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About this Thesis

This is a cumulative dissertation which consists of the following papers:
[AMV1] Free Iterative Theories: a coalgebraic view
[AMV2] From Iterative Algebras to Iterative Theories
[AMV3] Elgot Algebras
[AAMV] Infinite Trees and Completely Iterative Theories: A Coalgebraic View
[M1] Completely Iterative Algebras and Completely Iterative Monads
[M2] On Iteratable Endofunctors
[MM] The Category Theoretic Solution of Recursive Program Schemes

These papers contain some of the results of my research obtained while I was working at the Institute of
Theoretical Computer Science of the Technical University of Braunschweig, Germany, under the supervision
of Professor Jǐŕı Adámek. They have all been published in international journals and/or they have been
presented at international conferences.

The current document constitutes an introduction and summary of this research. As such it contains
(almost) no new results as compared to the above papers. Its aim is to provide the reader with a self-contained
account of our research in a unified notation and presentation. The current document is structured in a way
so as to maximize accessibility to the reader while still providing enough explanation of the techniques and
tools employed in our work. All important results from the above papers are included in this document.
However, in a summary, one is forced to omit material. And so many of the technical details, and certainly
all the technical calculations have been omitted so that full proofs are almost never given here. We provide
sketches of proofs meant to illustrate the main ideas at work in our theory. For those readers who want to
delve deeper into the omitted details we have annotated our results with precise references to their places in
the above papers, which we include in an appendix.
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Abstract

We study mathematical structures arising in the theory of coalgebras which are useful for providing semantics
of recursive specifications. We begin by investigating (completely) iterative algebras and (complete) Elgot
algebras, and we establish the connection of these algebras to coalgebra—final coalgebras are precisely the
same as free completely iterative algebras, or free complete Elgot algebras, respectively. Similarly, for the
non-complete case we show that free iterative algebras, and free Elgot algebras, respectively, exist and can
be constructed from finite coalgebras. Furthermore, we show that the monads arising from free (completely)
iterative algebras are characterized by a universal property; they are free (completely) iterative monads.
This generalizes and extends classical work of Calvin Elgot and Evelyn Nelson. The second main topic of
this thesis is to provide a category theoretic semantics of so-called recursive program schemes. By exploiting
the structure of free completely iterative monads and of complete Elgot algebras we are able to provide an
uninterpreted as well as an interpreted semantics of recursive program schemes. We show that both are
connected as expected from the classical work. Finally, we present applications of our abstract theory. We
demonstrate how to recover the usual denotational semantics using ordered or metrized structures, and we
present new applications defining for example operations satisfying certain equations, or fractals recursively.

Zusammenfassung

In dieser Arbeit werden mathematische Strukturen untersucht, die in der Theorie der Koalgebren auftauchen
und welche Anwendung für die Semantik rekursiver Definitionen finden. Zunächst werden dazu (vollständig)
iterative Algebren und (vollständige) Elgot Algebren betrachtet, und es wird deren Verbindung zu Koal-
gebren offengelegt – finale Koalgebren sind genau die freien vollständig iterativen Algebren bzw. die freien
vollständigen Elgot Algebren. Analog hierzu zeigen wir, dass freie (nicht notwendig vollständige) iterative
Algebren bzw. freie Elgot Algebren existieren und in kanonischer Weise aus endlichen Koalgebren konstruiert
werden können. Weiterhin wird bewiesen, dass die Monaden, welche sich aus freien (vollständig) iterativen
Algebren ergeben, durch eine universelle Eigenschaft charakterisiert sind; sie sind die freien (vollständig)
iterativen Monaden. Dieser Teil der Arbeit verallgemeinert und erweitert klassische Ergebnisse von Calvin
Elgot und Evelyn Nelson. Das zweite Hauptthema der vorliegenden Dissertation ist eine kategorientheo-
retische Semantik so genannter rekursiver Programschemata. Durch die Ausnutzung der Struktur freier
vollständig iterativer Monaden und vollständiger Elgot Algebren sind wir in der Lage sowohl eine uninter-
pretierte als auch eine interpretierte Semantik rekursiver Programmschemata anzugeben. Wir zeigen auch,
dass zwischen beiden Semantiken ein präziser Zusammenhang besteht, wie es auch aus den klassischen Ar-
beiten zu erwarten wäre. Zuletzt präsentieren wir noch einige Anwendungen unserer abstrakten Theorie.
Die übliche denotationelle Semantik, welche geordnete oder metrisierte Strukturen benutzt, ergibt sich als
Spezialfall aus unseren Ergebnissen. Darüberhinaus geben wir neue Anwendungen an, die zum Beispiel
rekursive Definitionen von Operationen, welche gewisse Gleichungen erfüllen, oder von Fraktalen betreffen.
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A youth who had begun to read geometry with Euclid, when he had learnt the
first proposition, inquired, “What do I get by learning these things?” So Euclid
called a slave and said “Give him threepence, since he must make a gain out
of what he learns.”

Joannes Stobaeus, Four Books of Extracts, Sayings and Precepts (Extracts),
5th century AD.
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1 Introduction
The greatest challenge to any thinker is

stating the problem in a way that will allow a solution.

Bertrand Russell.

Recursion arises everywhere in computer science. It allows for a clear, concise and finite description of
complicated or potentially infinite objects or phenomena. Hence, it is a major ingredient of any programming
language or formalism describing the work of an information system. For example, a programmer often
defines a function using a recursive definition; that means a definition that is self-referential—the result of
the function at an argument is given by computing the same function at a modification or on parts of the
given argument. The paradigm example is the recursive definition of the factorial function:

f(n) := if n = 0 then 1 else n · f(n− 1) . (1.1)

In process algebra one uses recursion to specify repeated or potentially infinite system behaviour by finite
means. A very basic example is a process term

P := a.P (1.2)

describing a system which can perform the action a repeatedly without ever terminating. Yet another
example are recursive specifications of abstract data types such as

list ::= element | element.list (1.3)

where element is some given data type and list is the recursively specified datatype of lists with entries of
type element.

Of course, every recursive definition or self-referential specification immediately raises the question what
its meaning should be. It is the task of semantics, an important branch of theoretical computer science, to
answer such questions.

There are different ways to give semantics to a recursive definition. In practise, it is often sufficient
to consider a so-called operational semantics, which gives a meaning by running a recursive program on
an abstract machine of some sort. For example, an interpreter of a functional programming language that
can run a program such as (1.1) provides its operational semantics. In process algebra, one uses the so-
called structured operational semantics to provide a labelled transition system that behaves as specified
by a process term such as (1.2). Any actual implementation of a data type of lists containing entries of a
data type of elements in a programming language gives an operational semantics to the recursive data type
specification (1.3).

In this thesis we shall be concerned with another flavour of semantics—denotational semantics—which
assigns to a recursive definition a certain mathematical object, its meaning. Such a semantics is independent
of a particular implementation of a program, and so it more easily serves as a basis for formal reasoning
about recursive programs or recursively specified information systems.

The most common approach to denotational semantics considers ordered structures in which it is possible
to obtain the semantics of some recursive definition as a join of its finite approximations. Another approach
considers structures equipped with a complete metric. Here it is possible to obtain semantics of recursive
definitions using a limit of a Cauchy sequence of its finite approximations. In both approaches fixed points
of certain functions play a major rôle. In fact, in ordered structures one usually employs the fixed point
theorem of Alfred Tarski, Stephen Kleene, and Bronislaw Knaster, see e.g. [Ta]. And in completely metrized
structures one applies the fixed point theorem of Stefan Banach, see [Ban].

