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Abstract
We present a result that implies that an endofunctor on a category has a terminal coalgebra
obtainable as a countable limit of its terminal-coalgebra sequence. It holds for finitary endofunctors
preserving nonempty binary intersections on locally finitely presentable categories, assuming that the
posets of strong quotients and subobjects of every finitely presentable object satisfy the descending
chain condition. This allows one to adapt finiteness arguments that were originally advanced by
Worrell concerning terminal coalgebras for finitary set functors. Examples include the categories
of sets, posets, vector spaces, graphs, and nominal sets. A similar argument is presented for the
category of metric spaces (although it is not locally finitely presentable).
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1 Introduction

Coalgebras capture various types of state-based systems in a uniform way by encapsulating
the type of transitions as an endofunctor on a suitable base category. Coalgebras also come
with a canonical behaviour domain given by the notion of a terminal coalgebra. So results
on the existence and construction of terminal coalgebras for endofunctors are at the heart of
the theory of universal coalgebra. The topic is treated in our monograph [5]. A well-known
construction of the terminal coalgebra for an endofunctor was first presented by Adámek [2]
(in dual form) and independently by Barr [11]. The idea is to iterate a given endofunctor F

on the unique morphism F1→ 1 to obtain the following ωop-chain

1 !←− F1 F !←−−− FF1 F F !←−−−− FFF1 F F F !←−−−−− · · · (1.1)

and then continue transfinitely. For each ordinal i, we write Vi for the ith iterate. So we
have

V0 = 1, Vi+1 = FVi, and Vi = limj<i Vj when i is a limit ordinal; (1.2)

the connecting morphisms are as expected. In particular, for every ordinal i, we have a
morphism Vi+1 → Vi. If the transfinite chain converges in the sense that this morphism is
an isomorphism for some i, then its inverse is the structure of a terminal coalgebra for F [2,
dual of second prop.]. This happens for a limit ordinal i iff F preserves the limit Vi. However,

© Jiří Adámek, Stefan Milius, Lawrence S. Moss;
licensed under Creative Commons License CC-BY 4.0

11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025).
Editors: Corina Cîrstea and Alexander Knapp; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.adamek@tu-braunschweig.de
https://orcid.org/0000-0002-1721-3155
mailto:stefan.milius@fau.de
https://orcid.org/0000-0002-2021-1644
mailto:larry.moss@gmail.com
https://orcid.org/0000-0002-9908-5774
https://doi.org/10.4230/LIPIcs.CALCO.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Terminal Coalgebras for Finitary Functors

in general, this transfinite chain does not converge at all (e.g. for the power-set functor), and
moreover, if it does converge, then the number of iterations needed to obtain the terminal
coalgebra can be arbitrarily large. For example, the set functor Pα, which assigns to a set
the set of all subsets of cardinality smaller than α, requires α + ω iterations [4].

A famous result by Worrell [20] states that a finitary set functor needs at most ω + ω

iterations to converge. We generalize this result to other base categories by isolating properties
of the category of sets and endofunctors on it that entail it:
1. The descending chain condition (DCC), which states that for every finitely presentable

object (a category-theoretic generalization of the notion of a finite set) every strictly
decreasing chain of subobjects or strong quotient objects is finite.

2. The preservation of nonempty binary intersections, that is, pullbacks of two monomorph-
isms such that the domain is not a strict initial object (cf. Definition 2.5).

The first condition is inspired by the descending chain condition in algebra and more
specifically by the Noetherian condition introduced by Urbat and Schröder [19]. Regarding
the second one, it was shown by Trnková that every set functor preserves nonempty finite in-
tersections [18]. In addition, every finitary set functor preserves all nonempty intersections [5,
Thm. 4.4.3].

Our main result (Theorem 5.1) holds for locally finitely presentable categories satisfying
the DCC: every finitary endofunctor preserving nonempty binary intersections has a terminal
coalgebra obtained in ω + ω steps. We also show that the DCC is satisfied by a large number
of categories of interest, such as sets, posets, graphs, vector spaces, boolean algebras, and
nominal sets.

The category of metric spaces and non-expanding maps is not locally finitely presentable,
and so our main result is not applicable to it. Nevertheless, we provide in Theorem 6.5
a sufficient condition for an endofunctor to have a terminal coalgebra obtained in ω + ω

steps: the endofunctor should be finitary and preserve nonempty binary intersections (as in
our Theorem 5.1), and it also should preserve isometric embeddings.

Related work. As we have mentioned above, our DCC condition was inspired by Urbat
and Schröder [19]. However, the results here are disjoint from the ones in op. cit.

The most closely related paper to this one is our previous work [1]. That paper also
contains results on endofunctors having terminal coalgebras in ω + ω steps. But those
results pertain to endofunctors belonging to one of several inductively defined classes. For
example, for sets it studies the Kripke polynomial functors. This is the smallest class of
endofunctors containing the constant functors and the finite power-set functor, and closed
under products, coproducts, and composition. We have shown [1, Thm. 3.5] that every
Kripke polynomial set functor has a terminal coalgebra in ω + ω steps. Similarly, we have
shown [1, Thm. 5.9] a result for the category of metric spaces and non-expanding maps,
replacing the finite power-set functor with the Hausdorff functor: this assigns to a space
the set of its compact subsets, using a well-known metric d̄ (cf. Example 6.6). Again, every
Hausdorff polynomial functor has a terminal coalgebra in ω + ω steps. However, since the
Hausdorff functor is not finitary on the category of all metric spaces, these results cannot
be inferred from Theorem 5.1. In contrast, the results in this paper apply to categories not
mentioned in op. cit: see Example 4.3 and Proposition 4.4. Both the theory and the specific
results that follow are new.

A slightly stronger condition than our DCC was introduced in previous work [9]. The
relationship of the two condition is dicussed in Section 4.
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Another related result concerns the category of complete metric spaces: locally contracting
endofunctors F on this category satisfying F∅ ≠ ∅ have a terminal coalgebra obtained in ω

steps [6] (see also [5, Cor. 5.2.18]). Moreover, this is then also an initial algebra.

