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Abstract

Every finitary endofunctor H of Set can be represented via a finitary signature X
and a collection of equations called “basic”. We describe a terminal coalgebra of H
as the terminal 3-coalgebra (of all X-trees) modulo the congruence of applying the
basic equations potentially infinitely often. As an application we describe a free
iterative theory on H (in the sense of Calvin Elgot) as the theory of all rational
Y-trees modulo the analogous congruence. This yields a number of new examples
of iterative theories, e.g., the theory of all strongly extensional, rational, finitely
branching trees, free on the finite power-set functor, or the theory of all binary,
rational unordered trees, free on one commutative binary operation.
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1 Introduction

It is well-known that for any finitary signature ¥ an initial ¥-algebra Iy is
the algebra of all finite ¥-trees, and a terminal -coalgebra T% is the algebra
of all (finite and infinite) ¥-trees. We now prove the analogous statement for
every finitary endofunctor H of Set. Firstly, we express H as a quotient of
the polynomial functor Hy, given by

HsX =50+ 39 x X + 35 x X2+ -+
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for some finitary signature Y. In fact, being finitary (i.e., preserving directed
colimits) is, for set functors, equivalent to being a quotient of some Hy,. More-
over, the quotient is expressed by a collection of basic equations, i.e., equations
of the form

oz, .., xn) = 0(Y1s - - Yg)
where o and p are operation symbols and z; and y; are variables (not neces-
sarily distinct).

Example: the finite-power-set functor &% is a quotient of the polynomial func-
tor
HyX =14+ X + X% 4 ...

(of the signature ¥ which has one n-ary operation o, for every n € N) via the
basic equations

o1,y n) = ok(y1, - Yk)
where n and k are arbitrary numbers and the variables are such that the set
{z1,...,2,} is equal to {y1,...,yx}

Now given such a presentation of H, it is well known that an initial H-algebra [
has the form
[=1Iy/.

where ~ is the congruence generated by the basic equations. That is, two finite
Y-trees t and s are congruent iff £ can be obtained from s by a finite application
of the basic equations. We prove below that a terminal H-coalgebra has the
form

T:TE/N*

where ~* is the congruence of finite and infinite applications of the basic
equations. The infinite application has a simple definition, inspired by the
description of the terminal Z%-coalgebra provided by M. Barr [14]: Given
infinite Y-trees ¢t and s denote by Okt and Oys the trees we obtain from them
by cutting them at level k. Then we define ~* as follows:

*

t~" s iff Ot ~ Os forall £ =0,1,2,...

Example: a terminal %-coalgebra is the coalgebra of all finitely branching
strongly extensional trees, i.e., finitely branching unordered trees such that
distinct children of every node define non-bisimilar subtrees, see [27]. The

reason is that they form a choice class of the above congruence ~*: every
unordered tree is congruent to a unique strongly extensional tree.

The main result of our paper is the above description of a terminal coalgebra of
any finitary set functor H. From this we (easily) derive a concrete description
of a free iterative theory Zy on H. Iterative theories were introduced by
C. Elgot [17] as a means of an algebraic description of infinite computations.
He presented two main examples: the theory Pfn of timed terminal behaviors,



or partial functions, see [17], and the theory %y of rational X-trees, which
is a free iterative theory on X, see [18]. Recall that a X-tree on X (a set
of variables) is a tree® whose inner nodes are labeled in ¥, where n is the
number of children, and whose leaves are labeled in ¥, + X. Such a tree is
rational, see [20], if it has, up to isomorphism, only finitely many subtrees.
The theory % assigns to every X the Y-algebra Ry X of all rational X-trees
on X.

We now describe all free iterative theories on finitary endofunctors H of Set.
Represent H as a quotient of Hy modulo basic equations. For every set X
of variables denote by =* the congruence on the rational-tree algebra RsxX
obtained by potentially infinite applications of the basic equations. Then the
free iterative theory Zy assigns to every set X the quotient algebra Ry X/« of
all rational Y¥-trees modulo ~*. This extends considerably the known concrete
examples of iterative theories; e.g., in the compendium [16] one finds, besides
the mentioned theories Pfn and %5, and the theory of synchronization trees,
only examples based on complete metric spaces.

Example: one commutative binary operation. This corresponds to algebras on
the endofunctor H assigning to every set X the set HX of all unordered pairs
in X. This is represented via ¥ consisting of one binary operation * and the
basic equation = xy = y * x. Here %5 is the theory of ordered rational binary
trees, and Zy is the theory of unordered rational binary trees.

Related Work. An extended abstract of the present paper was presented at
the workshop Coalgebraic Methods in Computer Science 2003, see [5].

Several constructions of terminal coalgebras T for finitary set functors H have
been studied in the literature. For example M. Barr shows, in case H is also w-
continuous, the terminal coalgebra as a Cauchy completion of a natural metric
on the initial algebra I of H, see [14], and the first current author provided
in [6] a natural ordering on I for which T is a free (ideal) completion of I.
For general finitary endofunctors J. Worrell [27] proved that the dual of the
transfinite initial-algebra construction introduced in [4] stops after w+w steps
and yields a terminal coalgebra. The construction presented below is new and
independent of the above mentioned results.

Free iterative theories over polynomial functors were concretely described by
C. Elgot and his colaborators as the theories of rational trees, see [18]. The
authors proved in [9] and [10] that, more generally, every finitary endofunctor
of Set generates a free iterative monad. And we described this monad coalge-
braically as a certain colimit. The description presented in the current paper
is much more concrete. For endofunctors of base categories other than Set

2 Trees are considered to be rooted, ordered, labeled trees, unless stated otherwise,
and they are always taken up to isomorphism.



such a description is not known.
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2 Initial Algebras

2.1 Assumption. We assume throughout the present section, whose aim is
to prepare ground for Section 3, that a finitary endofunctor H of Set is given.
This means as proved in [13] one of the following equivalent properties:

(i) H preserves directed colimits,
(i) every element of HX , where X is an arbitrary set, lies in the image of Hm
for some finite subset m: M — X

and

(iii) H is a quotient of some polynomial functor, i.e., there exists a natural
transformation £: Hy — H with epimorphic components where Hy, is a
polynomial functor, see Example 2.2 below.

For convenience we also assume that H preserves monomorphisms, however,
all the results hold without this assumption. In fact, for every endofunctor H
there exists a monomorphism preserving endofunctor H' such that

(a) for all X # () we have HX = HX' (and analogously on morphisms), and
(b) HO = () if and only if H'() = (.

Consequently, both the categories of algebras and the categories of coalgebras
for H and H', respectively, are isomorphic.

2.2 Example. For every (finitary) signature ¥ = (X,),en the corresponding
polynomial endofunctor Hy, given on objects X by

HyX =S+ X x X + 5y x X2+

is finitary. The elements of HyxyX are written in the form o(zy,...,xz,) for
o€ X, and (z1,...,2,) € X" and they are called flat terms. They correspond
to flat trees




of height 1 (for n > 0) or 0 (for n = 0). Pairs of flat terms are called basic
equations.