The starting point of our research is the classical work of Calvin Elgot and his collaborators [E, BE, EBT].
Their aim was to study the semantics of recursive computations at a purely algebraic level working without
ordered or metrized structures. In [E] Elgot introduced iterative theories, which are algebraic theories in the
sense of William Lawvere [La] that admit unique solutions of certain recursive specifications. Let us illustrate
this on the simple theories given by operations without any equations. Suppose we have a signature Σ of
operation symbols with prescribed arities in the set of natural numbers, i. e., Σ = (Σn)n∈N is a sequence of
sets, where Σn is the set of operation symbols of arity n. For example, a signature with a constant symbol
c and a binary operation symbol ∗ has Σ0 = { c }, Σ2 = { ∗ }, and Σn = ∅ else. For a given set of generators
one can form Σ-terms over that set. Now consider a recursive system of formal equations

x0 ≈ t0(x0, . . . , xn, y0, . . . , yk)
...

xn ≈ tn(x0, . . . , xn, y0, . . . , yk)

(1.4)
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where X = {x0, . . . , xn } is a finite set of variables, Y = { y0, . . . , yk } is a set of parameters, and the ti,
i = 1, . . . , n, are Σ-terms over the disjoint union of X and Y . Iterative theories are defined by the property
that every guarded system (1.4) can be solved uniquely. Guardedness here means that no term ti, i = 1, . . . , n,
is simply a single variable. One important example of an iterative theory is the theory TΣ formed by all
(finite and infinite) Σ-trees, i. e., rooted and ordered trees, where each inner node with n children is labelled
by an n-ary operation symbol from Σ and leaves are either labelled by a constant symbol from Σ0 or by
an element from a set of generators. For example, for the signature with a constant symbol c and a binary
symbol ∗ we can uniquely solve the formal equation

x ≈ x ∗ c

whose solution is, of course, the infinite Σ-tree

∗

∗ c

∗ c

c

/////

����

/////

����

/////

(1.5)

Another important iterative theory is the theory RΣ, the subtheory of TΣ formed by all rational Σ-trees,
i. e., those Σ-trees which have (up to isomorphism) only a finite set of different subtrees—a description
provided by Susanna Ginali [Gi2]. For example the tree (1.5) is rational since its only subtree besides itself
is the single-node tree labelled by c. But the tree

∗

∗ x0

∗ x1

x2

////

����

////

����

////

over an infinite set of generators containing all xi, i ∈ N, is not rational.
Rational trees are equivalently described as that class of Σ-trees arising as unfoldings of all guarded

formal recursive equations (1.4) as infinite trees, see e.g. [C]. In fact, Calvin Elgot, Stephen Bloom and Ralph
Tindell [EBT] proved that rational Σ-trees form the free iterative theory on a given signature. Similarly, the
theory TΣ of all Σ-trees is a free completely iterative theory on Σ, where completeness refers to the fact that
all (not necessarily finite) systems of formal equations can be uniquely solved.

Algebraic theories are complicated objects to study and in fact, the original proof of Elgot and his
coauthors is spread out over more than a hundred pages in the three papers [E, BE, EBT]. So it was a great
step forward when Evelyn Nelson [N] and Jerzy Tiuryn [T] introduced iterative algebras for a signature to
obtain a more easy approach to iterative theories. Recall first that an algebra for a signature Σ is a set A
equipped with operations σA : An −→ A for all operation symbols σ ∈ Σn, n ∈ N. An iterative algebra A is
a Σ-algebra in which every system of formal equations (1.4) has (for every interpretation of the parameters
y0, . . . , yk in A) a unique solution, i. e., there exists a unique n-tuple of elements of A that when plugged
in for the variables on both sides of the equation turn the formal equations into actual identities. Classical
algebras like groups or lattices are usually not iterative. However, there are enough interesting examples of
iterative algebras. Denote by TΣX the algebra of all Σ-trees over a set X of generators, i. e., Σ-trees whose
leaves are labelled by constant symbols from Σ0 or generators from X . Similarly, RΣX is the algebra of
rational Σ-trees over X . Both TΣX and RΣX are iterative algebras. Moreover, Evelyn Nelson proved that
RΣX is a free iterative algebra on X , and that the algebraic theory of free iterative algebras is the free
iterative theory of Calvin Elgot.

The first, more mathematical part, of our work presented here concerns a generalization and extension of
the classical work of Calvin Elgot and Evelyn Nelson using ideas from the theory of coalgebras. Coalgebras
have only recently gained more attention from researchers in theoretical computer science. They allow a

2



uniform investigation of state-based systems of different types at an abstract level, and they provide general
methods for reasoning about systems. For example, sequential automata can be captured as coalgebras
and, most prominently, labelled transition systems are coalgebras. Coalgebras are best studied using the
language of category theory; the type of a class of systems to be captured as coalgebras is described by
an endofunctor of Set, the category of sets and functions. For example, labelled transition systems are the
coalgebras for the endofunctor P(Act× ), where Act is a fixed set of actions and P( ) denotes the power set
functor. A very important concept in the theory of coalgebras is that of a final coalgebra. Final coalgebras
provide in many cases a semantics of behaviour of a state of a system. For example, for automata considered
as coalgebras the final coalgebra consists of all formal languages over the input alphabet, and the finality
principle assigns to every state of a given automaton the language accepted by it with the chosen state as
the initial one. Unfortunately, for arbitrary labelled transition systems there can be no final coalgebra for
cardinality reasons. However, for finitely branching labelled transition systems the final coalgebra exists and
consists of (bisimilarity equivalence classes of) all possible behaviours of states of such transition systems.
These behaviours can be described as equivalence classes of finitely branching extensional trees. For more
details on this and other examples we refer the reader to our introductory Section 2.3.

For our work, a crucial observation is that for a signature Σ the set TΣX of all Σ-trees over X is a final
coalgebra for the endofunctor HΣ( ) +X , where HΣ is the canonical polynomial endofunctor associated to
the signature Σ and + denotes disjoint union of sets. The important message of our results is that the finality
principle is sufficient to prove the classical results of Calvin Elgot. Furthermore, the fact that we work in
a category theoretic setting using universal properties such as finality allows us to substantially generalize
the classical results. Our proof is shorter than the classical one given by Elgot et al., and we believe that it
unveils what mechanisms really are at work in the classical setting at a conceptual level.

Our overall assumptions are small indeed; we work with any endofunctor H of Set (or a more general
category satisfying some rather mild side conditions) which has “enough final coalgebras”, i. e., for every set
X there exists a final coalgebra for H( )+X . In the first part of our work we introduce completely iterative
algebras for an endofunctor, where systems like (1.4), but not necessarily with a finite set of variables, have
a unique solution. For a signature Σ, every algebra TΣX of Σ-trees over a set X is completely iterative.
Other examples stem from the realm of algebras on complete metric spaces. For example, the golden ratio
ϕ can be described by the continued fraction

1 +
1

1 +
1

1 + · · ·
,

whence it is the unique real number from the interval [1, 2] satisfying the equation

x = 1 +
1

x
.