2 Preliminaries

We review a few preliminary points. We assume that readers are familiar with algebras
and coalgebras for an endofunctor, as well as with locally finitely presentable categories and
(strong-epi, mono)-factorizations.

First we set up some notation. We write S ↣ X for monomorphisms and X ↠ E for
strong epimorphisms. Given an endofunctor F , we write νF for its terminal coalgebra, if it
exists.

Regarding the ωop-chain in (1.1), let ℓn : Vω → F n1 (n < ω) be the limit cone. We obtain
a unique morphism m : FVω → Vω such that for all n ∈ ωop, we have

FVω Vω

F n+11

m

F ℓn ℓn+1
(2.1)

This is the connecting morphism from Vω+1 = FVω to Vω in the transfinite chain (1.2).
If F preserves the limit Vω, then m is an isomorphism (and conversely). Therefore, its

inverse yields the terminal coalgebra m−1 : Vω → FVω [2, dual of second prop.]; shortly
νF = Vω. Then we say that the terminal coalgebra is obtained in ω steps.

This technique of finitary iteration is the most basic and prominent construction of
terminal coalgebras. However, it does not apply to the finite power-set functor Pf . For that
functor FVω ̸∼= Vω [3, Ex. 3(b)]. However, a modification of finitary iteration does apply,
as shown by Worrell [20, Th. 11]. One needs a second infinite iteration, iterating F on the
morphism m : FVω → Vω rather than on ! : F1→ 1, obtaining the ωop-chain

Vω
m←−− Vω+1

F m←−−− Vω+2
F F m←−−−−− · · · . (2.2)

Its limit is denoted by

Vω+ω = lim
n<ω

Vω+n. (2.3)

Worrell proved that when F is a finitary set functor, it preserves this limit. Therefore,
we obtain that Vω+ω carries a terminal coalgebra; shortly νF = Vω+ω, and we say that the
terminal coalgebra is obtained in ω + ω steps.

Limits of ωop-chains. We recall the following characterization of limits of ωop-chains.

▶ Remark 2.1. Consider an ωop-chain

X0
f0←−− X1

f1←−− X2
f2←−− · · · . (2.4)

In Set, Top, Met, and K-Vec, the limit L is carried by the set of all sequences (xn)n<ω,
xn ∈ Xn that are compatible: fn(xn+1) = xn for every n. The limit projections are the
functions ℓn : L→ Xn defined by ℓn((xi)) = xn.
1. In Top, the topology on L has as a base the sets ℓ−1

n (U), for U open in Xn.
2. In Met, the metric on L is defined by d((xn), (yn)) = supn<ω d(xn, yn).
3. In K-Vec, the limit L is a subspace of ΠiXi.

CALCO 2025



1:4 Terminal Coalgebras for Finitary Functors

Locally finitely presentable categories. We continue with a terse review of locally finitely
presentable categories; see [7] for background. A diagram D→ A is directed if its domain D

is a directed poset (i.e. nonempty and such that every pair of elements has an upper bound).
A functor is finitary if it preserves directed colimits. An object A of a category A is finitely
presentable if its hom-functor A(A,−) : A → Set preserves directed colimits. A category
is locally finitely presentable (lfp, for short) if it is cocomplete and has a set of finitely
presentable objects such that every object is a directed colimit of objects from that set.

▶ Example 2.2. We list a number of examples of lfp categories.
1. The category Set of all sets and Setp of pointed sets; the finitely presentable objects are

precisely the finite sets.
2. The category Gra of graph and their homomorphisms as well as Pos of posets and monotone

maps; finitely presentable objects are precisely the finite graphs or posets, respectively.
3. Every finitary variety, that is, any category of algebras specified by operations of finite

arity and equations; the finitely presentable objects are precisely those algebras which
have a presentation by finitely many generators and relations (in the usual sense of
universal algebra). The following three items are instances of this one.

4. The category Bool of Boolean algebras and their homomorphisms; the finitely presentable
objects are precisely the finite Boolean algebras. The same holds for every locally finite
variety, e.g. join-semilattices or distributive lattices.

5. The category M -Set of sets with an action of a monoid M , and equivariant maps; the
finitely presentable objects are precisely the orbit-finite M -sets (i.e. those having finitely
many orbits).

6. The category K-Vec of vector spaces over a field K and linear maps; the finitely presentable
objects are precisely the finite-dimensional vector spaces.
More generally, given a semiring S, the category S-Mod of all S-semimodules is lfp.

7. The category Nom of nominal sets and equivariant maps; the finitely presentable objects
are precisely the orbit-finite nominal sets.

8. A poset, considered as a category, is lfp iff it is an algebraic lattice: a complete lattice
in which every element is a join of compact ones. (An element x is compact if for every
subset S, x ≤

∨
S implies that x ≤

∨
S′ for some finite S′ ⊆ S.)

▶ Remark 2.3. We next recall definitions concerning subobjects.
1. For a fixed object A, the monomorphisms with codomain A have a natural preorder:

given c : C ↣ A and c′ : C ′ ↣ A, we say that c ≤ c′ iff c = c′ ·m for some monomorphism
m : C → C ′. A subobject of A is an equivalence class of monomorphisms under the
induced equivalence relation. We write representatives to denote subobjects.

2. A subobject (represented by) c : C ↣ A is finitely presentable if its domain C is a finitely
presentable object.

▶ Remark 2.4. We recall properties of an lfp category A used in the proof of Theorem 5.1:
1. A is complete [7, Rem 1.56] (and cocomplete by definition).
2. A has a (strong-epi, mono)-factorization system [7, Rem. 1.62].
3. Every morphism from a finitely presentable object to a directed colimit factorizes through

one of the colimit maps.
4. Every object is the colimit of the canonical directed diagram of all of its finitely presentable

subobjects [9, Lemma 3.1]. Moreover, given any finitely presentable subobject c : C ↣ A,
it is easy to see that the object A is the colimit of the diagram of all its finitely presentable
subobjects s : S ↣ A such that c ≤ s.
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5. The collection of all finitely presentable objects, up to isomorphism, is a set. It is
a generator of A; it follows that a morphism m : X → Y is monic iff for every pair
u, v : U → X of morphisms with a finitely presentable domain U , we have that m·u = m·v
implies u = v.