2.3 Remark. The equivalence of the condition (i)—(iii) was proved in [13],
let us make this explicit here:

(i) — (ii) Express X as a directed colimit of finite subsets.

(ii) — (iii) Put
Y, = H(n) foralln=0,1,2,...
and use the Yoneda Lemma: the component ex: [T H(n)x X" — HX is given
by
ex(o, f)=Hf(o) for all f: n — X and all 0 € H(n).

(iii) — (i) Polynomial functors preserve directed colimits because coproducts
and finite products commute with directed colimits in Set. The proof of the
statement that all quotients of finitary functors are finitary is only a bit more
technical, see V.3.9 in [13] or a simpler proof in [11], 5.2.

2.4 Remark. The condition (iii) in 2.1 presents H via a finitary signature X
and a natural transformation €: Hy — H having epimorphic components.
Therefore each component

ex: ]I Zux X" = HX

n<w

is fully described by its kernel equivalence, which we can present in the form
of basic equations

oz, ..., 2n) = 0(Y1,- -, k)
for o € ¥, 0 € ¥ and for tuples (%), o(¢) in HxX (where X is a set of
variables including all z; and y;) satisfying

(o) = ex (o)
We shall call these basic equations the e-equations.

2.5 Examples. (i) The functor % assigning to a set A the set A of all
subsets of power at most 2 is a quotient of Hy, where ¥ consists of a binary
operation 5 and a constant b. Here

ex: X XX +1 -5 24X

sends a pair (z,y) to {z,y} and the unique element of 1 to (). The s-equations
are all consequences of the commutativity of 3:

B(z,y) = By, x).



(ii) Consider the finite-power-set functor %% assigning to a set X the set
X = {A C X; A finite}. Here we can use the signature ¥ where ¥, con-
tains a unique n-ary operation for any n = 0,1,2,... and obtain a natural
epitransformation

ext 1+ X+ X2+ X2+ 5 ZX

sending an n-tuple to the set of its members. The e-equations equate two flat
terms iff the sets of variables appearing in the terms are equal.

(iii) P. Aczel and N. Mendler use in [3] the following subfunctor (—)3 of the
polynomial functor X — X?3:

X3 = {(Il,ZEQ,lL’g,) € X% x; = z; for some i ;éj}.

This can be represented as a quotient of Hy, where X5 = {0, 7, 0} and ¥,, =0
else. The corresponding basic equations are

o(z,z) =71(z,x) = o(z, ).

2.6 Notation. We denote by Alg H the category of H-algebras, i.e., sets A
equipped with a structure morphism a: HA — A, and homomorphisms f
between H-algebras, defined by the commutativity of the following square

a

HA A
Hf !
HA A

al

2.7 Examples. (i) If H = Hy, then Alg Hy, is the usual category of 3-alge-
bras and homomorphisms.

(ii) For every presentation £: Hy, — H we can consider Alg H as the variety
of ¥-algebras presented by all e-equations.

More precisely, every H-algebra oo: HA — A defines a Y-algebra
HsA =25 HA 5 A

which, since €4 is an epimorphism, determines o« completely. The full subcat-
egory of Alg Hy, on all these algebras is presented by e-equations. In fact:

(a) The above algebra satisfies every e-equation u = v in Hy X because given
an interpretation f: X — A of the variables, then the interpretation of
the two (flat) terms is H f(u) and H f(v), respectively, and -, merges
these two elements because € x merges v and v and a-e4-H f = a-Hyx f-ex.



(b) Whenever a X-algebra a: Hx A — A satisfies all e-equation, then given
u,v € HyA with e4(u) = ea(v), it follows that a(u) = a(v), thus,
a factorizes through € 4—in other words, A lies in Alg H.

2.8 Remark. (i) As we just observed, every category Alg H, where H is
finitary, is a variety presented by basic equations. Conversely, every variety
presented by basic equations is equivalent to Alg H for a finitary set functor,
see [13].

(ii) As with every variety, Alg H is a reflective subcategory of Alg Hy: for
every Y-algebra A the congruence ~ generated by e-equations in A yields a
quotient-algebra

g A— A/ with A/.in AlgH.

This is a reflection, i.e., for every homomorphism f: A — B in Alg Hy, with
B in Alg H there exists a unique homomorphism f: A/. — Bin Alg H with

f=1rq

2.9 Initial-Algebra Construction. Recall from [4] that every finitary end-
ofunctor H has an initial algebra

I = colim H*(.

<w

More precisely, we consider the unique chain w — Set with objects H'( and
connecting morphisms w;; such that

H) =0, H') = H(H')), and wiyy jo1 = Huw;j.

Then a colimit I = colim, ., W, is an initial algebra whose structure map ¢
is given by the isomorphism

@: HI = colim H(H')) = colim H’() = I.
1<w 0<j<w
Observe that since H preserves monomorphisms, each w; ;4 is a monomor-

phism. Consequently, the colimit maps of I = colim WW; are all monomor-
phisms.

2.10 Example. For a polynomial functor Hy, we can describe an initial al-
gebra

Iy

as the algebra of all finite X-trees. Here a tree labeled in X is called a Y-tree
iff every node with n children is labelled in ¥,,. In particular, all leaves are



labeled in ¥y. The initial algebra construction yields

Hy,) = 3y = all X-trees of depth 0,
HyHx() = H Y x 20 = all Y-trees of depth < 1,

n<w

HE') = all B-trees of depth < i
etc.

2.11 Example. Given a finitary functor H and a set X (of generators), the
functor H(—) + X is also finitary. A free H-algebra on X is easily seen to be
the initial algebra of H(—)+ X (and vice versa). It is given as a colimit of the
unique w-chain with objects W; and connecting morphisms w;; (i < j < w)
such that

Wy = (b, W1 =HW,;+ X, and Wiy1,j41 = Hwi’j + idy.

The corresponding right-hand injections injections X < W, yield the uni-
versal map of the free algebra.

We call this chain a free-algebra construction of H on X.

2.12 Example. An initial Z%-algebra is the set of all hereditarily finite sets.
Recall the hierarchy W; (i € Ord) of constructive sets given by Wy = 0,
Wipn = Z2W; and W; = U;.; W; for limit ordinals j. All the sets W; with
1 < w are finite, and coincide with the above initial-algebra construction.
Thus, the set

WUJ

of all hereditarily finite sets is an initial &%-algebra w.r.t the identity function
AW, L W,
since ZW,, = W,,.

2.13 Remark. The initial-algebra constructions W;* of Hy and W; of H are
connected by the unique natural transformation

Wi WE =W, (i<w)

for which the formation of next step is given by

By = W2, = HoW? 22 HoW, = HW,; = Wiy, (2.1)

2

The first steps are as follows:



0 Hy() HyHs) ——
Hyeg
id e HyxH(
EHD
) —— H) ——— HH) —

2.14 Notation. We denote by
g: [2 — 1

the reflection of the initial 3-algebra Iy, in Alg H, see Remark 2.8(ii), i.e., £ is
the unique homomorphism of Y-algebras from Iy, to I:

(2>}

Hsls Is
Hyé ¢ (2.2)
HyI HI —— 1
€1

where ¢y and ¢ are the structures of the initial 3-algebra, and the initial
H-algebra, respectively.