Another example is the famous Cantor space c which is the unique non-empty closed subspace of the interval
[0, 1] such that the equation

c =
1

3
c+

(
2

3
+

1

3
c

)
, (1.6)

holds, where we write 1
3c to mean { 1

3x | x ∈ c }. The Cantor space arises as the unique solution of a formal
equation in the completely iterative algebra formed by all non-empty closed subspaces of [0, 1] metrized
with the Hausdorff metric. As our first important result on completely iterative algebras we prove that
a final coalgebra for H( ) + X is precisely the same as a free completely iterative algebra on X . This
characterization of final coalgebras as free algebras of some sort is a new and important result of our work.
This result opens the door to our subsequent treatment of algebraic semantics using coalgebraic methods.
But before that, following Evelyn Nelson’s work, we show that free completely iterative algebras yield free
completely iterative theories. Similarly, for every finitary endofunctor H of Set, i. e., H is determined by its
action on finite sets, we formulate the notion of iterative algebra. Then we prove that every set X generates
a free iterative algebra RX for H , and we show how to construct every RX from finite coalgebras. As a
result of this construction it follows that the initial iterative algebra R∅ gives a semantics of all states of
finite systems described as coalgebras. For example, when sequential automata are considered as coalgebras,
then R∅ is the set of all regular languages, i. e., those languages accepted by finite automata. More generally,
our construction yields for every polynomial endofunctor of Set the algebras of rational trees as expected.
We consider this construction as another one of our main achievements. It is the key to almost all of the
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subsequent results on iterativity we present here and in other work. For example, we show that as in the
classical setting free iterative algebras yield free iterative theories.

In the second part of this thesis we turn our attention towards applications for semantics of our previously
developed theory. We show that our work provides a category-theoretic semantics of so-called recursive
program schemes. Classically, a recursive program scheme (RPS) is a system of formal equations such as

ϕ(x) ≈ F (x, ϕ(Gx))
ψ(x) ≈ F (ϕ(Gx), GGx)

(1.7)

where the operations ϕ and ψ are defined recursively from given operations F and G. The theory of such
recursive program schemes is the topic of algebraic semantics, see for instance the book of Irène Guessar-
ian [G]. Actually, one has to distinguish between the uninterpreted semantics of a recursive program scheme
and the interpreted one. The uninterpreted semantics provides a meaning of recursive program schemes
independently of the actual nature of the given operations. That means that the recursive program scheme
is regarded as a purely syntactic construct and its classical uninterpreted semantics will give to each newly
defined operation symbol a tree over the signature of givens obtained by unfolding the recursive definition.
For example, the above RPS (1.7) has as its uninterpreted solution the infinite trees

ϕ†(x) =

F

x F

Gx F

GGx

����
////

����
////

����

ψ†(x) =

F

F GGx

Gx F

GGx

����
////

����
////

����

(1.8)

Of course, much has been omitted here. For example, we have not explained why unfolding an RPS yields its
solution, or even why the trees in (1.8) are a solution of the RPS (1.7). In order to do this one first needs to
define second-order substitution of Σ-trees, i. e., substitution of trees for operation symbols, see [C]. Then one
can formulate that a solution of an RPS is a fixed point with respect to this second-order substitution; much
as solutions of systems of the form (1.4) are fixed points with respect to ordinary or first-order substitution
of Σ-trees, i. e., substitution of trees for generators.

In the present thesis we shall formulate the notion of a (suitably generalized) recursive program scheme
in a category theoretic setting using final coalgebras in lieu of terms or trees. As it turns out the notion
of second-order substitution is elegantly expressed in our setting as a direct consequence of the universal
property of free completely iterative theories. This easy but crucial observation allows us to formulate what
a solution of an RPS is. We then prove that every guarded recursive program scheme (in our sense) has a
unique solution. Guardedness here means that the right-hand sides of an RPS have their head symbols in
the signature Σ of given operations. This is also called Greibach normal form in the classical setting. Again,
our category theoretic result readily yields the classical one as a special case by working with polynomial
endofunctors of Set. But our theory encompasses also applications that go beyond what can be done with
the classical methods. For example, we are able to solve recursive program schemes which define operations
satisfying equations like commutativity by encoding such extra requirements directly into the RPS. In the
classical setting such additional requirements have to be treated separately.

In practise one is often more interested in the interpreted semantics of an RPS. This semantics considers
an RPS with the givens from a signature Σ together with a suitable Σ-algebra A, whose operations σA :
An −→ A, σ ∈ Σn, n ∈ N, provide an interpretation of all the given function symbols. Here is the standard
example in the subject. Let Σ be the signature of given operation symbols with a constant one, a unary
symbol pred, a binary symbol ∗ and a ternary one ifzero. The interpretation we have in mind is the set N
of natural numbers where ifzeroN(k, n,m) returns m if k is 0 and n otherwise, and all other operations are
obvious. The signature Φ of the recursively defined operations consists just of one unary symbol f . Consider
the recursive program scheme

f(n) ≈ ifzero(n, one, f(pred(n)) ∗ n)) . (1.9)

Then (1.9) is a recursive program scheme defining the factorial function. In general an interpreted RPS
is supposed to define new operations on the algebra A in a canonical way such that the formal recursive
definitions become valid identities in the given algebra. So by “suitable algebra” we mean, of course, one
in which recursive program schemes can be given a semantics. For example, for the recursive program
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scheme (1.7) we are only interested in those Σ-algebras A, where Σ = {F,G }, in which the program
scheme (1.7) has a solution, i. e., we can canonically obtain new operations ϕA and ψA on A so that the
formal equations (1.7) become valid identities. Before we can actually get to an interpreted semantics the
question we have to address is:

What Σ-algebras are suitable for semantics? (1.10)

As we mentioned already, several answers have been proposed in the literature. In the classical theory one
works with complete posets (cpo) in lieu of sets, see [G]. Here algebras have an additional cpo structure
making all operations continuous. Another approach works with complete metric spaces. Here we have an
additional complete metric making all operations contracting. In both of these approaches one imposes extra
structure on the algebra in a way that makes it possible to obtain the semantics of a recursive computation
as a join (or limit, respectively) of finite approximations.

Also (completely) iterative algebras are suitable for semantics. However, they are not the unifying concept
one would hope for. While avoiding extra structure they do not subsume continuous algebras on cpos which
have least (but not necessarily unique) solutions of recursive equations.

The iteration theories of Stephen Bloom and Zoltán Ésik [BÉ] were introduced to overcome this problem,
and iteration algebras, see [BÉ], Chapter 7, are algebras that admit canonical (but in general, non-unique)
solutions of formal systems of equations.

Analyzing all the above types of algebras we find an interesting common feature which make continuous,
metrizable, completely iterative and iteration algebras fit for use in semantics of recursive program schemes:
these algebras allow for an evaluation of all Σ-trees. More precisely, for every continuous, metrizable or
completely iterative algebra A we obtain a canonical map TΣA −→ A which provides for any Σ-tree over
A its result of evaluation in A. For completely iterative algebras this follows from the freeness of TΣA as
a completely iterative algebra. It is then easy to give semantics to recursive program schemes in A. For
example, for (1.7) one can simply take the tree unfolding which yields the infinite trees of (1.8), and then
for any argument x ∈ A evaluate these infinite trees in A.

Actually, we do not need to be able to evaluate all infinite trees: all recursive program schemes unfold to
algebraic trees, see [C]. And, as we have seen, another important subclass are the algebras RΣX of rational
trees over X . With this in mind, we can restate problem (1.10) more formally:

What Σ-algebras have a suitable evaluation of all trees?
Or all rational trees?

