(A, a) is well-founded iff a∗ is invertible.) Since a∗ is a fixed point we have
a coalgebra structure α∗ : A∗ // HA∗ making a∗ a coalgebra homomor-
phism.

(b) For every coalgebra a : A // HA we define a chain of subobjects

a∗i : A∗i // A (i ∈ Ord)
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of A in A by transfinite recursion: a∗0 : 0 // A is the unique morphism;
a∗i+1 = ©a∗i and for limit ordinals a∗i =

⋃
j<i a

∗
j . Since 0 is simple, a∗0 is a

strong monomorphism. By transfinite induction (recall Remark 2.4.4) we see
immediately that all a∗i are strong monomorphisms. Moreover, what we have
is nothing else than the construction of the least fixed point of m � //©m
(cf. Remark 2.9) in the proof of the Knaster-Tarski Theorem in [15]. Thus,
a∗ =

⋃
i∈Ord a

∗
i . Also, there exists an ordinal i with A∗ = A∗i (due to

wellpoweredness). Henceforth, we call A∗ the smallest cartesian subcoalgebra
of A.

Proposition 2.11. For every coalgebra (A,α), the smallest cartesian subcoalge-
bra (A∗, α∗) is its coreflection in the full subcategory of well-founded coalgebras.

Remark. We thus prove that (A∗, α∗) is well-founded, and for every homomor-
phism f : (B, β) // (A,α) with (B, β) well-founded there exists a unique ho-
momorphism f̄ : (B, β) // (A∗, α∗) with f = a∗·f̄ .

Corollary 2.12. The full subcategory of CoalgH consisting of the well-founded
coalgebras is closed under quotients and colimits in CoalgH.

For endofunctors preserving inverse images the above corollary is Exer-
cise VI.16 in Taylor [17] and the following theorem is Corollary 9.9 of [16].
As we mentioned in the introduction, it is non-trivial to relax the assumption
on the endofunctor, and so our proof is different from Taylor’s.

Theorem 2.13. If H preserves finite intersections, then

initial algebra = final well-founded coalgebra.

That is, an algebra ϕ : HI // I is initial iff ϕ−1 : I // HI is the final
well-founded coalgebra.

Proof (Sketch). (a) Let I be an initial algebra. It follows from [20] that I is
obtained as Hi0 for some ordinal i for the initial chain introduced in [2] defined
by H00 = 0, Hi+10 = H(Hi0) and Hi0 = colimj<iH

j0 for limit ordinals i. We
prove by transfinite induction that if I = Hk0 then the connecting morphisms
Hi0 // Hk0 for i ≤ k are precisely a∗i of Notation 2.10. Consequently, I is
well-founded. We next use the concept of recursive coalgebra of Capretta et
al [6]: It is a coalgebra from which a unique coalgebra-to-algebra morphism into
every algebra exists. Initial algebras are proved there to be precisely the final
recursive coalgebras. We prove that every well-founded coalgebra is recursive.
We thus derive that I is a final well-founded coalgebra.

(b) Let ψ : I // HI be a final well-founded coalgebra. Factorize ψ = m·e
where e is a strong epimorphism and m a monomorphism (Remark 2.4). By
diagonal fill-in we obtain a quotient e : (I, ψ) // (I ′, ψ′) which, by Corol-
lary 2.12, is well-founded, thus recursive. Consequently, a coalgebra homomor-
phism f : (I ′, ψ′) // (I, ψ) exists. Then f ·e is an endomorphism of the fi-
nal well-founded coalgebra, hence, f ·e = idI . This proves that e is an isomor-
phism, thus, ψ is a monomorphism. This fact is used to prove that the coalge-
bra (HI,Hψ) is well-founded. Using an argument similar to Lambek’s Lemma
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we derive that ψ is invertible. Therefore results of [20] imply that the initial chain
above converges, and for some ordinal k, Hk0 is an initial algebra. Moreover,
Hk0 is by (a) a final well-founded coalgebra, thus, isomorphic to ψ : I // HI.
Thus (I, ψ−1) is isomorphic to the initial algebra. ut

Theorem 2.14. For every endofunctor of Set we have:

initial algebra = final well-founded coalgebra.