▶ Definition 2.5 [14]. An initial object 0 is strict if every morphism with codomain 0 is an
isomorphism. A monomorphism A ↣ B is empty if its domain is a strict initial object; it is
nonempty if it is not empty.

An intersection (a wide pullback of monomorphisms) is empty if its domain is a strict
initial object, that is, the limit cone is formed by empty monomorphisms; the intersection is
nonempty if it is not empty.1

An endofunctor F : A → A preserves nonempty intersections if F takes a nonempty
intersection to a (not necessarily nonempty) wide pullback.

▶ Remark 2.6. Every endofunctor preserving nonempty binary intersections preserves non-
empty monomorphisms. This holds since a morphism is monic iff the pullback along itself is
formed by a pair of identity morphisms.

▶ Example 2.7. 1. In Set, the initial object ∅ is strict. A nonempty intersection is an
intersection of subsets having a common element. Trnková [18] proved that every set
functor preserves nonempty binary intersections.
It follows that every finitary set functor preserves nonempty intersections [5, Thm. 4.4.3].

2. The initial object {0} in K-Vec is not strict. Thus all subobjects are nonempty. Every
endofunctor on K-Vec preserves finite intersections [9, Ex. 4.3].

3. In Gra and Pos nonempty intersections are, as in Set, intersections of subobjects having a
common element.

▶ Remark 2.8. 1. Unlike on Set and K-Vec, on most everyday categories finitary endofunc-
tors may fail to preserve nonempty intersections. For example, consider the category Gra
of graphs. We exhibit a finitary endofunctor not preserving nonempty binary intersections.
We denote by 1 the terminal graph, a single loop, and by S a single node which has no
loop. Let F be the extension of the identity functor with FX = X if X has no loop,
else FX = X + 1. The graph 1 + 1 has subobjects S + 1 and 1 + S with the nonempty
intersection S + S, but F does not preserve it.

2. The colection of all finitary endofunctors on lfp categories preserving non-empty inter-
sections is, nevertheless, large. It contains constant functors, finite power-functors (−)n

(n ∈ N), and it is closed under finite products and composites. It is also closed under
coproducts provided that they commute with pullbacks (which holds in categories such
as Pos, Gra, and Nom).

3. On the category Nom, the abstraction functor (cf. [16, Thm. 4.12]) and the finite power-set
functor preserve intersections.

▶ Remark 2.9. Let A be an object of a locally finitely presentable category.
1. If A is not strictly initial, then it has a nonempty finitely presentable subobject. To see

this, let ci : Ci ↣ A (i ∈ I) be the colimit cocone of the diagram in Remark 2.4.4. If
each Ci is strictly initial, then so is the colimit A. Indeed, the colimit of any diagram of
strict initial objects is itself strict initial.

1 There is no condition on the (non-)emptiness of the family of monomorphisms which is intersected here.

CALCO 2025



1:6 Terminal Coalgebras for Finitary Functors

2. Moreover, if A is not strictly initial, then it is the directed colimit of the canonical diagram
of all its nonempty finitely presentable subobjects. To see this, combine Remark 2.4.4
with the previous item.

3. If for some ordinal i ≤ ω + ω the object Vi is strictly initial, then νF is obtained in
ω + ω steps by default. Indeed, recall the transfinite chain Vj from (1.2). The connecting
morphism from Vi+1 = FVi to Vi is an isomorphism, whence νF = Vi.

3 A Sufficient Condition for νF = Vω+ω

We first present a simple result that holds for all endofunctors of all categories. It will
then be used twice in the sequel. In it, we recall the notation Vω+ω from (2.2). Following
this, we introduce DCC-categories and prove a generalization of Worrell’s result for them
(Theorem 5.1).

▶ Proposition 3.1. Let F : A→ A be an endofunctor such that the following hold:
1. The limit Vω of the ωop-chain (2.3) exists, and the morphism m : FVω → Vω is monic.
2. F preserves monomorphisms.
3. A has and F preserves nonempty intersections of ωop-chains of monomorphisms.

Then the limit Vω+ω is preserved by F ; therefore νF = Vω+ω.

Proof. Let Vi be defined for all ordinals i by V0 = 1, Vi+1 = FVi, and Vi = limj<i Vj for
limit ordinals i. The ωop-chain (1.1) is its beginning, (2.1) defines the connecting morphism
m : Vω+1 → Vω, and the ωop-chain (2.2), repeated below, is the continuation of the chain
in (1.1) up to Vω+ω = limi<ω+ω Vi:

Vω
m←−− Vω+1

F m←−−− Vω+2
F F m←−−−−− · · · .

From Items 1 and 2, the morphisms F im are monic. By Remark 2.9.3, we may assume
without loss of generality that Vω+ω is not strictly initial. So by Item 3, F preserves this
limit. It follows that νF = Vω+ω, as explained at the beginning of Section 2. ◀

4 DCC-Categories

We introduce lfp categories satisfying a descending chain condition, shortly DCC-categories.
Examples are presented and the related condition of graduatedness is discussed. We prove
that ωop-limits in DCC-categories are finitary. In Section 5, we prove that νF = Vω+ω for
all finitary endofunctors on DCC-categories preserving nonempty binary intersections.