(1.11)

The answer we provide in this thesis is: Σ-algebras carrying a certain additional structure providing
canonical solutions of every system of formal equations (1.4). We have chosen to name these algebras
(complete) Elgot algebras to honour Calvin Elgot whose work has been a great inspiration for us. In contrast
to iterative algebras, in an Elgot algebra solutions need not be unique. Instead, there is an operation choosing
a solution which is required to satisfy two simple and well-motivated axioms which stem canonically from
Elgot’s iterative theories. The first of these axioms states that solutions are stable under systematic renaming
of the variables of X in system like (1.4). And the second axiom states that simultaneous recursion can be
performed sequentially, very similar to what is known as Bekić-Scott law from the theory of least fixed points
in complete partial orders. We prove that every free iterative algebra on a set X is also a free Elgot algebra
on that set. Moreover, the axioms of Elgot algebras ensure that the evaluation map RΣA −→ A obtained
by the freeness of RΣA behaves well with respect to substitution of rational trees for generators. This fact
can be expressed in a mathematical precise way in the language of category theory: Elgot algebras for a
signature Σ are precisely the Eilenberg-Moore algebras for the monad given by the free iterative theory RΣ.
Hence, one may say that Elgot algebras are precisely those algebras having a canonical evaluation of all
rational trees.

Similarly, complete Elgot algebras give canonical solutions to every (not necessarily finite) system of
formal equations, where the operation of assigning solutions satisfies the same two simple axioms as above.
For a signature Σ we prove that a free complete Elgot algebra on X is precisely the same as a final coalgebra
for HΣ( ) + X . And moreover, complete Elgot algebras are precisely the same as the Eilenberg-Moore
algebras for the monad given by the free completely iterative theory TΣ. More elementary, one may say that
complete Elgot algebras for a signature Σ are precisely those Σ-algebras with a evaluation map TΣA −→ A
of all Σ-trees in A. Of course, we introduce (complete) Elgot algebras more generally for endofunctors H ,
and all our results are proved for this more general category theoretic setting. Basic examples of (complete)
Elgot algebras include all continuous algebras, metrizable algebras, and, of course, all (completely) iterative
algebras. Using structures for semantics that come with a choice of solutions satisfying certain axioms is not
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new. Our two axioms mentioned above are very similar to two of the axioms of iteration theories of Stephen
Bloom and Zoltán Ésik [BÉ]. In fact, for a signature Σ with a distinguished constant symbol ⊥ the rational
trees form an iteration theory whose iteration algebras are certain Elgot algebras for Σ satisfying an extra
extensionality property.

Once we have established complete Elgot algebras as a suitable class of algebras which can serve as
interpretations of givens for an RPS we can present our interpreted RPS semantics. We prove that for every
guarded RPS which is given together with a complete Elgot algebra A we can provide a canonical solution in
A. Moreover, if A happens to be a completely iterative algebra, this canonical solution is unique. Finally, a
fundamental result in the theory of recursive program schemes states that the uninterpreted and interpreted
semantics of recursive program schemes are connected via the interpretation of givens in the algebra A:

Recursive
program scheme

uninterpreted
semantics ///o/o/o/o/o/o/o/o/o

interpreted
semantics

&&&f&f&f&f&f&f&f&f&f&f&f&f&f

Σ-trees

evaluation

��
�O
�O
�O
�O
�O
�O
�O

Algebra A

(1.12)

More detailed, to take first the tree-unfolding of a given recursive program scheme and then compute the
resulting Σ-trees in A is the same as to compute the new operations provided by the interpreted semantics
of the recursive program scheme. We give a mathematical precise formulation of this consistency between
uninterpreted and interpreted RPS solutions, and we show how this can easily be derived in our abstract
theory.

We believe that our results in this area generalize and extend the previous work on this topic. Our method
for obtaining interpreted solutions easily specializes to the usual denotational semantics using complete
partial orders. As a second application we show how to solve recursive program schemes in complete metric
spaces. For example, there is a unique contracting function f : [0, 1] −→ [0, 1] such that

f(x) =
1

4

(
x+ f

(
1

2
sinx

))
. (1.13)

Another example: there exists a unique contracting function ϕ on the set of all non-empty closed subspaces
of the Euclidean interval [0, 1] satisfying

ϕ(x) =
1

3
ϕ(x) ∪

(
2

3
+

1

3
x

)
, (1.14)

for any non-empty closed subspace x of [0, 1].
Finally, we also provide examples of recursive program schemes and their solutions which cannot be

treated within the classical theory: recursive definitions of operations satisfying equations like commutativ-
ity.

To sum up, this thesis contributes substantially to a new coalgebraic perspective to recursion which has
been developed by researchers in recent years. Our approach of using the theory of coalgebras and the
language of category theory to study recursion does not only produce generalizations of well-known results.
It also provides new tools and offers new insights into the general mechanisms at work in the semantics of
recursion at a concise and conceptual level. Furthermore, we claim that our abstract categorical approach
allows to bring several well-known approaches to semantics of recursion under one roof. And, as we have
seen, our work is starting to produce new results in semantics.

The Structure of this Text

This summary is structured as follows: in Section 2 we will briefly recall some notions and results from
category theory which are perhaps less familiar; in particular we discuss locally finitely presentable categories
and monads. For the convenience of the reader we also provide a bit of introduction to the theories of
algebras and coalgebras for an endofunctor. The material of the papers summarized in this document begins
in Section 3. We study first iterative and completely iterative algebras. This section presents the results of
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the first parts of our papers [M1] and [AMV2], the latter of which is joint work with Jǐŕı Aámek and Jǐŕı
Velebil.

Then we start to study the monads of free (completely) iterative algebras and we characterize in Section 4
the Eilenberg-Moore algebras for these monads—they are precisely (complete) Elgot algebras. We argue
that Elgot algebras capture important aspects of different types of algebras commonly used in semantics
of recursion. In particular, we show that continuous algebras and algebras on complete metric spaces are
complete Elgot algebras. These are the results of [AMV3], which is joint work with Jǐŕı Aámek and Jǐŕı
Velebil, again. In Section 5, we show that much more complicated systems of recursive definitions than
the ones of Section 3 can be solved uniquely in (completely) iterative algebras. These results are the basis
for the work in Section 6 where the monads of free (completely) iterative algebras are shown to be the free
(completely) iterative monads generated by an endofunctor. So Sections 5 and 6 present the second parts with
the main results of the papers [M1, AMV2] and the results of [M2]. While these results are mathematically
quite pleasing they also are an important step towards our semantics of (generalized) recursive program
schemes in Section 7, which is the topic of the joint paper with Larry Moss [MM]. In fact, the universal
property of free completely iterative monads yields as a special case the so-called second-order substitution,
which will allow us to define what a solution of a recursive program scheme in our abstract setting is. We will
then present the uninterpreted as well as an interpreted semantics of recursive program schemes. Our main
results in Section 7 are that every guarded recursive program scheme can be given a unique uninterpreted
solution. Furthermore, using complete Elgot algebras as interpretations of givens we provide a canonical
interpreted semantics, and we show that interpreted and uninterpreted solutions are consistent with each
other. Finally, we illustrate our results with several applications.

We conclude this summary with some discussion of presently ongoing and directions for future research
in the last Section 8.

Related Work

As we have mentioned already it was the idea of Calvin Elgot to study the semantics of recursive definitions
at a purely algebraic level. He introduced iterative algebraic theories in [E], and later he proved with his
coauthors that free iterative theories exist [BE] and are given by rational trees [EBT], see also the work of
Susanna Ginali [Gi1, Gi2] for the first proof of this fact. Similarly, free completely iterative theories exist
and are given by all infinite trees.