2.15 Lemma. A refiection & of the initial Y-algebra is given by the colimit

£ = COllm’lEZ Iy — 1.
i<w

PROOF. For the sake of proof let us denote by & the above colimit. It is our
only task to show that for this morphism the above square (2.2) commutes.
The colimit cocone ¢;: W; — I yields a colimit cocone He;: HW; — HC
and the algebra structure ¢: HI — I is defined by ¢-He¢; = ¢;qq, see [4].
Analogously we have ¢;’: W7 — Iy, and ¢x-Hxc? = ¢Z;. The desired square
commutes when precomposed with Hsc; for every . In fact, the upper part of
the diagram (2.3) below commutes by the definition of py, for the left-hand
part remove Hy, and use the definition of £, and for the right-hand part use the
definition of & once again. The lower left-hand part commutes by naturality
of ¢, and the lower right-hand part commutes by the definition of . Finally, the
outer shape commutes due to the definition of @; 1, see (2.1). Consequently,
since (Hxc? )<y, is collectively epimorphic, the desired inner square commutes,
whence the lemma follows.



He WY W,

(2>}
HEIE IE
Hy; Hyé | g w1 (2.3)
€l 4
HxI HI I
Hyc; Hc; Cit1
HyW; HW; Win ]
ew,

2.16 Corollary. For every set X a free H-algebra FX is a reflection of the
free ¥-algebra Fx, X with the reflection map

£ =colimw;: Fx X - FX

<w

where w; 1s the unique natural transformation between the free-algebra con-
structions (see Example 2.11) with

wi—l—l = SWi'HE’LEZ' +idy (Z < w).
In fact, this is Lemma 2.15 applied to Hy(—) + X (which is the polynomial
functor of the signature ¥ expanded by nullary operation symbols from X)
and H(—) + X.
2.17 Notation. (i) We denote by
1={Ll}
a terminal object of Set.

(ii) We shall write
FE and F

for a free Hy-algebra and a free H-algebra on 1, respectively.
(iii) We also denote by

W and W, (i <w)

7
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the initial-algebra constructions of Hy(—)+1 and H(—)+1, respectively with
connecting morphisms

w;; and  w;; (i <j<w)

so that

Fy = C(_)lim I/ViE and F = C(_)lim Wi.

(iv) We finally denote by
Wi WE =W, (i<w)
the natural transformation of Corollary 2.16 where X = 1.
Observe that
WP = all (E + {J_})—trees of depth < i
and
Fy, = all finite (Z + {J_})—trees.

2.18 Corollary. The kernel equivalence of € = colim;., w; is the congru-
ence ~ of application of -equations:

t~s iff tcan be obtained from s by applying e-equations
(finitely many times)

for all trees t,s € Fx.
In fact, due to Example 2.7(ii) a reflection of Iy, in Alg H is the quotient alge-
bra F/. with the canonical quotient homomorphism Fy, — F% /.. Applying

Corollary 2.16 to X = 1, we see that £ is this canonical map.

2.19 Corollary. For every i < w we have

w;(t) = wi(s) iff s~t (s,t € WF).

In fact, the colimit cocone of Fy; = colim W is formed by the inclusion maps
cf: WE < Fsx. And the colimit cocone ¢;: W; — F of F = colimW; is
formed by monomorphisms, see 2.9. Thus the present corollary follows from
the preceding one due to the commutative square

11



3 Terminal Coalgebras

3.1 Assumption. Throughout this section H denotes a finitary endofunctor
of Set. We still assume without loss of generality that H preserves monomor-
phisms. Furthermore, we assume that a fixed presentation

e: HE —H
is given.

3.2 Notation. We denote by Coalg H the category of H-coalgebras, i.e.,
sets A equipped with a structure map a: A — HA, and homomorphisms f
between H-coalgebras defined by the commutativity of the following square

«

A HA
s Hf
Al HA

/

A terminal coalgebra, i.e., a terminal object of Coalg H, exists due to the
finitarity of H, see [14], and we denote it by T" with the structure morphism

T HT.

Recall that by Lambek’s Lemma [23], ¢ is an isomorphism; thus 7" can also
be viewed as an H-algebra.

3.3 Examples. (i) For the polynomial functor
He X =X xX+1

we can consider coalgebras as deterministic systems with binary input and
with halting states: given a map

a:A—->AxA+1

12



then A is the set of all states, the halting states are mapped to L in the
right-hand summand, and non-halting states are mapped to the pair of next
states. Homomorphisms are the usual functional bisimulations of systems. A
terminal coalgebra T% can be described as the coalgebra of all binary trees.

(ii) F-coalgebras can be viewed as finitely branching graphs: A is the set of
all nodes, and a: A — %A assigns to every node the set of all neighbors.
Beware! The homomorphisms of %%-coalgebras are stronger than the usual
graph morphisms; in fact, a “-coalgebra homomorphism h: A — B is a
graph morphism reflecting edges, i.e., for each edge h(a) — b in B there exists
an edge a — o' in A with h(a’) = b. We mention a description of the terminal
-coalgebra in Example 3.18 below.

3.4 Terminal-Coalgebra Construction. The initial-algebra construction
of [4] recalled in 2.9 above was restricted to w because we work with finitary
functors; in [4] it was defined for all ordinals. In case of the dual terminal-
coalgebra construction, we work at the beginning with Ord®" (the class of all
ordinals with ordering opposite to the usual one), but we then show that all
ordinals up to w + w are sufficient.

Let
V: Ord®® — Set

be the essentially unique chain of objects V; and morphisms v;;: V; — V;
(¢ > j) such that

Vo =1, Vipy = HV;, and ;g1 541 = Hug,
and for all limit ordinals j

V= 121%1‘/; with the limit cone (Uji)z_<]

We say that this construction converges in A steps if vyp1x: HV\ — V) is an
isomorphism. Or, equivalently, all v;; (j > ¢ > A) are isomorphisms. It then
follows that

T="V\

is a terminal coalgebra w.r.t v;imz T — HT.

3.5 Example. The terminal coalgebra construction of every polynomial func-
tor Hy,, which we denote by
VE

)

converges in w steps because Hy, (being a coproduct of right adjoint functors)
preserves w°P-limits. We identify

Vo ={L}

13



with the singleton tree labelled by L and

vE =112 x (V5)"

neN

with the set of all trees of depth < i such that

all leaves at level 7 are labeled by L,
all leaves at levels < ¢ are labeled in Yy, and
all inner nodes with n children are labelled in X, (n > 0).

The connecting maps
’UijZV;E—>V}2 (j<i<w)

cut every tree at level j and label every leaf at level j by L. A limit of the
chain

{1} &2 He {1} &2 HeHe{ L) &2 .00
is the set T% of all (finite and infinite) ¥-trees. The limit cone takes a tree
t € Ty, and assigns to it the sequence of cuttings at level : = 0,1,2,... We
use the following

3.6 Notation. We denote by V;* the terminal-coalgebra construction of Hs,
and by

8i:Tg—>Vi2 (z<w)

the limit cone of the corresponding limit Ty, = lim; V;-E. These are the func-
tions assigning to every Y-tree t the tree 0;t obtained by cutting ¢ at level ¢
and labelling all leaves of level 7 by L.