Proof (Sketch). There exists an endofunctor H∗ preserving finite intersections
and agreeing on nonempty sets with H, see [19]. Given H, we know from Theo-
rem 2.13 that the equation above holds for H∗. From this one can prove it for H.
The proof is quite technical because we need to compare well-foundedness of coal-
gebras for H and H∗, and the empty set plays a substantial role here. ut

This last result and Corollary 2.12 serve as a basis for a description of initial
algebras in Theorem 3.15.

3 Well-pointed coalgebras

We arrive at the centerpiece of this paper, characterizations of the initial algebra,
final coalgebra, and initial iterative algebra for set functors.

Throughout this section H denotes an endofunctor of Set which preserves
(wide) intersections. Many endofunctors of interest satisfy this condition, for
example:

(a) the power-set functor, all polynomial functors, the finite distribution func-
tor,

(b) products, coproducts, quotients, and subfunctors of functors preserving in-
tersections, and

(c) “almost” all finitary functors: if H is finitary then H̄ in Theorem 2.14 pre-
serves intersections.

An example of a set functor not preserving intersections is the continuation

monad HX = R(RX), where R is the set of results. A simpler example is the one
taking every nonempty set to the terminal object and the empty set to itself.

By a pointed coalgebra is meant a tripel (A, a, x), where (A, a) is a coalge-
bra and x an element of A called initial state. When speaking about morphisms
between pointed coalgebras we mean those preserving the initial state. In par-

ticular, given a pointed coalgebra 1
x // A // HA by a subobject is meant a

subcoalgebra containing the initial state x.

Definition 3.1. A well-pointed coalgebra is a pointed coalgebra which has no
proper subobjects and no proper quotients.

Remark 3.2. Recall that a simple coalgebra (called minimal coalgebra by
Gumm [8]) is a coalgebra (A, a) with no nontrivial quotient. That is, a coal-
gebra such that every homomorphism h : (A, a) // (B, b) has h monic. Gumm
observed that
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(a) The full subcategory of CoalgH given by all simple coalgebras is reflective:
the reflection of a coalgebra (A, a) is the simple quotient

e(A,a) : (A, a) // (Ā, ā)

obtained as the wide pushout of all quotients of (A, a).
(b) Every subcoalgebra of a simple coalgebra is simple.
(c) The coalgebra map a : A // HA of a simple coalgebra is monic.

Remark 3.3. Thus, 1
x // A

a // HA is a well-pointed coalgebra iff (A, a) is
simple and is generated by x. We call the latter condition reachability. That is,
a pointed coalgebra is reachable if it has no proper pointed subcoalgebra. It is
easy to see that this holds iff the canonical graph (see Definition 3.11 below) is
reachable: every state has a directed path from the initial state.

Examples 3.4. (a) A deterministic automaton with a given initial state is a
pointed coalgebra for HX = XI × {0, 1}. Reachability means that every
state can be reached (in finitely many steps) from the initial state. Simplic-
ity means that the automaton is observable, i.e., for every pair of different
states there exists an input word leading one of them to an accepting state
and the other to a non-accepting state.
The usual terminology is that reachability and observability together are
called minimality.

(b) For the power-set functor the pointed coalgebras are the pointed graphs.
Well-pointed means reachable and simple, where simplicity states that no
pair of different vertices is bisimilar.

Notation 3.5. Since H preserves intersections, there is a canonical process of
turning an arbitrary pointed coalgebra (A, a, x) into a well-pointed one: form
the simple quotient, see Remark 3.2(a) pointed by e(A,a)·x : 1 // Ā, then form
the least subcoalgebra containing that point:

1 A
x
// A Ā

e(A,a)

//1

Ā0

x0

66

Ā HĀ
ā

//

Ā0

Ā

m

��

Ā0 HĀ0
ā0 // HĀ0

HĀ

Hm

��

That is, m is the intersection of all subcoalgebras of (Ā, ā) through which
e(A,a)·x factorizes. Then (Ā0, ā0, x0) is well-pointed due to Remark 3.2(b).

Example 3.6. For deterministic automata our process A � // Ā0 above means
that we first merge the states that are observably equivalent and then discard
the states that are not reachable. A more efficient way is first discarding the
unreachable states and then merging observably equivalent pairs. Both ways are
possible since our functor preserves inverse images: this implies that a quotient
of a reachable pointed coalgebra is reachable.
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Notation 3.7. The collection of all well-pointed coalgebras up to isomorphism
is denoted by

νH.