We have already seen the order of subobjects of a fixed object A (cf. Remark 2.3). (This
corresponds to the preordered collection in the slice category A ↓ A.) Dually, we use the
order on strong quotients, represented by strong epimorphisms e : A ↠ E: given e′ : A ↠ E′,
we have e ≤ e′ iff e′ = u ·e for some u : E → E′. This corresponds to the preordered collection
in the slice category A ↓ A. In the literature, the opposite order on quotients is also used.
For example, Urbat and Schröder [19], whose work has inspired our next definition, use that
opposite order. So readers of papers in this area should be careful.

▶ Definition 4.1. A locally finitely presentable category A is a DCC-category if every
finitely presentable object A satisfies the following descending chain condition: Every strictly
descending chain of subobjects or strong quotients of A is finite.
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Our notion is also related to the stronger notion of graduatedness [9]: an lfp category is
graduated if to every every finitely presentable object A a natural number n is assigned, called
the grade of A, such that every (proper) subobject and every (proper) strong quotient of A

is finitely presentable, and with a grade at most (smaller than, respectively) the grade of A.
Clearly, every graduated lfp category is DCC. But not conversely:

▶ Example 4.2. Here is a DCC-category which is not graduated. Consider the poset A with
top element ⊤, bottom element ⊥, and elements anm (n ≤ m < ω) ordered as follows:

aij ≤ anm iff i = n and j ≤ m.

⊤

a00 a11 a22

a10 a21 · · ·

a20

⊥

This is a complete lattice with all elements compact (i.e. finitely presentable). Thus, it is an
lfp category. The DCC condition is obvious. But ⊤ cannot have a (finite) grade: its grade
would have to be at least 2, due to ⊥ < a0 < ⊤, and at least 3 due to ⊥ < a10 < a11 < ⊤,
and so on.

▶ Example 4.3 [9]. The following categories are graduated (cf. Example 2.2): Set, Setp,
Bool, S-Mod for a finite semiring S, M -Set for a finite monoid M , Gra, K-Vec, and Pos. In
the first four categories, the grade is the cardinality of the underlying set. The grade of a
graph having n vertices and k edges is n + k, and the grade of a vector space is its dimension.
Finally, the grade of a poset is described as follows. Let N × N be the poset of pairs of
natural numbers ordered lexicographically, and let P be the subposet of pairs (n, k) with
k ≤ n2. There is an order-isomorphism φ : P → N. The grade of a poset with n elements
which contains k comparable pairs is φ(n, k).

An important example of a graduated category not included in op. cit. is Nom, the
category of nominal sets and equivariant maps. We present a proof based on ideas by Urbat
and Schröder [19]. We assume that readers are familiar with basic notions (like orbit and
support) from the theory of nominal sets, see Pitts [16].

▶ Proposition 4.4. The category Nom is a graduated lfp category.

Proof. Our proof proceeds in several steps.
1. The finitely presentable objects of Nom are precisely the orbit-finite nominal sets [15,

Prop. 2.3.7]. By equivariance, a subobject of a nominal set X is given by a number of
orbits. So the DCC on subobjects of an orbit-finite nominal set clearly holds.

2. For the descending chain condition for strong quotients, first recall that in Nom all
quotients are strong, and they are represented by the surjective equivariant maps. We
first consider single-orbit nominal sets and recall that the supports of elements of an orbit
all have the same cardinality. We also recall the standard fact [16, Exercise 5.1] that every
single-orbit nominal set X whose elements have supports of cardinality n (this is the degree
of X) is a quotient of the nominal set A#n = {(a1, . . . , an) : |{a1, . . . , an}| = n}, where A
denotes the set of names (or atoms). Now observe that a quotient of A#n having degree n

CALCO 2025



1:8 Terminal Coalgebras for Finitary Functors

is determined by a subgroup G of the symmetric group Sn. More specifically, the quotient
determined by G identifies (a1, . . . , an) and (aπ(1), . . . , aπ(n)) for every (a1, . . . , an) ∈ A#n

and every π ∈ G. Conversely, given a quotient e : A#n ↠ X we obtain G as consisting of
all those π for which e identifies the above two n-tuples for every a1, . . . , an in A. We
conclude that every strictly descending chain of quotients of A#n all having degree n

corresponds to a strictly descending chain of subgroups of Sn; the same holds of course
for every single-orbit nominal set of degree n. Such a chain must be finite, since so is Sn.
In fact, more can be said: For n ≥ 2, such a chain of subgroups of Sn has length at most
2n− 3 [10] (and for n = 1, Sn is trivial, of course, so chains of subgroups have length 0).

3. For general orbit-finite sets we now conclude that for every proper strong quotient of a
nominal set X one of the following three numbers strictly decreases while the other two
do not increase: the number of orbits, the degree of some orbit of X, or the maximum
length of the above chain of subgroups of Sn for some orbit. Thus, Nom is DCC.

4. To see that Nom is even graduated, observe that we can assign to each orbit-finite nominal
set X the sum of the three numbers mentioned in point 3 above. It is then clear that for
every proper nominal subset or proper quotient of X the grade is strictly smaller. ◀

▶ Example 4.5. The category Ab of abelian groups is not DCC. The group Z of integers is
finitely presentable, but it has the following descending sequence of proper subgroups

Z ⊃ 2Z ⊃ 4Z ⊃ · · · .