That is, the nodes of 9;t are precisely all nodes of ¢ of depth at most . All
leaves of depth i are labelled by L, all other nodes are labelled as they were

before.

3.7 Remark. For polynomial functors we see that V" = {L} is contained
in W} = Hs() + 1 and, more generally,

V2 C VVErl for all 7 < w
since we described V;* as some of the trees forming W}, (namely those where

the label L is only used at the deepest level). This is no coincidence, as the
following notation indicates.

3.8 Notation. (i) We denote by

Vi (i € Ord®)

14



the terminal-coalgebra construction of H and define monomorphisms
mi: Vi = Wi (i < w)
by induction as follows 3
mo =inl: {L} — HO)+ { L}
and

Mgt = Vigr = HV; 220 HW,y - HWiyy + {1} = Wips.
If H = Hy, we denote these monomorphisms m>: V> — W} ,. They are just
the inclusion maps of Remark 3.7.

3.9 Theorem (James Worrell [27]). For every finitary functor the terminal-
coalgebra construction converges in w + w steps, and the connecting maps
after w

Vitigw: Viori = Vi (1 < w)
are all monomorphisms. Shortly:

T = £1<r£1 Vi = ﬂ Viowi-

1<w
The following result is a well-known fact proved in [21]. We include here a full
proof for the convenience of the reader.
3.10 Lemma. The canonical homomorphism

g:Ty, =T,
i.e., the unique homomorphism of the H-coalgebra
Ty 225 HeTy —25 HTx,

s an epimorphism.
PROOF. Let u: HI' — HxT split the epimorphism ¢7: HsT — HT), i.e.,

we have epu = id. Take the unique homomorphism u: T — Ty, of the Hy-
coalgebra

T Y HT X H.T.

Then ¢-u: T'— T is an H-coalgebra homomorphism:

3 We denote the coproduct injections of A+ B by inl: A —+ A+ B and inr: B —
A + B, respectively.

15



T HT HT
u e
U HET H4a
Hxu
(> €Ty
7& Iygji }JTE
é Hé
(4
T HT

Thus, é-u = id, which completes the proof. O

3.11 Remark. Analogously to Remark 2.13 let us denote by
0 VE=Ve ((<wHw)

the unique natural transformation between the terminal-coalgebra construc-
tions of Hy, and H such that for all 7 we have

~ Hx0; EV;
b = HyV> 22 HyV; —— HV.

Observe that 0; is an epimorphism for every i < w (easy proof by induction).
However, 0,,: Tx, — V,,, which is (necessarily, due to naturality) the limit

U, = lim ¥;
i<w

is, in general, not an epimorphism: a counterexample is &% as we demonstrate
below. Surprisingly, 9,4, is an epimorphism. This follows from Lemma 3.10
and the following

3.12 Lemma. ¢ = lim v;.
<w—w

The proof is simply a dual of Lemma 2.15 except that there we only had i < w,
whereas here we have to also consider o, = lim;, ;.

3.13 Definition. Given X-treest and s, we say that t can be obtained from s
by (possibly infinitely many) applications of c-equations, notation

t~" s,

provided that for every natural number k the cutting Oyt can be obtained from
the cutting Oxs by (finitely many) applications of e-equations. In symbols:

t~"s iff Okt ~ Oks (k <w).

16



3.14 Example. For e: Hy — 2 of Example 2.5(i) we have

(k= 0) 1L~
(k=1) /\ ~ /\
iR 1 1 iR

EEEONRVA

L L L 1

etc.

3.15 Theorem. A terminal H-coalgebra T is the quotient of the terminal
Hy-coalgebra Ts, modulo the congruence of applications of €-equations,

T — TE/N*.

Remark. We already denoted the canonical homomorphism by &: Ty, — T
and we know from Lemma 3.10 that it is an epimorphism. Thus, all we need
to prove is that ~* is the kernel equivalence of £. This makes T canonically
isomorphic to Ts/.«.

PROOF. (1) We prove first that for every natural number 7 the kernel equiv-
alence of 0;: V.* — V; (see Remark 3.11) is the congruence ~ of Corollary 2.18.
More precisely, we have V> C Fy, and we prove

v;(t) = vi(s) iff t~s (i < w).

For this it is sufficient that the square

m=
V> Wi,
o | W41 (3.1)
Vi Wit

commutes: recall from 3.8 that m; is a monomorphism and m?> an inclusion

17



map, and use the fact that ~ is the kernel equivalence of w;,;, see Corol-
lary 2.19.

The commutativity of the squares (3.1) follows by easy induction. For i = 0
both sides compose to inr: { L} — HO + {L}. In the induction step use the

following diagram (based on the recursive definitions in 2.13, 3.8 and 3.11):
>

5 5 Hem; 5 inl 5 5
Vi = HsV; HeWi, —— HsWi, +1=W7,
Hxd; Hxw; 41 Hyw;y1+id

Hsm; inl
HsV; HsWipn —— HsWi i + 1
ev; EWig1 ew; 4 Tid
Vipr = HV; - HW; - HWi1 +1 = Wi
my; n

In fact, this diagram commutes. The two right-hand squares are obvious, the
lower left-hand one commutes due to the naturality of ¢, and the remaining
upper left-hand one by the induction hypothesis.

(2) The limit cone [;: V1, — V; (i < w+ w) of the terminal H-coalgebra
T = V,y, = colimVj is collectively monomorphic. Since all the connecting
morphisms vy, = V4 — Vi, are monomorphic (see Theorem 3.9), it fol-
lows that the first w projections [;, i < w, are also collectively monomorphic.
Therefore the commutative squares

e

7

Ty

¢ o (i < w)

T

Vi

where 0; is the limit cone of T%;, see Notation 3.6, prove that
E(t) =£é(s) iff 0;(0;t) = 0v;(9;s) for alli < w.
By part (1) this concludes the proof:
E(t) =£2(s) iff Ot ~0s foralli <w,

in other words
E(t) =£&(s) iff t~"s. O

3.16 Example. A terminal Z%-coalgebra can be described as the coalgebra
of all non-ordered binary trees. In fact, Tx, (in Example 2.5(i)) is the algebra
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of all ordered binary trees—we can simply ignore the labeling by b and 5. And
two ordered trees are congruent under ~* iff they yield the same non-ordered
tree (by forgetting the ordering of children).

3.17 Example. For infinitary functors the corresponding description of a ter-
minal coalgebra does not work. We illustrate this on the countable-power-set
functor 2., assigning to every set X the collection of all countable subsets
of X. This functor is a quotient of the infinitary polynomial functor Hy, where
¥ = {¢,0} with ¢ nullary and o w-ary. The corresponding natural transfor-
mation ¢: Hy — 2, has components

£x: 1+Xw—)¢@CX

sending the first summand to () and given, on the second summand, by

A terminal coalgebra of &, can be described as T%,/~ where T is the algebra
of all ¥-trees and ~ is the bisimilarity equivalence. It is clear that the following
trees

*

are not bisimilar. However, ¢t ~* s because for every k we clearly have Oyt ~

ﬁts.