For every coalgebra a : A // HA we have a function a+ : A // νH assigning
to every element x : 1 // A the well-pointed coalgebra of Notation 3.5:

a+(x) = (Ā0, ā0, x0). (3.1)

Theorem 3.8. A set functor H preserving intersections has a final coalgebra
iff it has only a set of well-pointed coalgebras up to isomorphism. And, if it is
the case, νH is a final coalgebra.

Remark. Whenever νH is a set, it carries a canonical coalgebra structure ψ : νH
// H(νH). It assigns to every member (A, a, x) of νH the following element

of H(νH):

1
x // A

a // HA
Ha+ // H(νH). (3.2)

We prove below that this is a final coalgebra.

Proof. (1) If H has a final coalgebra, then due to Remark 3.2 every simple
coalgebra is its subcoalgebra, since the unique homomorphism is monic. The
final coalgebra has only a set of subcoalgebras, consequently, there exists up to
isomorphism only a set of simple coalgebras. Consequently, only a set of well-
pointed coalgebras.

(2) Let H have a set νH of representative well-pointed coalgebras. We prove
that νH with the coalgebra structure ψ from (3.2) is final.

(2a) We first prove that for every coalgebra homomorphism h : (A, a) //

(B, b) we have
a+ = b+·h. (3.3)

Given x : 1 // A, then b+·h assigns to it the well-pointed coalgebra (B̄0, b̄0, y0)
obtained from (B, b, y), where y = h·x, as in Notation 3.5. It is not difficult, using
Remark 3.2, to prove that this well-pointed coalgebra is isomorphic to (Ā0, ā0, x).

(2b) νH is a weakly final coalgebra because for every coalgebra (A, a) we
have a coalgebra homomorphism a+ : (A, a) // (νH, x). Indeed, by 3.2 we
have ψ·a+(x) = Hā+

0 ·ā0(x0) and the diagram below shows that this is equal to
Ha+·a(x):

HA HĀ
He //HA

H(νH)

Ha+

��

HĀ

H(νH)

Hā+

ww

HA HĀ//

A

HA

a

��

A Ā
e // Ā

HĀ

ā
��

A Ā//

1

A

x

��

1 Ā0
x0 // Ā0

Ā
��

Ā HĀ
ā //

Ā0

Ā

m
��

Ā0 HĀ0
ā0 // HĀ0

HĀ

Hm
��

HĀ0 H(νH)
Hā+0 //HĀ0

HĀ
��

H(νH)

HĀ

77
Hā+

HĀ

HĀ
id

ww

H(νH)

H(νH)

id

rr
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Notice that the upper and lower triangles commute since m and e are homomor-
phisms, see (2a).

(2c) We next prove that for the coalgebra ψ : νH // H(νH) we have
ψ+ = idνH . Indeed, given a well-pointed coalgebra (A, a, x) ∈ νH, consider the
equality (3.3) with h = a+ (which is a homomorphism by (2b)) and b = ψ. Of
course, a+(x) = (A, a, x), since (A, a) is simple and (A, a, x) is reachable. Then
ψ+(A, a, x) = (A, a, x).

Finally, to prove uniqueness of the homomorphism a+, suppose that h : (A, a)
// (νH,ψ) is any homomorphism. Then we have

a+ (2a)
= ψ+·h (2b)

= h. ut

Examples 3.9. (a) For deterministic automata the final coalgebra (for HX =
XI × {0, 1}) consists of all minimal (i. e., reachable and observable) au-
tomata. The more usual description is: the set PI∗ of all formal languages.
However, this is isomorphic: every formal language is accepted by a minimal
automaton, unique up to isomorphism.

(b) The final coalgebra for the finite power-set functor is the coalgebra of all
finitely branching well-pointed graphs. See Section 4 for more details.

Remark 3.10. If νH is not a set, then H does not have a (small) final coalgebra.
However, νH is its large final coalgebra: in the above proof smallness was not
used.

Definition 3.11. For every coalgebra a : A // HA define the canonical
graph on A: the neighbors of x ∈ A are precisely those elements of A which
lie in the least subset m : M

� � // A with a(x) ∈ Hm[HM ].