▶ Definition 4.6. A category has finitary ωop-limits if for every limit ℓn : L→ An (n < ω)
of an ωop-chain and every finitely presentable subobject m : M ↣ L, some morphism
ℓk ·m : M → Ak is monic.
▶ Proposition 4.7. Every DCC-category has finitary ωop-limits.
Proof. Let A be a DCC-category. Let ℓn : L→ An be a limit cone of an ωop-chain D = (An)
with connecting morphisms an+1 : An+1 → An. Given a finitely presentable object M and a
monomorphism m : M ↣ L, factorize ℓn ·m as a strong epimorphism en : M ↠ Bn followed
by a monomorphism un : Bn ↣ An (Remark 2.4.2). We obtain a subchain (Bn) of (An) with
connecting maps bn given by the diagonal fill-ins, as shown below:

M Bn+1

An+1

Bn An

en

en+1

un+1

bn

an

un

(4.1)

Notice that bn is a strong epimorphism, since so is en. We thus have a descending
chain (Bn) of strong quotients of the finitely presentable object M : e0 ≥ e1 ≥ e2 ≥ · · · . By
the DCC condition, there is some k such that for n ≥ k, bn is an isomorphism. For n ≥ k, let
bn,k : Bn → Bk be the composites recursively defined by bn+1,k = bn,k · bn. Thus, for every
n ≥ k, the triangle below commutes, where the lower part commutes by (4.1):

Bk

Bn Bn+1

An An+1

b−1
n,k

b−1
n+1,k

un

bn
un+1

an

(4.2)
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Let D′ be the ωop chain (An)n≥k. This is a shortening of our original ωop-chain D, and
so its limit is ℓn : L→ An (n ≥ k). The commutativity of all diagrams (4.2) shows that we
have a cone (un · b−1

n,k)n≥k of D′. Thus, there exists b : Bk → L such that

ℓn · b = un · b−1
n,k (n ≥ k).

Consider the following diagram for n ≥ k:

Bk Bn

M L An

b

b−1
n,k

un

m

ek

ℓn

(4.3)

The square commutes, and we now prove that so does the outside. We show that for all
n ≥ k and all 0 ≤ i ≤ n− k,

un · b−1
n,n−i · en−i = ℓn ·m. (4.4)

We argue by induction on i. For i = 0, this holds using bn,n = id and the factorization
un · en = ℓn ·m. Assume (4.4) for i. Fix n ≥ k such that n− k ≥ i + 1. Then

un · b−1
n,n−(i+1) · en−(i+1)

= un · b−1
n,n−i · b

−1
n−i−1 · en−i−1 since bn,n−i−1 = bn−i−1 · bn,n−i

= un · b−1
n,n−i · en−i since en−i−1 = bn−i−1 · en−i

= ℓn ·m by induction hypothesis

The induction completed, we take i = n− k in (4.4) to see the commutativity of the outside
of (4.3) for all n. Since the limit cone (ℓn)n≥k is collectively monic, the triangle in (4.3)
commutes: m = b · ek. As m is monic, so is ek. Thus, ℓk ·m = uk · ek is also monic. ◀

5 Terminal Coalgebras in ω + ω Steps

We are ready to state and prove the main theorem of this paper.

▶ Theorem 5.1. Let A be a DCC-category. Every finitary endofunctor F : A → A which
preserves nonempty binary intersections has a terminal coalgebra obtained in ω + ω steps.

Proof. We will apply Proposition 3.1. Due to Remark 2.9.3 we can assume without loss of
generality that Vi is not strictly initial for any i ≤ ω + ω.
1. We first show that the canonical morphism m : Vω+1 → Vω is monic. Consider a parallel

pair q, q′ : Q ⇒ FVω such that m · q = m · q′. We prove that q = q′. By Remark 2.4.5,
we may assume that Q is a finitely presentable object. Using that Vω can be assumed
not to be strictly initial and Remark 2.9.2, we may express Vω as a directed colimit of
nonempty finitely presentable subobjects, say mt : Mt ↣ Vω (t ∈ T ). Since F is finitary,
Fmt : FMt → FVω is also a directed colimit. Hence, q and q′ factorize through Fmt for
some t. We denote the factorizing morphisms by r and r′, respectively. It is sufficient to
show that they are equal. To this end consider the following diagram:

FMt Vω

Q FVω FVi = Vi+1

F mt vω,i+1

q

q′

r

r′

vω+1,i+1=F vω,i

m (5.1)
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1:10 Terminal Coalgebras for Finitary Functors

The limit vω,i : Vω → Vi is finitary (Proposition 4.7). Thus, there is some i so that
vω,i ·mt : Mt → Vi is monic, and this monomorphism is nonempty. Since F preserves
nonempty binary intersections, it preserves nonempty monomorphisms (Remark 2.6).
Hence, the following morphism is monic:

ℓ =
(
FMt

F mt−−−−→ FVω
F vω,i−−−−−→ FVi

)
.

It is enough to show that ℓ merges r and r′. The triangle on the right in (5.1) commutes.
Thus we obtain

ℓ = Fvω,i · Fmt = vω,i+1 ·m · Fmt.

Using that m merges q and q′, we see that ℓ merges r and r′:

ℓ · r = vω,i+1 ·m · Fmt · r
= vω,i+1 ·m · q
= vω,i+1 ·m · q′

= vω,i+1 ·m · Fmt · r′

= ℓ · r′.

Since ℓ is monic, we have r = r′ whence q = q′, as desired.
2. Next, we prove that F preserves nonempty intersections of ωop-chains of subobjects.

Consider such a chain ai : Ai+1 ↣ Ai, and let its limit cone be ℓi : L ↣ Ai, where L is
not strictly initial. It follows that neither is any of the Ai. Take a cone

qi : Q→ FAi (i < ω).

Our task is to find a morphism q : Q→ FL such that qi = Fℓi · q for all i. (This is unique:
all maps ℓi are nonempty monic, whence all Fℓi are monic.)
Using Remark 2.4.4, we can assume, without loss of generality, that Q is finitely present-
able: for a general object Q, express it as a colimit of finitely presentable subobjects Qt,
and use the result which we prove for each Qt.
Choose a nonempty, finitely presentable subobject c : C ↣ L (Remark 2.9.1). Note that
this gives nonempty, finitely presentable subobjects

ci =
(
C L Ai

c ℓi
)

for every i < ω,

which, moreover, form a cone: ci = ai · ci+1 for every i < ω.
By recursion on i we define a subchain (Bi) of (Ai) given by intersections