Iterative algebras were introduced and studied by Jerzy Tiuryn [T] and Evelyn Nelson [N] with the aim
of providing a more easy approach to Elgot’s iterative theories. Nelson proved that rational trees yield free
iterative algebras and that those give a free iterative theory.

The first categorical accounts of infinite trees as monads of final coalgebras appear independently and
almost at the same time in the work of Larry Moss [Mo1], of Neil Ghani, Christoph Lüth, Federico De Marchi
and John Power [GLMP1, GLMP2], and of Peter Aczel, Jǐŕı Adámek and Jǐŕı Velebil [AAV]. Furthermore,
in [Mo1] and [AAV] it is proved that those monads are completely iterative. And in [AAMV] we established
the universal property of the free completely iterative monads. The categorical treatment of rational trees
and iterative theories started with our work [AMV1]. We proved there that every endofunctor of Set admits
a free iterative monad and we provided a coalgebraic construction of this monad. In [GLM1] the authors
gave a general construction based on our ideas that allows to obtain (monads of) other syntactic objects
than rational trees with a coalgebraic construction.

The axioms of (complete) Elgot algebras as presented in Section 4 below were inspired by the axioms of
iteration theories of Stephen Bloom and Zoltán Ésik [BÉ]. Other approaches using solutions and axioms are
traced monoidal categories of André Joyal, Ross Street and Dominic Verity [JSV], see the traced cartesian
categories in [Ha] for the connection, or fixed-point theories for domains, see the work of Samuel Eilenberg [Ei]
or Gordon Plotkin [P], etc.

The classical theory of recursive program schemes is presented by Irène Guessarian [G]. There one finds
results on uninterpreted solutions of program schemes and interpreted ones in continuous algebras.

Basic properties of infinite trees are presented by Bruno Courcelle in [C]. Our work [AAMV, M1] gives
a categorical description of second-order substitution of infinite trees which we use in order to formulate
solutions of recursive program schemes abstractly.

Neil Ghani, Christoph Lüth and Federico De Marchi [GLM2] obtained a general solution theorem with
the aim of providing a categorical treatment of uninterpreted program scheme solutions. Part of our proof
for the solution theorem for uninterpreted schemes is inspired by their proof of the same fact. However, the
connection to (generalized) second-order substitution as presented in [AAMV, M1] is new in our work.
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Complete metric spaces as a basis for the semantics of recursive program schemes have been studied
by André Arnold and Maurice Nivat, see e. g. [AN]. Stephen Bloom [Bl] studied interpreted solutions of
recursive program schemes in so-called contraction theories. The semantics of recursively defined data types
as fixed points of functors on the category of complete metric spaces has been investigated by Pierre America
and Jan Rutten [ARu] and by Jǐŕı Adámek and Jan Reitermann [ARe]. We build on this with our treatment
of self-similar objects. These have also recently been studied in a categorical framework by Tom Leinster,
see [Le1, Le2, Le3].
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2 Preliminaries
We will need to use some very simple notions of category theory,

an esoteric subject noted for its difficulty and irrelevance.

Moore and Seiberg [MS]

In this section we collect most of the basic notions and standard results used frequently throughout this
summary. We assume that the reader is acquainted with some basics of category theory like categories,
functors, natural transformations, limits, colimits, etc., see any standard text on category theory, e.g. the
excellent textbook [ML] by Saunders MacLane. Everything else necessary to understand the work in the
subsequent sections shall be mentioned here. This section is not thought as a general introduction to any
of the theories treated in the following subsections. All we want to do here is to provide a little bit of
intuition for the basic material used in our subsequent work, set up notation and recall the usual results. We
will mostly not give proofs but provide references where arguments are not obvious. Readers familiar with
category theory, algebras and coalgebras should skip this section and start reading Section 3 immediately.

2.1 Locally Finitely Presentable Categories

For some of our work it will be necessary to work in a category in which it makes sense to speak about
a “finite object” in the same way as one can talk about finite sets in the category Set of (small) sets and
functions. Moreover, we shall be interested in working with finitary endofunctors, i. e., those functors which
are determined by their action on “finite objects”. Such an environment is provided by locally finitely
presentable categories in the sense of Peter Gabriel and Friedrich Ulmer [GU]. Before we give the definition
let us recall the notions of filtered diagram and finitely presentable object.

Definition 2.1.

(i) A category D is called filtered if each finite subcategory has a cocone in D, or more precisely

(a) D is non-empty,

(b) for each pair D1, D2 of objects of D there exists a cospan in D, i.e, an object D and two morphisms
fi : Di −→ D, i = 1, 2, and

(c) for each pair of parallel morphisms f, g : D −→ D′ in D there exists a coequating morphism, i. e.,
a morphism h : D′ −→ D′′ in D such that h · f = h · g.

(ii) A filtered diagram is a diagram D : D −→ A whose scheme D is a filtered category, and a filtered
colimit is a colimit of a filtered diagram.

(iii) A functor F : A −→ B is called finitary provided that it preserves filtered colimits.

(iv) An object X of a category A is called finitely presentable if its covariant hom-functor A(X,−) is
finitary.

Notation 2.2. For two categories A and B we shall denote by

[A,B] and Fin[A,B]

the category of all endofunctors and of finitary ones, respectively.

Remark 2.3. The following more explicit characterization of finite presentability of an object X will be
used frequently in our work: X is finitely presentable if and only if for any filtered colimit C and any
morphism f : X −→ C, there exists an essentially unique factorization through an injection of the colimit.
More detailed, there exists an injection ci : Ci −→ C of the colimit and a morphism f ′ : X −→ Ci such that
the triangle

Ci

ci

��

X

f ′
>>}}}}}}}

f
// C

commutes, and furthermore, whenever two factorizations f ′ and f ′′ of f through any colimit injection
cj : Cj −→ C satisfy cj · f ′ = cj · f ′′, then f ′ and f ′′ can be coequated in the diagram, i. e., there exists a
morphism cjk : Cj −→ Ck in the diagram such that cjk · f ′ = cjk · f ′′.
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Next, we list some examples of finitely presentable objects. More examples can be found in [AR].

Examples 2.4.

(i) A set X is finitely presentable in Set if and only if it is a finite set.

(ii) Similarly, in Pos the category of partially ordered sets and order preserving maps an object is finitely
presentable if and only if it is a finite poset.

(iii) A group is finitely presentable in the category Grp of groups and their homomorphisms if and only if it
can be presented by finitely many generators and finitely many equations. More generally, an object
in a variety of finitary (many-sorted) algebras is finitely presentable if and only if it can be presented
by finitely many generators and equations.

(iv) Consider the category CPO of complete partial orders and continuous functions between them. So
objects of CPO are partially ordered sets (not necessarily with a least element) in which every ascending
chain has a join, and morphisms are functions preserving such joins. In CPO, only the empty cpo is
finitely presentable.

The following result about finitely presentable objects will often be used, see [AR], Proposition 1.3.

Proposition 2.5. A finite colimit of finitely presentable objects is finitely presentable.

Definition 2.6. A category A is called locally finitely presentable (or, lfp, for short) if

(i) it is cocomplete,

(ii) it has (up to isomorphism) only a set of finitely presentable objects, and

(iii) every object of A is a filtered colimit of finitely presentable objects.