Proposition 3.12. A coalgebra for H is well-founded iff its canonical graph is
well-founded.

Remark. For functors H preserving inverse images this fact is proved by Taylor,
see 6.3.4 in [17]. Our proof is essentially the same.

Corollary 3.13. Subcoalgebras of a well-founded coalgebra are well-founded.

Notation 3.14. The collection of all well-founded, well-pointed coalgebras (up
to isomorphism) is denoted by

µH.

For every well-founded coalgebra a : A // HA we have a function a+ : A
// µH assigning to every element x : 1 // A the well-founded, well-pointed

coalgebra (3.1). Indeed, (Ā0, ā0) is well-founded due to Corollaries 2.12 and 3.13.

Theorem 3.15. A set functor H preservring intersections has an initial algebra
iff it has only a set of well-founded, well-pointed coalgebras up to isomorphism.
And, if it is the case, µH is an initial algebra.
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Remark. Whenever µH is a set, it carries a canonical coalgebra structure ψ̄ : µH
// H(µH) defined by (3.2). We prove below that this is a final well-founded

coalgebra. Thus, by Theorem 2.14, µH is an initial algebra with the structure
given by the inverse of ψ̄.

Proof. (1) If H has an initial algebra I, then by Theorem 2.14 this is a final well-
founded coalgebra. Every well-founded, well-pointed coalgebra is simple, whence
a subcoalgebra of I since the unique homomorphism into I is monomorphic by
Remark 3.2. Consequently, µH is a set.

(2) Let H have a set µH of representatives of well-founded, well-pointed coal-
gebras. The proof that for every well-founded coalgebra (A, a) the map a+ : A
// µH is a unique coalgebra homomorphism into ψ̄ : µH // H(µH) is com-

pletely analogous to the proof of finality of ψ : νH // H(νH) in Theorem 3.8.
Just recall that subcoalgebras and quotients of a well-founded coalgebra are all
well-founded (by Corollaries 2.12 and 3.13).

It remains to prove that (µH, ψ̄) is a well-founded coalgebra. To this end no-
tice that for every well-pointed, well-founded coalgebra (A, a, x) in µH we have
a+(x) = (A, a, x). Now take the coproduct (in CoalgH) of all (A, a) for which
there is an x ∈ A such that (A, a, x) lies in µH. This coproduct is a well-founded
coalgebra by Corollary 2.12, and, as we have just seen, the unique induced ho-
momorphism from the coproduct into (µH, ψ̄) is epimorphic, whence µH is a
quotient coalgebra of the coproduct. Thus, another application of Corollary 2.12
shows that µH is a well-founded coalgebra as desired. ut

Remark 3.16. (a) Recall from [4] that an algebra a : HA // A is iterative
provided that every (equation) morphism e : X // HX+A, where X is a finite
set, has a unique solution, i.e., e† : X // A such that e† = [a,A]·(He† + A)·e.
It was proved in [10] that the initial iterative algebra is precisely the final locally
finite coalgebra, where a coalgebra is called locally finite if every element of it
lies in a finite subcoalgebra.

Example 3.17 (see [4]). The initial iterative algebra for HX = XI ×{0, 1} con-
sists of all finite minimal automata. This is isomorphic to its description as all
regular languages.

Notation 3.18. For every finitary set functor denote by

%H

the set of all finite well-pointed coalgebras up to isomorphism.
Given a finite coalgebra a : A // HA we define a function a+ : A // %H

by (3.1).

Theorem 3.19. Every finitary set functor H has an initial iterative algebra %H
formed by all finite well-pointed coalgebras.

Remark. %H has the canonical coalgebra structure ψ̃ : %H // H(%H) given
by (3.2). The proof that this is the final locally finite coalgebra is analogous to
the proof of Theorem 3.8.
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4 Examples of well-pointed coalgebras

Example 4.1. Deterministic automata, HX = XI × {0, 1}. In Example 3.9
we saw that νH consists of all minimal automata, or, equivalently, all languages
over I. The initial iterative algebra %H consists of all finite minimal automata,
this is isomorphic to

%H = all regular languages.

Finally, no well-pointed coalgebra is well-founded because the empty subcoalge-
bra is cartesian, thus,

µH = ∅.