B0 B1 B2 · · ·

A0 A1 A2 · · ·

u0

b0

u1

b1

u2

b2

a0 a1 a2

together with a cone pi : Q→ FBi such that Fui · pi = qi and a cone mi : C ↣ Bi such
that ci = ui ·mi; this shows that all the intersections are nonempty.
To define B0 and u0, express A0 as a directed colimit of all its finitely presentable
subobjects u : B ↣ A0 that contain c0 (Remark 2.4.4). Then use that F preserves
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this colimit: for the morphism q0 : Q → FA0 we may find a subobject u0 : B0 ↣ A0
containing c0 such that q0 factorizes through Fu0 via some p0 : Q→ FB0, say:

FB0

Q FA0

F u0
p0

q0

Since u0 contains the subobject c0, we have a monomorphism m0 : C0 ↣ B0 such that
c0 = u0 ·m0.
In the induction step we are given Bi, ui, pi, and mi. Form the intersection of ui and ai

to obtain Bi+1, bi, and ui+1 as shown in the left-hand square below:

Bi Bi+1 C

Ai Ai+1

ui

bi

ui+1

mi+1

ci+1

mi

ai

The outside commutes by induction hypothesis: ui · mi = ci = ai · ci+1. Hence, we
obtain the monomorphism mi+1 as indicated such that the upper part and right-hand
triangle commute, as desired. Since C is not strictly initial, neither is Bi+1, whence the
intersection of ai and ui is nonempty.
So by hypothesis, F preserves the above pullback. Since the square below commutes

FBi Q

FAi FAi+1

F ui

pi

qi+1qi

F ai

there is a unique morphism pi+1 : Q→ FBi+1 such that

pi = Fbi · pi+1 and qi+1 = Fui+1 · pi+1.

For all i ≤ j < ω, we form the composite morphism

bj,i =
(
Bj Bj−1 · · · Bi+1 Bi

bj−1 bj−2 bi+1 bi
)
.

We obtain a descending chain of subobjects bj,0 : Bj ↣ B0 (j < ω) of the finitely
presentable object B0. Since A is DCC, there is some k∗ < ω such that bk∗,0 represents
the same subobject as bj,0 for every j ≥ k∗. Hence, the morphism bj,k∗ is an isomorphism.
The shortened ωop-chain (Ai)i≥k∗ has the limit cone (ℓi)i≥k∗ . The morphisms

hi =
(
Bk∗

b−1
i,k∗
−−−−→ Bi

ui−−→ Ai

)
(i ≥ k∗)

form a cone: we see that hi = ai · hi+1 from the commutativity of the diagram below:

Bk∗

Bi Bi+1

Ai Ai+1

b−1
i,k∗ b−1

i+1,k∗

hi hi+1

ui

bi

ui+1

ai
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1:12 Terminal Coalgebras for Finitary Functors

So there is a unique morphism h : Bk∗ → L such that ℓi · h = ui · b−1
i,k∗ for i ≥ k∗.

The desired morphism is

q =
(
Q

pk∗−−−→ FBk∗
F h−−−→ FL

)
.

In order to verify that qi = Fℓi · q, it is sufficient to show this for i ≥ k∗; it then follows
also for all i < k∗, since the qi and ℓi form cocones:

qi = Fak∗,i · qk∗ = Fak∗,i · Fℓk∗ · q = Fℓi · q for i < k∗.

Now observe first that since (pi) form a cone of (FBi), we have

Fbi,k∗ · pi = pk∗ .

By definition of h, we also have ui = ℓi · h · bi,k∗ . Therefore for all i ≥ k∗, we obtain

qi = Fui · pi = Fℓi · Fh · Fbi,k∗ · pi = Fℓi · Fh · pk∗ = Fℓi · q.

This extends to all i < k∗, the argument is as above.
Having checked all the conditions in Proposition 3.1, we are done. ◀

▶ Corollary 5.2. Every finitary endofunctor on Set or K-Vec has a terminal coalgebra
obtained in ω + ω steps.

Indeed, every set functor preserves nonempty binary intersections [18, Prop. 2.1], and every
endofunctors on K-Vec preserves finite intersections [9, Ex. 4.3].

The following example demonstrates that without extra conditions there is no uniform
bound on the convergence of the terminal-coalgebra chain for finitary functors on locally
finitely presentable categories.

▶ Example 5.3. For every ordinal n, we present a locally finitely presentable category and a
finitary endofunctor which needs n steps for its terminal-coalgebra chain to converge. The
category is the complete lattice of all subsets of n (considered as the set of all ordinals i < n).
The functor is the monotone map F preserving the empty set, and on all other sets X ⊆ n,

FX = X \ {min X}.

This is monotone, since given X ⊆ Y , if X contains min Y , then min X = min Y . The only
coalgebra for F is empty; thus νF = ∅.

The functor F is finitary because for every directed union X =
⋃

Xt of nonempty
subsets, min X lies in some Xt. Since the union is directed, X is also a union of all Xs

where s ≥ t. Then min X is contained in all Xs. It follows that min Xs = min X, thus
FXs = Xs \ {min X} for all s ≥ t. Consequently,

colim FXs = colim Xs \ {min X} = X \ {min X} = FX.

The terminal-coalgebra chain Vi is given by V0 = n and Vi = n \ i for all 0 < i < n, which is
easy to prove by transfinite induction. Thus, that chain takes precisely n steps to converge
to the empty set, the terminal coalgebra for F .
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6 Finitary Endofunctors on Metric Spaces

We denote by Met the category of (extended) metric spaces, where ‘extended’ means that we
might have d(x, y) =∞. The morphisms are non-expanding maps: the functions f : X → Y

where d(f(x), f(x′)) ≤ d(x, x′) holds for every pair x, x′ ∈ X. (Note that this class of
morphisms is smaller than the class of continuous functions between metric spaces.)