Examples 2.7.

(i) Set is lfp since every set is a directed union of its finite subsets, and the collection of all finite sets is
up to isomorphism a (countable) set.

(ii) Pos, Grp, and every variety of finitary (many-sorted) algebras are lfp.

(iii) CPO is not lfp.

(iv) A poset considered as a category is lfp if and only if it is a complete algebraic lattice.

Next, we list properties of lfp categories used in this summary. We omit all proofs as they can be found
in [AR].

Notation 2.8. For any lfp category A we denote by Afp the full subcategory of A given by (a representing
set of) finitely presentable objects.

Proposition 2.9. Every object A of an lfp category A is a colimit of the canonical filtered diagram

DA : Afp/A −→ A, (X −→ A) 7−→ X ,

of finitely presentable objects, i. e., Afp is a dense subcategory.

Theorem 2.10. Any lfp category is complete and well-powered as well as cocomplete and cowell-powered.

Theorem 2.11. (Adjoint Functor Theorem)
A functor between lfp categories is a right adjoint if and only if it preserves limits and filtered colimits.

Proposition 2.12. Let A and B be lfp categories.

(i) The categories [Afp,B] and Fin[A,B] are equivalent.

(ii) For two lfp categories A and B the category Fin[A,B] is lfp.

In fact, the first item follows from the fact that A is a free cocompletion under filtered colimits of Afp.
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Remark 2.13. Analogously to lfp categories there exists the concept of locally λ-presentable category, for
λ a regular cardinal, see [AR]. A category A is locally λ-presentable if it is cocomplete and has (up to
isomorphism) a set of λ-presentable objects such that any object of A is a λ-filtered colimit of objects from
that set.

Here the notions of λ-filtered colimit and λ-presentability are defined as expected: a category D is
called λ-filtered if every subcategory with less than λ morphisms has a cocone in D, colimits of diagrams
whose domain is λ-filtered are called λ-filtered colimits, etc. Notice that a functor F is called λ-accessible if it
preserves λ-filtered colimits, and F is called accessible if it is λ-accessible for some regular cardinal λ. Observe
that Set is locally λ-presentable for every regular cardinal λ. Recall that an endofunctor H : Set −→ Set is
called bounded if there exists a cardinal number λ such that for every set X any element x ∈ HX lies in the
image of Hm for some set m : Y ↪−→ X of X of cardinality less that λ. Accessible endofunctors of Set are
precisely the bounded ones, see [AT], Proposition III.4.3.

In this text we will not work with arbitrary locally λ-presentable categories. But we shall often mention
and use accessible endofunctors (of Set).

2.2 Algebras

In this subsection we shall recall some basics on algebras for an endofunctor. Their purpose within our work
is to provide a categorical framework for the notion of a set equipped with operations. We will provide
here enough intuition to make this precise. In Sections 3 and 4 we will study certain algebras suitable for
semantics of recursive programs, i.e., algebras in which it is possible to define new operations from given
ones by means of a recursive specification.

Another view on algebras for an endofunctor is as implementations of abstract data types. More precisely,
an initial algebra provides a canonical semantics of an abstract data type whose constructors are described
by means of a suitable endofunctor of a category.

Definition 2.14. Let H : A −→ A be an endofunctor of a category A. By an H-algebra we mean a pair
(A, a) where A is an object of A, the carrier of the algebra, and

a : HA −→ A

is a morphism of A, the structure of the algebra.
An (H-algebra) homomorphism from an algebra (A, a) to an algebra (B, b) is a morphism h : A −→ B

of A preserving the algebraic structure, i. e., such that the square

HA
a //

Hh

��

A

h

��

HB
b

// B

(2.15)

commutes.

Notation 2.15. Observe that the identity on a carrier of an algebra is a homomorphism and that homo-
morphisms compose. Thus, H-algebras and their homomorphisms organize themselves in a category which
we will denote by

AlgH .

Remark 2.16. An important concept is that of an initial algebra. An H-algebra (I, i) is initial if for every
H-algebra (A, a) there exists precisely one homomorphism from I to A, i. e., (I, i) is an initial object of
AlgH . Notice that, being a colimit, an initial algebra is uniquely determined up to isomorphism.

Examples 2.17.

(i) Consider the endofunctor of Set given by HX = X + 1. Algebras for H are unary algebras with a
constant, and homomorphisms are maps preserving the constant and the unary operation. An initial
algebra is the algebra N of natural numbers together with the constant 0 and the successor function.
Notice that the elements of the initial algebra can be thought of as being build up inductively starting
with the constant, then applying formally the unary operation to form new elements. In fact, the
initiality of (N, 0, succ) can be understood as induction principle: to define a function f from N to a
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set A it suffices to specify its value at 0, i. e., an element a = f(0), and a function α : A −→ A which will
tell us that f(n+ 1) = α(a′) if we already have defined f(n) = a′ for some natural number n. Indeed,
(A, a, α) yields an H-algebra. Thus, by the initiality there exists a function f : N −→ A and the fact
that it is an algebra homomorphism is equivalent to saying that f(0) = a and f(n+1) = α(f(n)), for any
natural number n ≥ 1, hold. The uniqueness of f yields an induction proof principle: to prove that two
functions f, g : N −→ A are equal it suffices to establish that both f and g are algebra homomorphisms:
then f(0) = g(0) and whenever f(n) = g(n), then also f(n+1) = α(f(n)) = α(g(n)) = g(n+1). Thus,
f = g as desired.

(ii) Binary algebras and their homomorphisms are precisely the algebras for the set endofunctor given by
HX = X ×X . In this case the initial algebra is carried by the empty set.

(iii) Lists. Consider the functor on Set given by HX = 1 + S × X for a fixed set S. The H-algebras
are algebras A with a constant and unary operations αs for each s ∈ S—the latter can, of course, be
presented as one map α : S × A −→ A. Homomorphisms are, again, the structure preserving maps.
An initial algebra is given by the set S∗ of finite lists over S with the constant given by the empty list
and with the unary operations given by concatenation:

cons : S × S∗ −→ S∗

(s, 〈s1, . . . , sn〉) 7−→ 〈s, s1, . . . , sn〉 .

As before the initiality gives rise to an induction principle, i. e., the initiality is precisely the fact that
functions out of S∗ can be uniquely defined by structural induction. We leave it to the reader to work
out the details.

(iv) Trees.1 For two sets of labels L and M consider the functor H : Set −→ Set defined by HX =
L×X ×X +M . Algebras of H have a binary operation for each element l ∈ L and constants for each
m ∈ M , and homomorphisms preserve these operations and constants. An initial H-algebra is the
algebra T of all binary trees with inner nodes labelled by elements of L and leaves labelled by elements
of M . The algebra structure L × T × T + M −→ T assigns to an element of M the single-node tree
labelled by that element, and to a triple (l, t1, t2) the binary tree obtained by joining the trees t1 and
t2 with a common root node which is labelled by l.