Example 4.2. Streams. Consider the coalgebras for HX = X × I + 1. Jan
Rutten [13] interprets them as dynamical systems with outputs in I and with
terminating states (where no next state is given). Every state q yields a stream,
finite or infinite, over I by starting in q and traversing the dynamic system as
long as possible. We call it the response of q. It is an element of Iω + I∗.

(a) For every word s1 · · · sn in I∗ we have a well-pointed dynamic system

q0
s1 //� � //

s2 // . . . sn //

(b) For every eventually periodic stream in Iω,

w = uvω for u, v ∈ I∗,

we have a well-pointed dynamic system which uses u as in (a) and adds a cycle
repeating v.

The following was already proved by Arbib and Manes [9, 10.2.5].

Corollary 4.3. For HX = X × I + 1 we have

νH ∼= I∗ + Iω, all finite and infinite streams,

%H ∼= all finite and eventually periodic streams,

µH ∼= I∗, all finite streams.

Example 4.4. Binary trees. Coalgebras for the functor

HX = X ×X + 1

are given, as observed by Jan Rutten [13], by a set Q of states which are ei-
ther terminating or have precisely two next states according to a binary input,
say {l, r}. Every state q ∈ Q yields an ordered binary tree Tq (i.e, nodes that
are not leaves have a left-hand child and a right-hand one) by tree expansion:
the root is q and a node is either a leaf, if it is a terminating state, or has the
two next states as children (left-hand for input l, right-hand for input r). Binary
trees are considered up to isomorphism.
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Lemma 4.5. For every coalgebra of the functor HX = X ×X + 1 the largest
congruence merges precisely the pairs of states having the same tree expansion.

Proof. Let ∼ be the equivalence with q ∼ q′ iff Tq = Tq′ . There is an obvious
structure of a coalgebra on Q/∼ showing that ∼ is a congruence. For every
coalgebra homomorphism h : Q // Q̄ the tree expansion of q ∈ Q is always the
same as the tree expansion of h(q) in Q̄. Thus, ∼ is the largest congruence. ut

Corollary 4.6. A well-pointed coalgebra of the functor HX = X ×X + 1 is a
coalgebra with an initial state q0 which is reachable (every state can be reached
from q0) and simple (different states have different tree expansions).

Moreover, tree expansion of the initial state is a bijection between well-
pointed coalgebras and binary trees. The coalgebra is finite iff the tree expansion
is rational, i.e., it has only finitely many subtrees up to isomorphism. And the
well-founded coalgebras are precisely those yielding a finite tree expansion.

The following result was proved by Arbib and Manes [9], 10.2.5 (description
of νH) and in [4] (description of ρH).

Corollary 4.7. For the functor HX = X ×X + 1 we have

νH ∼= all binary trees,

%H ∼= all rational binary trees,

µH ∼= all finite binary trees.

Example 4.8. Graphs. Here we investigate coalgebras for the power-set func-
tor P (that is, graphs) and for the finitary power-set functor Pω (that is,
finitely branching graphs). In the rest of Section 4 all trees are understood to be
non-ordered. That is, a tree is a directed graph with a node (root) from which
every node can be reached by a unique path.

Recall the concept of a bisimulation between graphs X and Y : it is a relation
R ⊆ X × Y such that whenever x R y then every child of x is related to a child
of y, and vice versa. Two nodes of a graph X are called bisimilar if they are
related by a bisimulation R ⊆ X ×X.

Lemma 4.9. The greatest congruence on a graph merges precisely the bisimilar
pairs of states.

This follows, since P preserves weak pullbacks, from general results of Rut-
ten [13].

Corollary 4.10. A pointed graph (G, q0) is well-pointed iff it is reachable (every
vertex can be reached from q0 by a directed path) and simple (all distinct pairs
of states are non-bisimilar).
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Example 4.11. Peter Aczel introduced in [1] the canonical picture of a (well-
founded) set X. It is the graph with vertices all sets Y such that a sequence

Y = Y0 ∈ Y1 ∈ · · · ∈ Yn = X

of sets exists. The neighbors of a vertex Y are all of its elements. When pointed
by X, this is a well-pointed graph which is, due to the Foundation Axiom, well-
founded. Conversely, every well-founded well-pointed graph is isomorphic to the
canonical picture of a set.