We have seen in Theorem 5.1 a sufficient condition for an endofunctor to have a terminal
coalgebra in ω + ω steps. This result does not apply to Met, since that category is not
locally finitely presentable; in fact, the empty space is the only finitely presentable object [8,
Rem. 2.7]. However, for finitary endofunctors on Met, we are able to prove an analogous
result. To do this, we work with finite spaces in lieu of finitely presentable objects. Recall
that a subspace S of a metric space M is a subset S ⊆M equipped with the metric inherited
from M . Moreover, note that there is a bijective correspondence between subobjects of M

represented by isometric embeddings and subspaces of M : indeed, for every subspace S ⊆M ,
the inclusion S ↪→ M is an isometric embedding, and conversely, if f : M ′ → M is any
isometric embedding, then it is monic and represents the same subobject of M as the
inclusion map f [M ′] ↪→M of the subspace on the image of f . We need the following fact.

▶ Lemma 6.1. Every metric space is a directed colimit of the diagram of all its finite
subspaces.

Proof. Fix a metric space M . Let fS : S → A be a cocone of the diagram of all finite
subspaces mS : S ↪→M of M . Then there is a unique map f : M → A which restricts to fS

for each finite subspace: f ·mS = fS . This map is non-expanding: given elements x, y ∈M ,
let S be the subspace of M given by {x, y}. Since fS : S ↪→ A is non-expanding, the distance
of f(x) and f(y) in A is at most equal to the distance of x and y in M , that is, in S. ◀

▶ Remark 6.2. One easily derives that, given a metric space M and a finite subspace S ↪→M ,
the space M is the directed colimit of the diagram of all its finite subspaces containing S

(cf. Remark 2.4.4).

▶ Proposition 6.3. The category Met has finitary ωop-limits in the following sense: for
every limit ln : L→ An (n < ω) of an ωop-chain and every finite subobject m : M ↣ L, some
morphism lk ·m : M → Ak is monic.

Proof. This follows since Set has finitary ωop-limits (Proposition 4.7) because the forgetful
functor into Set (1) preserves limits and (2) preserves and reflects monomorphisms. ◀

▶ Lemma 6.4. Let F be a finitary endofunctor on Met preserving isometric embeddings. For
every non-expanding map q : Q→ FM where Q is finite, there exists a factorization through
Fm for some finite subspace m : S ↪→M :

FS

Q FM

F m

q

Proof. 1. Given a directed diagram D in Met of metric spaces Ai (i ∈ I) and subspace
embeddings ai,j : Ai ↪→ Aj (i ≤ j), the colimit C is the union

⋃
i∈I Ai with the metric

inherited from the subspaces: for x, y ∈
⋃

i∈I Ai, the distance d(x, y) in C is their distance
in Ai for any i ∈ I such that x, y ∈ Ai.
An analogous statement holds for a directed diagram whose connecting morphisms are
isometric embeddings.
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1:14 Terminal Coalgebras for Finitary Functors

2. Given q : Q→ FM , let DM be the directed diagram of all finite subspaces of M and all
inclusion maps. Its colimit is M , using Item 1. Since F is finitary, FM is the colimit
of FDM , which is a directed diagram of isometric embeddings. The image q[Q] is a finite
subspace of FM . By Item 1, there exists a finite subspace m : S ↪→ M such that the
colimit injection Fm of FC = colim FDM satisfies q[Q] ⊆ Fm[FS]. Let q′ : Q→ FS be
the unique map such that q = Fm · q′. Then q′ is non-expanding because so is q and
because Fm is an isometric embedding. ◀

The following theorem has a proof analogous to that of Theorem 5.1. Recall that a
functor preserving nonempty binary intersections also preserves nonempty monomorphisms
(Remark 2.6). This time, we need an extra condition that isometric embeddings are preserved:

▶ Theorem 6.5. Let F be a finitary endofunctor on Met preserving nonempty binary
intersections and isometric embeddings. Then it has a terminal coalgebra obtained in ω +
ω steps.

Proof. We again use Proposition 3.1. By Remark 2.9.3, we may assume without loss of
generality that all Vi, i ≤ ω + ω are nonempty.
1. The morphism m : Vω+1 → Vω is monic: given a non-empty space Q and q, q′ : Q→ FVω

such that m · q = m · q′, we prove that q = q′. By Lemma 6.1, we may assume that Q is
finite. Thus, there exists a nonempty finite subspace mt : Mt ↪→ Q such that both q and
q′ factorize through Fmt: we have morphisms r, r′ : Q→ FMt such that q = Fmt · r and
q′ = Fmt · r′. As in Item 1 of the proof of Theorem 5.1, we derive r = r′. Since Fmt is
monic (because F preserves nonempty binary intersections), this proves q = q′.

2. We prove that F preserves nonempty limits of ωop-chains of monomorphisms

ai : Ai+1 ↣ Ai (i < ω).

Let ℓi : L→ Ai be the limit cone. Given a cone qi : Q→ FAi (i < ω), we only need to
find a morphism q : Q→ FL such that qi = Fℓi · q (i < ω).
Using Lemma 6.1, we may assume that Q is finite. We define a subchain (Bi) of (Ai)
carried by nonempty binary subspaces ui : Bi ↪→ Ai, together with cones pi : Q→ FBi

and mi : C → Bi such that Fui · pi = qi and ci = ui ·mi. We use recursion analogous to
that in Item 2 of the proof of Theorem 5.1. In order to define B0, u0, and p0 use Lemma 6.4:
there is a nonempty binary subspace u0 : B0 ↪→ A0 and a morphism p0 : Q→ FB0 such
that q0 = Fu0 · p0. The induction step and the rest of the proof is as in Theorem 5.1. ◀

▶ Example 6.6. The finite power-set functor has a lifting Pf : Met→ Met that maps a metric
space X to the space PfX of all finite subsets of X equipped with the Hausdorff distance2

d̄(S, T ) = max
(
supx∈S d(x, T ), supy∈T d(y, S)

)
, for S, T ⊆ X compact,

where d(x, S) = infy∈S d(x, y). In particular d̄(∅, T ) =∞ for nonempty compact sets T . For
a non-expanding map f : X → Y we have Pff : S 7→ f [S].