3.18 Example. The terminal coalgebra of &% has been described by James
Worrell in [27]. It is the coalgebra formed by all (non-ordered) finitely branch-
ing strongly extensional trees, i.e., those non-ordered and finitely branching
trees where subtrees defined by distinct children of a node are never bisimi-
lar. We obtain this description from Theorem 3.15 as follows. Recall first the
presentation of %% in Example 2.5(ii).

Then clearly the set V;” consists of all finitely branching trees of depth less
than 7 with all leaves at level i labelled by L, and Ty, = V” is the coalgebra
of all finitely branching trees.

It is not difficult to see that the sets V;, (i < w), consist of all finitely branching
strongly extensional trees of depth less then i. And the maps 9;: V;> — V;
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compute the strongly extensional quotient obtained by forgetting the order
of children, and then taking the quotient modulo the greatest bisimulation
(which is always an equivalence). It follows that for two trees t and s in Tx, we
have t ~* s iff for each natural number £ the cuttings dxt and Jys have the
same strongly extensional quotient.

Finally, one readily shows that finitely branching strongly extensional trees
are in a one-to-one correspondence with equivalence classes of ~*.

Notice that in the present case the set V,, consists of all equivalence classes of
all countably branching trees modulo the relation defined analogously as ~*.
This is not the terminal coalgebra T: we need the next w steps! The subset
Votiw: PV — V, consists of all equivalence classes of trees in V,, which
are finitely branching at the root; in general, V,,,; are the classes of all trees
finitely branching up to level 7. So T' = V1, is the intersection of all V.,
(i < w), i.e., it consists of those classes in V, given by finitely branching trees.

4 Free Completely Iterative Theories

In the present section we describe for every finitary endofunctor H of Set a
free completely iterative theory .7 on H in the sense of C. Elgot et al [18].
The description is analogous to that of a terminal coalgebra in the preceding
section: we use a presentation of H as a quotient

6ZHE—)H

for some signature ¥. Then Hy, generates a free completely iterative theory 7%
which, as proved in [18], assigns to every set X of variables the ¥-algebra T5X
of all X-trees on X, i.e., trees where every node with n > 0 children is labeled
in 3, and every leaf is labeled in ¥+ X . And we prove that the free completely
iterative theory .7 on H assigns to every set X the quotient of 75, X obtained
by applying basic equations finitely or infinitely many times.

4.1 Recursive Tree-Equations. Given a signature > and a set X of vari-
ables, we denote by

5(X)

the signature obtained from X by adding new constant operation symbols
labeled by elements of X. Then the initial algebra

Is(x)

of the (polynomial) functor Hyx) is precisely a free ¥-algebra on X it can
be described as the algebra of all finite Y-trees on X.
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We also form a terminal coalgebra of Hyx) and denote it by
V% Te X — HyTs X + X,

By Lambek’s Lemma [23] the coalgebra structure 1% is an isomorphism; there-
fore T is a coproduct of the set X of all variables (considered as singleton
trees) and the set HyxTx X of all trees with root labeled in ¥. More precisely:
T X is a coproduct with injections

X B o X & BT X, (4.1)

where nx assigns to every variable the corresponding singleton tree, and 7x ex-
presses the Y-algebra structure (of tree tupling) on 7% X.

We also denote, for every function s: X — T%Y (which substitutes every
variable x in X by a tree s(x) on Y) by s* the corresponding Y:-homomorphism

s*: X = 1TvY (42)
which carries out the substitution s in every leaf labeled by a variable.

An important property of the (co-)algebra Ty X is the unique solvability of
recursive equation systems of the following form

T = ti(T0, T1s -, Yo, Y1, - - - ) (4.3)

where X = {xg,21,...} is an arbitrary set of variables, Y = {yo,y1,...} is
an arbitrary set of parameters, and ¢; is a >-tree on X 4+ Y. By a solution we
mean trees

tl e Y

(one for every variable z; € X) such that z! is equal to ¢; with zy substituted
by I(T), x1 by :L’I etc.:

q;;r = ti($$/$0,$1{/x1,~"7y07y1,“‘)

4.2 Example. For ¥ consisting of binary operations & and O, we solve the
following equations

& O
nE N T N
i) 0 1 T
where X = {z1, 25} and Y = {0, 1}. The unique solution is given by the trees

xg,xJ{ eTyY

(using parameters, but not variables) satisfying
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N e [/

——t
N —+

Here they are:
<& a
/\ /\
O 0 1 &
x{: 1/ \<> and x;: D/ \0
/\ /N
Ol 0 1 &
1/ \ / \0

4.3 Remark. Categorically, a system of equations x; = ¢; as above is a mor-
phism

e: X -5 Ty(X 4Y).
A solution of e is a morphism

el X 5 TvY

having the property that e is equal to the composite of the morphism e with
the “substitute e/ morphism from Tx(X +Y) to TxY. The latter morphism
is simply s*, see 4.2, for the function

S:[GT,ny]IX—l-Y—)TgY

(substituting ef(z;) for every variable x;, but leaving the parameters un-
changed). Thus, the defining property of the solution morphism e is that
the following triangle ot

X

Y
¢ [ef,ny]*

Ts(X +Y)
commutes.

Almost all equation morphisms have a unique solution. Exceptions arise where
on the right-hand sides of x; = t; single variables are allowed—e.g., the equa-
tion x; = x; certainly does not have a unique solution. An equation morphism

e: X 5 To(X +Y)
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is called guarded provided that e(x) is not a single variable for all x € X.
Observe that since by (3.1) we have

To(X+Y)=HsT5 (X +Y)+ X +Y,

e is guarded iff it factorizes through the coproduct injection of HxTs(X +
Y)+Y into Ty (X +Y):

Ts(X +Y)

SO [TX+Y,77X+Y'im]
\\
N

HyTo (X +Y)+Y

4.4 Observation. (1) Every guarded equation morphism e: X — T (X +Y)
has a unique solution ef: X — TyY.

(2) The above assignment of Ty, X and nx to every set X is the object part of
a monad

Is = (TEJIEaME)
on Set whose unit 7”: Id — Ty has the components nx, and whose multi-
plication p”: TxTs, — T has components py: TxTxsX — T5X given by the
flattening. Observe that s* = py-Txs for all s: X — TyY.

4.5 Remark. The above facts about the tree monad .7 generalize to monads
called completely iterative in [18]. To formulate this, we first need the con-
cept of an ideal theory of Calvin Elgot [17]. We formulate this in categorical
language of monads instead of theories. This is equivalent as explained in [2]:

4.6 Definition. A monad ¥ = (S, u,n) on Set is called ideal provided that
there is a subfunctor

o: 8 — S
such that

(i) S=S5"+1Id with coproduct injections o and n
and

(ii) p can be restricted to a natural transformation p': S'S — S" (with o-p' =
wosS).