Corollary 4.12. µP = all sets.

This was proved by Rutten and Turi in [14]. The bijection between well-
founded, well-pointed graphs and sets (given by the canonical picture) takes
the finite well-founded graphs to the hereditarily finite sets X, i.e., finite sets
with finite elements which also have finite elements, etc. More precisely: a set is
hereditarily finite if all sets in the canonical picture of X are finite:

Corollary 4.13. µPω = all hereditarily finite sets.

In order to describe the final coalgebra for P in a similar set-theoretic man-
ner, we must move from the classical theory to the non-well-founded set theory of
Peter Aczel [1]. Recall that a decoration of a graph is a coalgebra homomorphism
from this graph into the large coalgebra (Set,∈). Non-well-founded set theory
is obtained by swapping the axiom of foundation, telling us that (Set,∈) is
well-founded, with the following

Anti-foundation axiom. Every graph has a unique decoration.

Example 4.14. The decoration of a single loop is a set Ω such that Ω = {Ω}.
The coalgebra (Set,∈) where now Set is the class of all non-well-founded

sets, is of course final: the decoration of G is the unique homomorphism d : G
// Set.

Corollary 4.15. In the non-well-founded set theory: νP = all sets.

Let us turn to the finite power-set functor Pω.

Remark 4.16. Worrell introduced in [21] the notion of a tree-bisimulation be-
tween trees T1 and T2; this is a graph bisimulation R ⊆ T1 × T2 which relates
the roots and such that x1 R x2 implies that x1 and x2 are the roots or have
related parents.

A tree T is called strongly extensional iff every tree bisimulation R ⊆ T × T
is trivial: R ⊆ ∆T . The tree expansion is a bijection between all well-pointed
finitely branching graphs and strongly extensional finitely branching trees.

Corollary 4.17. For the finite power-set functor Pω we have

νPω = all finitely branching, strongly extensional trees,

%Pω = all finitely branching, rational, strongly extensional trees,

µPω = all finite strongly extensional trees.
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Example 4.18. Labeled transition systems. Here we consider, for a set A of
actions, coalgebras for Pω(−×A). A bisimulation between two finitely branching
labeled transition systems (LTS) G and G′ is a relation R ⊆ G×G′ such that

if x R y then for every transition x
a // x′ in G there exists

a transition y
a // y′ with x′ R y′, and vice versa.

States x, y of an LTS are called bisimilar if x R y for some bisimulation R ⊆
G×G.

A well-pointed LTS is an LTS together with an initial state q0 which is
reachable (every state can be reached from q0) and simple (distinct states are
non-bisimilar).

The tree expansion of a state q is a (non-ordered) tree with edges labeled
in A, shortly, an A-labeled tree. For A-labeled trees we modify Definition 4.16
in an obvious manner.

Corollary 4.19. For the finitely branching LTS we have

νPω(−×A) = all finitely branching, strongly extensional A-labeled trees,

%Pω(−×A) = all rational, finitely branching, strongly extensional
A-labeled trees,

µPω(−×A) = all finite extensional A-labeled trees.

5 Conclusions

For set functors H satisfying the (mild) assumption of preservation of intersec-
tions we described (a) the final coalgebra as the set of all well-pointed coalge-
bras, (b) the initial algebra as the set of all well-pointed coalgebras that are
well-founded, and (c) in the case where H is finitary, the initial iterative algebra
as the set of all finite well-pointed coalgebras. This is based on the observa-
tion that given an element of a final coalgebra, the subcoalgebra it generates
has no proper subcoalgebras nor proper quotients—shortly, this subcoalgebra
is well-pointed. And different elements define nonisomorphic well-pointed sub-
coalgebras. We then combined this with our result that for all set functors the
initial algebra is precisely the final well-founded coalgebra. This resulted in the
above description of the initial algebra. Numerous examples demonstrate that
this view of final coalgebras and initial algebras is useful in applications.

Whereas our result about well-founded coalgebras was proved in locally
finitely presentable categories, the description of the final coalgebra was for-
mulated for set functors only. In future research we intend to generalize this
result to a wider class of base categories.
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3. J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories,
John Wiley and Sons, New York 1990.
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