This functor is clearly finitary; in fact, it is the free algebra monad for the variety of
quantitative semilattices [13, Sec. 9].

We now show that it preserves isometric embeddings. Indeed, if m : X ↪→ Y is the
inclusion of a subspace, then Pfm preserves distances: given finite subsets S and T of the

2 The definition goes back to Pompeiu [17] and was popularized by Hausdorff [12, p. 293].
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metric space X, then for every x ∈ S, we have that the distance d(x, T ) is the same in X and
Y . By symmetry, the Hausdorff distance of S and T is also the same in PfX and in PfY .

Finally, Pf preserves nonempty binary intersections because it is a lifting of a set functor
and since intersections of metric spaces are formed on the level of sets.

▶ Corollary 6.7. The lifted functor Pf : Met→ Met has a terminal coalgebra νPf = Vω+ω.

7 Conclusions and Future Work

This paper gives a sufficient condition for the terminal coalgebra νF for an endofunctor to be
obtained in ω + ω steps of the well-known iterative construction. This generalizes Worrell’s
theorem that states that finitary endofunctors on Set have that property. Our generalization
concerns DCC-categories; examples include sets, vector spaces, posets, nominal sets, and
many others. Finitary endofunctors preserving nonempty binary intersections are proved to
have terminal coalgebras in ω + ω steps.

The category of abelian groups is an example of an lfp category which is not DCC. We
leave as an open problem the question whether every finitary endofunctor on Ab preserving
nonempty binary intersections has a terminal coalgebra obtained in ω + ω steps.

We have also seen that finitary endofunctors on the category of (extended) metric spaces
have terminal coalgebras obtained in ω + ω steps, provided that they preserve nonempty
binary intersections and isometric embeddings. We also leave as an open problem the
question whether every finitary endofunctor on Met preserving nonempty intersections (but
not necessarily isometric embeddings) has a terminal coalgebra obtained in ω + ω steps.

We have seen that that for finitary endofunctors on Set or K-Vec no extra assumption
is needed: νF is always obtained in ω + ω steps. It is interesting to ask about other DCC
categories with this property; we currently have no example of a finitary endofunctor on a
DCC category that does not have a terminal coalgebra obtained in ω + ω steps.

Worrell’s result holds, more generally, for λ-accessible set functors (i.e. those preserving
λ-directed colimits): they have a terminal coalgebra obtained in λ + λ steps. An appropriate
generalization of DCC categories in which this result holds is also an item for future work.

References
1 Jirí Adámek, Stefan Milius, and Lawrence S. Moss. On Kripke, Vietoris and Hausdorff

polynomial functors. In Paolo Baldan and Valeria de Paiva, editors, 10th Conference on
Algebra and Coalgebra in Computer Science, CALCO 2023, June 19-21, 2023, Indiana
University Bloomington, IN, USA, volume 270 of LIPIcs, pages 21:1–21:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

2 Jiří Adámek. Free algebras and automata realizations in the language of categories. Com-
ment. Math. Univ. Carolin., 15:589–602, 1974.

3 Jiří Adámek and Vaclav Koubek. On the greatest fixed point of a set functor. Theoret. Comput.
Sci, 150:57–75, 1995.

4 Jiří Adámek, Paul B. Levy, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. On final
coalgebras of power-set functors and saturated trees. Appl. Categ. Structures, 23(4):609–641,
August 2015. Available online; http://dx.doi.org/10.1007/s10485-014-9372-9.

5 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Initial Algebras and Terminal Coalgebras:
the Theory of Fixed Points of Functors. Cambridge University Press, 2025.

6 Jiří Adámek and Jan Reitermann. Banach’s fixed-point theorem as a base for data-type
equations. Appl. Categ. Structures, 2:77–90, 1994.

7 Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. Cambridge
University Press, 1994.

CALCO 2025

http://dx.doi.org/10.1007/s10485-014-9372-9


1:16 Terminal Coalgebras for Finitary Functors

8 Jiří Adámek and Jiří Rosický. Approximate injectivity and smallness in metric-enriched
categories. J. Pure Appl. Algebra, 226(6), 2022. Article 106974.

9 Jiří Adámek and Lurdes Sousa. A finitary adjoint functor theorem. Theory Appl. Categories,
41:1919–1936, 2024.

10 László Babai. On the length of subgroup chains in the symmetric group. Comm. Alg.,
14(9):1729–1736, 1986. doi:https://doi.org/10.1080/00927878608823393.

11 Michael Barr. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci., 114(2):299–
315, 1993.

12 Felix Hausdorff. Grundzüge der Mengenlehre. Veit & Comp., Leipzig, 1914.
13 Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Quantitative algebraic reasoning.

In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, pages 700–709. ACM, 2016. doi:10.1145/2933575.2934518.

14 Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. A new foundation for finitary
corecursion and iterative algebras. Inform. and Comput., 271, 2020. Article 104456.

15 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis,
University of Leicester, 2011.

16 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

17 Dimitrie Pompeiu. Sur la continuité des fonctions de variables complexes. Annales de la
Faculté des Sciences de la Université de Toulouse pour les Sciences Mathématiques et les
Sciences Physiques, 2ième Série, 7(3):265–315, 1905.

18 Věra Trnková. Some properties of set functors. Comment. Math. Univ. Carolin., 10:323–352,
1969.

19 Henning Urbat and Lutz Schröder. Automata learning: An algebraic approach. In Proc. Thirty-
Fifth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 900–914.
IEEE Computer Society, 2020.

20 James Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci.,
338:184–199, 2005.

https://doi.org/https://doi.org/10.1080/00927878608823393
https://doi.org/10.1145/2933575.2934518

	1 Introduction
	2 Preliminaries
	3 A Sufficient Condition for F = V+
	4 DCC-Categories
	5 Terminal Coalgebras in + Steps
	6 Finitary Endofunctors on Metric Spaces
	7 Conclusions and Future Work