(v) The previous examples (i) to (iv) are subsumed by general algebras for a signature. Let Σ be a signature
(or, ranked alphabet), i. e., Σ gives for each natural number n a set Σn of operation symbols of arity
n. We form the polynomial functor HΣ : Set −→ Set associated to Σ by defining

HΣX = Σ0 + Σ1 ×X + Σ2 ×X2 + · · · (2.16)

on objects and similarly on morphisms. It is not difficult to see that AlgHΣ is the category of Σ-
algebras, i. e., general algebras for the signature Σ, and their homomorphisms. An initial algebra is
the algebra FΣ of all finite Σ-trees (or, Σ-terms), i. e., finite ordered trees where each node with n
children is labelled by an n-ary operation symbol. The algebra structure map ϕΣ : HΣFΣ −→ FΣ is
given by tree tupling, more precisely, on the n-th coproduct component of HΣFΣ, ϕΣ assigns to a tuple
(σ, t1, . . . , tn) where σ is an n-ary operation symbol and t1, . . . , tn are finite Σ-trees from FΣ the tree

σ

t1 . . . tn

oooooo
OOOOOO

�����
66666

�����
66666

Finally, notice that the elements of HΣX for a set (of variables) X can be understood as flat trees,
i. e., trees whose root node is labelled by an n-ary operation symbol and where this root has n-children
which are leaves labelled by elements from X :

σ

x1 . . . xn
�����

?????

We will sometimes use the notation (σ, ~x) for elements of HΣX .

1Trees are throughout be understood as rooted ordered ones up to isomorphism.
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(vi) Algebras with operations that satisfy certain equations can sometimes be expressed as algebras for an
endofunctor. For example, the algebras with a binary commutative operation are the algebras for the
functor P2 on Set assigning to a set X the set of unordered pairs

P2 : X 7−→ { {x, y } | x, y ∈ X } .

Of course, H-algebra homomorphisms are precisely the morphisms preserving the binary operation.
The initial algebra is carried by the empty set.

(vii) More generally, algebras for finitary endofunctors of Set can be understood as algebras for a signature
satisfying equations. Recall that a functor H : Set −→ Set is finitary (i. e., it preserves filtered colimits,
see Definition 2.1) if and only if it is a quotient of some polynomial functor HΣ, see [AT], III.4.3.
The latter means that we have a natural transformation ε : HΣ −→ H with epimorphic components
εX , which are fully described by their kernel equivalence whose pairs can be presented in the form of
so-called basic equations

σ(x1, . . . , xn) = %(y1, . . . , ym)

for σ ∈ Σn, % ∈ Σm and (σ, ~x), (%, ~y) ∈ HΣX for some set X including all xi and yj . It is not difficult
to prove that the algebras for H are precisely the Σ-algebras satisfying the basic equations given by
ε. The initial algebra I of H is given by the quotient IΣ/∼ where ∼ is the smallest congruence on IΣ

such that IΣ/∼ is an H-algebra. More explicitly, for finite Σ-trees s and t we have s ∼ t if and only if t
can be obtained from s by finitely many applications of the basic equations describing ε. For example,
the functor H which assigns to a set X the set { {x, y } | x, y ∈ X }+ 1 of unordered pairs of X plus
an extra element is a quotient of HΣX = X ×X + 1 expressing one binary operation b and a constant
c, where εX is presented by commutativity of b; i. e., by the basic equation b(x, y) = b(y, x). And I is
the algebra of all finite unordered binary trees.

(viii) It follows from (vii) above that a finitary variety of Σ-algebras for a signature forms a category of
algebras for a finitary endofunctor of Set if and only if the variety can be defined by basic equations. We
already saw in (vi) above algebras with a commutative binary operation as algebras for the endofunctor
P2. However, the category of semigroups (i. e., algebras with one associative binary operation) does
not form a category of algebras for a finitary set endofunctor.

(ix) Consider the finite power set functor Pfin assigning to a set X the set of its finite subsets. We do not
give an explicit description of Alg Pfin, but we describe the initial algebra. The functor Pfin is given as
a quotient ε : HΣ −→ Pfin where Σ has for each natural number n a unique n-ary operation symbol,
i. e., HΣX =

∐
nX

n, and εX(x1, . . . , xn) = {x1, . . . , xn } for every n-tuple of elements of X . Thus, the
initial Pfin-algebra is given by a quotient of the initial HΣ-algebra modulo basic equations as in (vii)
above. We give alternative descriptions here.

An initial Pfin-algebra I is carried by the set of all finite constructive sets. Then I = PfinI so that the
structure of the initial algebra is the identity map. Before we give another (isomorphic) description
of I we need to recall the following notions. A bisimulation between two unordered trees s and t is a
relation ∼ between their sets of nodes with the following property: if n ∼ m are related nodes of s and
t, respectively, then for each child n′ of n there exists a child m′ of m with n′ ∼ m′, and vice versa,
for each child m′ of m there exists a child n′ of n with n′ ∼ m′. The trees s and t are called bisimilar
if there exists a bisimulation between them relating their root nodes. For example, the two trees

•

• •�������

???????

and

•

•
(2.17)

are bisimilar, whereas •

• •

•

�������

???????

and

•

•

are not. An unordered tree t is called strongly extensional if for each node two distinct subtrees rooted
at children of that node are never bisimilar. Notice that, the greatest bisimulation on a tree t is always
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an equivalence relation and the quotient of t modulo this equivalence is a strongly extensional tree.
For example, consider the two trees in (2.17) above. The left-hand one is not strongly extensional, but
the right-hand one is and in fact, it is the stronly extensional quotient of the left-hand tree.

Now coming back to the initial algebra I of Pfin, one can prove that I consists of all unordered finite
strongly extensional trees.

Remark 2.18. Despite the fact, that all our previously presented examples are algebras for set endofunctors
it is useful to work in an abstract category A. Firstly, in our proofs and constructions it will be clearer what
concepts and structure really have to be employed to make things work. Secondly, there may later arise
applications that call for the use of other ground categories than Set.

In fact, we shall later see applications in semantics of computation where we deal with algebras (e. g. for a
signature) having extra structure. For example, continuous algebras are carried by a complete partial order
rather that just a set. Likewise, one may be interested to work with algebras on complete metric spaces.
Those algebras can conveniently be treated by considering algebras for a functor on the category of complete
partial orders and continuous maps or the category of complete metric spaces and non-expanding maps,
respectively.

Next we give some basic results on algebras, which we shall frequently use throughout our work. First
of all, constructions like products of algebras etc. can be performed on the level of the underlying category
A. Recall that a functor F : A −→ B is said to create limits if for any diagram D : D −→ A and for every
limiting cone (L, (`i)i∈D) of F ·D there exists a unique cone (A, (ai)i∈D) with FA = L and Fai = `i, for all
i ∈ D, and this cone is a limit of D. For the forgetful functor U : AlgH −→ A creation of limits means that
for each diagram D of algebras and homomorphisms the limit L of the diagram U ·D in A can uniquely be
equipped with an algebra structure so that all limit projection become homomorphisms and the resulting
cone is a limit in AlgH of D.

Theorem 2.19. The forgetful functor U : AlgH −→ A creates all limits and all colimits that H preserves.

In general, colimits of algebras are not formed on the level of A, e. g., coproducts of binary algebras are
not carried by the disjoint union of the carriers. However, there are results on the cocompleteness of AlgH ,
see [Li2, AK1] or [AK2].

The next result states that an initial algebra is the least fixed point of H , or the least solution of the
recursive domain equation

HX ' X .

Lemma 2.20. (Lambek [L])
If (I, i) is an initial H-algebra, then its structure is an isomorphism.