4.7 Remark. (1) The above subfunctor S’, if it exists, is essentially unique,
being the complement of the subfunctor n: Id — S.

(2) Given ideal monads . and -7 (given by S = S +1d), a monad morphism
h: S — S is called ideal if h restricts to a natural transformation h': S’ — S
with h = b/ +id.
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4.8 Examples. (1) The tree monad .%; is ideal. We have, by (4.1)
Ty, = HsTx 4+ 1d
and the tree flattening px: TsTs X — Tx X restricts to
Wy = Hypx: HeTxTs X — HsTs X,
which is the tree flattening of all nontrivial trees.

(2) Let H be a finitary endofunctor of Set. Then H(—) + X is also finitary
(for every set X), thus, it has a final coalgebra

Yx: TX - HTX + X.

By Lambek’s Lemma [23] the coalgebra structure ¢y is an isomorphism 7'X
H(TX) + X which makes TX a coproduct of HT'X and X; we denote again
by

nx: X =>TX and 7x: HTX - TX

the coproduct injections. We obtain an endofunctor 7' of Set with T =
HT + 1d, and natural transformations ¢: T — HT 4+ 1d, n: Id — T and
7: HT — T such that ¢ and [r,n] are mutually inverse. We denote those by
n*: Id — Ty, and 7°: HyTx, — Ty in case of a polynomial endofunctor Hs,.

It has been proved in [2] that T is a part of a monad
T = (T,n, p)
which is ideal (with T'= HT + Id) since p has the restriction
W =Hu: HI'T — HT.
We write p*: TsTx, — Ty in case of a polynomial endofunctor Hy.

4.9 Definition. Let . = (S,n, 1) be an ideal monad on Set. By an equa-
tion morphism is meant a morphism e: X — S(X +Y), and it is called
guarded if it factorizes through [ox v, nx sy inf: S"(X+Y)+Y — S(X+Y):

S(X+Y)

AN [ox+vy,nx+v-inr
N
N

N
S(X+Y)+Y

By a solution of e is meant a morphism e': X — SY for which the following
square
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et
X SY

e Hy

S(X +7Y) SSY

S[8T777Y}

commutes. The monad . s called completely iterative provided that every
guarded equation morphism has a unique solution. And .7 is called itera-
tive provided that every guarded equation morphism e: X — S(X +Y) with
X and Y finite has a unique solution; such equation morphisms are called
finitary.

4.10 Example. The tree monad 7 is completely iterative for every signa-
ture . More generally, given a finitary endofunctor H of Set, the above monad
Ty is completely iterative see [26], [2], or [25] for a simple coalgebraic proof.

In fact, 5 can be characterized as a free completely iterative monad on H
in the following sense:

4.11 Notation. We denote by CIM(Set) the category of all completely itera-
tive monads on Set and ideal monad morphisms. We consider it as a concrete
category over the endofunctor category SetS¢ via the functor

U: CIM(Set) — Set>°*t

assigning to every ideal monad .# (carried by S=5 +1d) the endofunctor S’
and to every ideal monad morphism h: . — .% the natural transformation
W.s 3.

Example. For the above monad 7y we have U9y = HT.

4.12 Theorem. (see [2,25]) For every finitary endofunctor H of Set the
monad Ty s a free completely iterative monad on H. That is, given a com-
pletely iterative monad . and a natural transformation f: H — U.Y there
exists a unique ideal monad morphism f: T — % with f = Uf-Hn.

4.13 Corollary. The treec monad Ty is a free completely iterative monad on
the signature 3.

This has been proved already in [18], but the proof is much more involved
than those of [2,25]. The monads .75 have been the only concretely described
completely iterative monads so far. We are able to concretely describe the free
completely iterative monad .7 on any finitary endofunctor H of Set:

4.14 Notation. Let H be a finitary endofunctor of Set represented as a
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quotient
£: HE — H
of a polynomial endofunctor, see Remark 2.4. For every set X we thus have a
quotient
e+idx: Hy(—)+X = H(—) + X.
(Observe that the e-equations, as defined in 2.4, are precisely the same as the
(¢ + idx)-equations.) Denote by
~X

the corresponding congruence on the ¥ (X )-algebra Fyx), see Definition 2.6.

Further, let

X
denote the congruence on Ty X = Ty(x) of Definition 3.13 given by applying
the e-equations finitely or infinitely many times. That is, X-trees s and t over X
are congruent iff Oys ~x Okt holds for all k£ < w.

~Y

4.15 Example. For H = 2%, see Example 2.5 (i), the congruence ~y on the
algebra Fyx) (of all finite binary trees with leaves labeled in X + {b, L} and
all inner nodes labeled by ) is just the commutativity of the operation f.
And ~% is the congruence on the algebra Ty y) (of all binary trees with leaves
labeled in X + {b}) which uses the commutativity finitely or infinitely many
times. Example:

B B
/\ /\

/\ - /\
/\ /\
/\ /\

)

b/ \.. _./ \b

4.16 Theorem. (Description of free completely iterative monads) For every
finitary endofunctor H of Set a free completely iterative monad Jy on H
can be described as the quotient of the tree monad s modulo the monad
congruence ~% (X a set) of applying the basic equations finitely or infinitely
many times.

Remark. More detailed: given a presentation as a quotient ¢: Hy, — H, then
for the free completely iterative monad 77 on H we have the unique ideal
monad morphism h: % — 7y such that the square
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an =

Hy, Hs T T,
e R h (4.4)
H HT T

Hn T

commutes where h' is the restriction of h, see Remark 4.7(2). The theorem
states that the components hx are epimorphisms with the kernel equiva-
lence ~%.

PROOF. Consider the following commutative diagram

=

Ts T=Ts HsTxTx HxTs
I 73Ty, Hn>Ty,
(4.5)
h hxh exh
7 T HnT
e i —= 1

-
In fact, the left-hand square commutes since h is a monad morphism (* de-
notes the parallel composition), and the commutativity of the right-hand part
follows from naturality applied to the parallel components separately. The
left-hand component with domain Hy, commutes due to (4.4) and the right-
hand one with domain 7%, is trivial. For the lower part we have the commuting
diagram

HTT T

\ u

where the right-hand square commutes since T is an ideal monad (see Defi-
nition 4.6(ii)) and the left-hand triangle follows from the monad laws of T
Similarly, the upper part of (4.5) commutes. We conclude that, for any set X,
the diagram

V3 erg x +X
T X HyTs X + X HIs X + X
(T3 mx)
- (exh)x +X Hha X (46)
[7x,mx]
TX HTX + X
vx

commutes. In fact, recall that the coalgebra structure ¢x is an isomorphism
with the inverse [7%,n%]. Thus, in order to see that the outer shape of (4.6)
commutes it suffices to check in the left-hand part the commutativity of the
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coproduct components of HyT5xX + X. The left-hand component commutes
by (4.5) and the right-hand one since h-n® = 7 holds for the monad mor-
phism h.

Therefore, hy: T X — T X is the canonical coalgebra homomorphism, which
is epimorphic by Lemma 3.10. Finally, by Theorem 3.15, the terminal coal-
gebra TX for H(—) + X is the quotient of the terminal coalgebra Ty X for
Hy(—)+ X modulo ~% and the kernel equivalence of hy is ~% as desired. O

4.17 Example. One commutative binary operation. Here algebras are pre-
cisely the H-algebras for the functor

HY = all unordered pairs in Y.
We have a canonical presentation of H as a quotient of the polynomial functor
HsY =Y x Y.

Analogously, the polynomial functor Hy(—) + X of one binary operation and
constants labelled in X, has H(—) + X as a canonical quotient. For Hy we
get the completely iterative monad

Ty, X = all binary trees on X.
And our H generates the free completely iterative monad
TX =T X/,
where for trees t, s € Tx X we have

t~% s iff s can be obtained from ¢ by swapping
siblings (possibly infinitely often).

This is completely analogous to Example 3.16:
T X = all unordered binary trees on X.

4.18 Example. The finite-power-set functor 4. We start with the signa-
ture ¥ of Example 2.5(ii): the free completely iterative monad 5 assigns to
every set X the algebra T, X of all finitely branching trees with leaves labeled
in X' 4 1. We then obtain the free completely iterative monad on & as the
quotient J5/.-. It is easy to see that for every tree ¢t € Tx X, given a node
where two children are bisimilar subtrees, we can cut one of the subtrees away
and obtain a tree t' ~% ¢. The bisimilarity here is related to labeled trees,
of course: it is the biggest relation R on 7% X such that given a pair t; R to
of trees in Tx X, then for every child s; of ¢#; there is a child s, of ¢, with
s1 R sq, and vice versa. By repeating this process (infinitely often) we obtain,
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for every tree t € Tx, X, a strongly extensional tree congruent to ¢ under ~%;
strong extensionality is defined, analogously to Example 3.18, by the property
that distinct children of any parent are non-bisimilar.

We conclude that a free completely iterative monad 7 on % is described
analogously to Example 3.18:

TX = the algebra of all non-ordered strongly ex-
tensional finitely branching trees on X +1.

4.19 Example. A free completely iterative monad on (—)3, see Example

2.5(iii), is obtained from the monad 7 (of all binary trees with inner nodes
labeled by o, 7 or ¢ and leaves labeled by variables) as a quotient

Tir = T ] .

*

Here t ~* s means that ¢ can be obtained from s by relabeling (finitely or
infinitely many) inner nodes whose children are isomorphic subtrees. Example:

N\ /N
o / \ o N T / \ T
0'/ \0' 0'/ \O' T / \T T/ \T

5 Free Iterative Theories

Iterative theories were introduced by C. Elgot in his fundamental paper [17],
where he also proved the existence of free iterative theories. Later, these free
theories were described as the theories of all rational trees, see [18,20]. The
basic notion of Elgot is a Lawvere theory in which certain iterative equation
have unique solutions. We use here, in lieu of Lawvere theories, the equivalent
concept of a finitary monad. The concept of ideal and iterative theory of [17]
then precisely correspond to ideal and iterative finitary monads, as explained
in [9] and [10]. This section presents a description of a free iterative monad Zy
on an arbitrary finitary endofunctor H of Set. Again, we present H as a
quotient of a polynomial functor Hyx. The free iterative monad %5, on Hy, is
the subtheory of the ¥-tree theory

Fs, C T,

of all rational X-trees on X, where a tree is called rational iff it has, up to
isomorphism, only finitely many subtrees. We describe Zy as the quotient
of Xy, obtained by (possibly infinite) applications of the basic equations.
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5.1 Remark. (i) Rational X-trees in 7% can all be obtained as solutions of
finite equation systems (4.3), i.e., such that X = {z1,...,z,}. We can, in fact,
without loss of generality restrict to finite, flat equation systems, i.e., finite
systems of equations

Ilztl

T, =t,

where each t; is either a flat Y-tree
o
/ \ o€ Yk, uy,...,u € X variables
U1 (A

or a single parameter from Y. For example, the rational tree :cJ{ of Example 4.2
is obtained by solving the following flat system

& O
xlz /\ x2: /\ xSZO, x4:1.
T T3 Ty T

Flat equation morphisms have the form
e: X > Hy X +Y

and they are considered as (always guarded) equation morphisms by compo-
sition with the canonical embedding

HeX +Y < Tx(X 4+Y).
On the other hand, e is simply a coalgebra for the functor Hx(—) + Y.
(ii) More generally, for every endofunctor H a coalgebra
e: X >HX+Y

of H(—)+Y is called a flat equation morphism. It is considered to be an (always
guarded) equation morphism by composition with the canonical morphism
HX +Y — T(X +Y) whose components are (see Example 4.8)

Tinl Tinr

HX 2% gTX 257X PN P(X4Y) and YV 25 7Y B T(X +Y).

The solution of the corresponding equation morphism is denoted by ef: X —
TY (by a slight abuse of notion).
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5.2 Lemma. (see [2]) For flat equation morphism e solution is corecursion.
That is, et is the unique homomorphism from the coalgebra e of H(—) +Y
into the terminal coalgebra TY .

5.3 Definition. (see [8]) Given a finitary endofunctor H of Set, we define
a subfunctor R of the above free completely iterative monad T on H (see
Ezample 4.8(2)) by

RY =|Je'[X]
where the union ranges over all flat equation morphisms e: X — HX +Y
with X finite.

5.4 Remark. R is a monad and it has a universal property analogous to T’
(see Notation 4.11 and Theorem 4.12): here we form the category IM(Set) of
iterative monads (see Definition 4.9) and the forgetful functor U*: IM(Set) —
Set5®t given by .# — S’. The universal morphism A\: H — HR = U*Z is
here the codomain restriction of Hn: H — HT"

5.5 Theorem. (see [9]) Every finitary endofunctor H of Set generates a
free iterative monad, viz, the submonad Zy of Ty carried by the above sub-
functor R. That is, given an iterative monad . and a natural transformation
f: H— U*, there exists a unique ideal monad morphism f: By — .7 with
f=U"f-\

5.6 Notation. Let H be finitary endofunctor of Set represented as a quotient
€. Hg — H.

For every set X we denote by ~% the congruence on the rational-tree alge-
bra Ry X which is the restriction of the congruence ~% of Notation 4.14. That
is, two rational ¥-trees s and ¢ on X are congruent iff £ can be obtained from s
by (potentially) infinite applications of the basic equations. More precisely, iff
Oks ~x Okt for all k < w.

5.7 Theorem (Description of free iterative monads). For every finitary endo-
functor H on Set a free iterative monad Xy on H can be described as the
quotient of the rational-tree monad s, modulo the monad congruence =% (X
a set) of applying the basic equations finitely or infinitely many times.

Remark. We thus exhibit, for every presentation of H as a quotient £: Hy, —
H, a monad homomorphism h: %y, — % whose components hy are epimor-
phisms with the kernel equivalence ~%.

PROOF. (1) Recall that by

)
Ty 2 HeTeV +V and  TY 25 HTY 4V
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we denote the terminal coalgebras of Hy.(—)+Y and H(—)+Y, respectively. By
applying Lemma 3.10 to H(—) + Y, we obtain a quotient map éy: TxY — TY
such that the square

b ey +Y
TvY HyTvY +Y HIZY +Y
£y Héy+Y
TY HTY +Y
Yy
commutes.

Observe that £: Ty, — T is a natural transformation (in fact, a monad mor-
phism: we denoted it by h in Theorem 4.16).

(2) Given a coalgebra of Hx(—) + Y, say
e: X - Hy X +Y (X finite),
we obtain a coalgebra of H(—) + Y
e=X S HeX +V X HX 4V

such that the following triangle

et ef (51)

TxY - TY
£y
commutes. In fact, by Lemma 5.2, ef is a coalgebra homomorphism w.r.t
Hs(—) +Y into a terminal coalgebra TxY". This clearly implies that éy-e' is a
coalgebra homomorphism w.r.t H(—) + Y

e

X HX +Y
e /
ef HEX + Y HeT-l—Y
Hsel+Y
3 ey +Y
Y HyTyY +Y HTyY +Y
Ey Héy+Y
TY HTY +Y
Yy
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Since TY is terminal, we conclude e = &yef.

This implies that £y has a domain-codomain restriction hy : RyY — RY . In
fact, every element r of RyY is a solution of some flat system e: X — Hy X+Y
with X finite, more precisely, r = ef(z) for some 2 € X, see Remark 5.1(i).
Then, by Definition 5.3 we have

éy(r) = éyel(z) =e'(x) € RY.

Since é: Ty, — T is a monad morphism, it follows that the maps hy form a
natural transformation h: Ry — R, in fact, a monad morphism, h: Zy, — Z%.

It remains to prove that hy is surjective. To this end, for every flat equation
€: X - HX +Y choose a splitting of ex:

UIHX—)HEX, 6)('U:idHX

and consider the flat equation e = (u +idy)-e: X — HsX + Y w.rt. Hy.
Then the above triangle (5.1) commutes. To verify this, we only need to prove
that ef is a coalgebra homomorphism w.r.t. H(—)+Y from € to the coalgebra

Y = HyTyY +Y H(TxY) + Y. In fact, from Lemma 5.2 we
know that ef is a coalgebra homomorphism from e to 7xY. That is, in the
following diagram

ergy tidy

X——HX+Y e HoX +Y
5)/
HX +Y
ef Het+idy Hyet+idy
H(TsY)+Y
eryy tHidy
IvY o2 Hy(TxY)+Y
Yy

the outward square commutes. Since the right-hand part commutes by natu-
rality of ¢, it follows that ef is a homomorphism from € w.r.t H(—) + Y, as
requested. This shows that hy is surjective: every element 7 € RY has the
form 7 = e'(z) for some flat equation €: X — HX + Y with X finite and
some x € X, see Remark 5.1(i), and then we have

T = hy (eT (x)) with  ef(2) € RyY. O
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5.8 Examples. (i) One commutative binary operation, i.e.,
HY = all unordered pairs in Y.

The free iterative theory Zpy assigns to every set X the algebra RX of all
rational, binary unordered trees. This follows from Example 4.17.

(ii) The free iterative theory on % (the finite-power-set functor) is the theory
of all non-ordered strongly extensional, rational, finitely branching trees. See
Example 4.18.

(iii) The functor (—)3, see Example 4.19, generates the free iterative theory Zp
assigning to every set X the algebra Ry X/« where Ry X are all binary, ra-
tional (ordered) trees with inner nodes labeled by {o, 7, o} and leaves labeled
in X. And ~" is the congruence allowing arbitrary changes of labels of nodes
where two children define isomorphic subtrees.

6 Conclusions and Generalizations

The main result of the present paper is a description of a terminal coalgebra for
every finitary endofunctor H of the category of sets: present H as a quotient
functor of a polynomial functor (of some finitary signature ¥) modulo basic
equations and then describe a terminal H-coalgebra T" as a quotient

T:TE/N*

of the terminal Y-coalgebra T% of all ¥-trees modulo the congruence ~* of
finite and infinite application of those basic equations. This is completely
analogous to the well-known fact that an initial H-algebra I, i.e., an initial
algebra of the variety of X-algebras presented by our basic equations, is a
quotient I = Iy/. of the initial ¥-algebra I5 of all finite ¥-trees modulo the
congruence ~ of (finite) application of the basic equations. As a consequence
of our description of terminal coalgebras we were able to describe all free
iterative monads in Set in the sense of C. Elgot.

The reader may wonder why we restricted ourselves to finitary functors: in
Example 3.17 we show, however, that the corresponding result does not hold
for the countable-power-set functor. Next the reader may wonder why we
restricted ourselves to the category of sets. In fact, the two main ingredients
of our description of terminal coalgebras of finitary endofunctors seem to be
that

(a) every finitary endofunctor is a quotient of a polynomial functor, and
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(b) the initial-algebra construction converges after w steps and the terminal-
coalgebra construction converges after w + w steps and the steps between
w and w + w are monomorphisms.

Both of these facts are true in every strongly locally finitely presentable cate-
gory, whenever the finitary endofunctor preserves strong monomorphisms and
epimorphisms as proved in [7]. For example, the category Gra of graphs (= sets
with a binary relation) is strongly finitely presentable. The concept of a sig-
nature ¥ in this category, following G. M. Kelly and A. J. Power [22], assigns
to every finite graph n (up to isomorphism) a graph ¥,. The corresponding
polynomial functor Hy is defined on objects X by

HyX = [Jhom(n, X) e X,

where M e — denotes a coproduct indexed by the set M. There is an impor-
tant third ingredient, besides (a) and (b) above, which plays a rdle in our
description of terminal coalgebra above, namely:

(c) for every presentation ¢: Hy, — H the canonical homomorphism é: Ts, —
T between the terminal coalgebras of Hy, and H, respectively, is a quo-
tient.

Unfortunately, this feature seems to request that all quotients are split epimor-
phisms (see the proof of Lemma 3.10 above). In fact, (c) fails in Gra consider
the following signature X:

Yo=|o—e (0 = initial, empty, graph)
Q .
Yi=1=| e (1 = terminal graph)

with ¥, = () for all n # 0, 1. The corresponding polynomial functor is

HsX =%+ [ 1

loops of X

and its terminal coalgebra is easily computed: the terminal-coalgebra con-
struction converges after 1 step to the following graph

T, =| e — o (.D

(isomorphic to HyT%). Now let

e:Hy—-H, HX=1+ ][ 1

loops of X

be the regular quotient obtained by merging Y, to a single-node graph. A
terminal coalgebra 7' of H is obtained from the terminal coalgebra of the set
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functor X — X + 1 by putting loops on all elements: 7" is thus a countable
set of loops. Therefore ¢ has the following form

Ql ¢ | @ Q Q@ Q
° e o o o

e — 0
a b a=b

Consequently, the method used in the present paper in Set does not seem to
have any analogy in Gra.
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