Proof. Clearly, (HI,Hi) is an H-algebra. Thus there exists a unique homomorphism j from (I, i) to
(HI,Hi). Since i : HI −→ I is a homomorphism, we obtain the commutative diagram

HI

Hj

��

i // I

j

��

HHI

Hi

��

Hi // HI

i

��

HI
i

// I

Thus, we have i · j = id by the initiality, because id is the only homomorphism from the initial algebra to
itself. The commutativity of the upper square now gives j · i = Hi ·Hj = id . 2

Another very important concept is that of a free algebra on a given object of generators.

Definition 2.21. Let H : A −→ A be an endofunctor, and let X be an object of A. An H-algebra (FX,ϕX)
together with a morphism ηX : X −→ FX is called a free H-algebra on X if for every H-algebra (A, a) and

every morphism f : X −→ A there exists a unique homomorphic extension f̂ : FX −→ A, i. e., a unique
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H-algebra homomorphism f̂ : (FX,ϕX ) −→ (A, a) with f̂ · ηX = f :

X
ηX //

f
!!DDDDDDDD FX

�

f

��

HFX
ϕXoo

H
�

f

��

A HAa
oo

Remark 2.22.

(i) In a category A with finite coproducts, it is easy to show that for every object X an initial algebra for
the functor H( ) +X is precisely a free H-algebra on X . More detailed, if FX is a free H-algebra on
X , then its algebraic structure ϕX : HFX −→ FX and the universal arrow ηX : X −→ FX yield the
structure of the initial algebra for H( ) +X , and conversely.

Observe that the free H-algebra F0 on the initial object of A is precisely the initial H-algebra.

(ii) Functors H having free algebras on every object X are called varietors in [AT]. For a varietor the
assignment X 7−→ FX of a set to a free algebra on that set yields a left-adjoint to the forgetful functor
U : AlgH −→ A. All functors of Example 2.17 are varietors of Set. However, not every set functor is a
varietor. The (unbounded) power set functor P : Set −→ Set does not have an initial algebra, whence
no free algebras. In fact, there can be no fixed point of P due to the famous Cantor Theorem.

(iii) Varietors do not enjoy nice closure properties. For example, for A = Set varietors need not compose,
nor need a coproduct of two varietors be a varietor, see [AT], IV.4.4. Therefore, one often works with a
more nicely behaved subclass of varietors, for example finitary (or, more generally, accessible) functors
of Set, see Theorem 2.25 below.

Examples 2.23.

(i) For a polynomial endofunctor HΣ : Set −→ Set induced by a signature a free algebra on a set X is
carried by the set FΣX of all finite Σ-trees over X , i. e., Σ-trees where leaves can be labelled either
by a generator from X or by a constant symbol from Σ. We leave it to the reader to work out the
special cases for the functors of Examples 2.17(i)–(iv). Observe that the freeness of FΣX specializes
to substitution of terms for variables. In fact, let X and Y be sets of variables. Then any map
s : X −→ FΣY gives a substitution of variables of X by finite Σ-trees over Y . The unique induced
homomorphism ŝ : FΣX −→ FΣY performs for any finite Σ-tree t in FΣX the substitution s, i. e.,
every leaf labelled by x ∈ X is replaced by s(x) ∈ FΣY .

Notice also that for any Σ-algebra A we obtain a canonical homomorphism α : FΣA −→ A extending
the identity on A. It provides evaluations of all finite Σ-trees over A in the algebra A. In fact, one
easily verifies that α is obtained by canonically extending the computation of all flat Σ-trees over A
which is provided by the algebraic structure a : HΣA −→ A.

(ii) For an arbitrary finitary functor H of Set which comes as a quotient ε : HΣ −→ H we have described an
initial algebra in Example 2.17(vii). Analogously, a free algebra FX on a set X is a quotient FΣX/∼X
of the free HΣ-algebra on X . In fact, notice that we obtain a natural transformation ε′ = ε + id :
HΣ( ) +X −→ H( ) +X exhibiting H( ) +X as a quotient of the polynomial functor HΣ( ) +X .
Observe that the basic equations for ε′ are precisely the same as those for ε, and recall Remark 2.22(i)
to obtain FX as the quotient of FΣX modulo basic equations; more detailed, s ∼X t holds for Σ-trees
s and t over X if s is obtained from t by application of finitely many basic equations provided by ε.

(iii) A free P2-algebra on a set X where P2 is the unordered pair functor from Example 2.17(v) is carried
by the set of binary unordered trees with leaves labelled in X . The algebra structure is given by tree
pairing.

(iv) A free Pfin-algebra on a set X is carried by the set of finitely branching strongly extensional finite trees
with leaves partially labelled in X .
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A free H-algebra on an object X can in many categories be inductively constructed. We describe this
first for the case of an endofunctor H on Set. For a set X we define by transfinite induction the following
chain indexed by ordinal numbers:

Initial step: H0X = X

h0,1 ≡ H0X = X
inr //HX +X = H1X

Isolated step: Hi+1X = HHiX +X

hi+1,j+1 ≡ Hi+1X = HHiX +X
Hhi,j+X

//HHj +X = Hj+1X

Limit step: HjX = colim
i<j

HiX with injections hi,j : HiX −→ HjX , i < j,

the connecting map hj,j+1 is uniquely determined by the commutativity of the squares

HiX
hi,j

//

hi,i+1

��

HjX

hj,j+1

��

Hi+1X = HHiX +X
Hhi,j+X

// HHjX +X = Hj+1X

i < j .

The above chain is said to converge if hi,i+1 is an isomorphism for some ordinal number i.

Theorem 2.24. ([AT], Theorem IV.4.2)
Let H be an endofunctor of Set. Then H has a free algebra on X if and only if the above chain (HiX)
converges. Furthermore, if hi,i+1 is invertible for some i, then (HiX,h

−1
i,i+1) is a free H-algebra on X.

This result does not indicate after how many steps the free algebra (if it exists) is constructed. However,
the following theorem gives a bound for endofunctors H that preserve colimits of λ-chains, i. .e, diagrams
λ −→ Set for an infinite ordinal λ.

Theorem 2.25. (Adámek [A1])
Let H be an endofunctor that preserves colimits of λ-chains. Then the free algebra chain converges after λ
steps, and the pair (HλX,h

−1
λ,λ+1) is a free H-algebra on X.

This last result is not specific for Set. In fact, its proof works in any category A in which finite coproducts
and colimits of α-chains, α ≤ λ, exist. In particular, if A is an lfp category and H is a finitary functor, then
H preserves colimits of ω-chains, thus the free algebra construction stops after ω steps. Finally, notice that
in the light of Remark 2.22(i) the above construction easily specializes to a construction of an initial algebra.
In fact, just take for X the empty set (or, the initial object of A).

2.3 Coalgebras

In this subsection we recall coalgebras for an endofunctor. Whereas algebras can be thought of as sets of
data elements equipped with operations that “construct” new data elements (see the examples of natural
numbers, lists and trees as initial algebras) coalgebras have a strong flavour of dynamic systems where a
set of states is equipped with “observations” that allow to access certain information about these states
albeit not the states themselves. The type of the system, i. e., the type of the possible observations of the
systems, is described by the endofunctor under consideration. Most prominently, sequential automata and
labelled transition systems can be considered as coalgebras, see Examples 2.29 below. Another perspective
on coalgebras is the one viewing them as infinitary data structures like streams or infinite trees. Coalgebraic
principles are then useful to define operations on such data structures as well as proving properties about
such operations. Again, it is not our aim to provide a general introduction to the theory of coalgebras but
merely collect those parts which will be essential to our work. For a general introduction to the field of
coalgebra the reader may consult any of the texts [JR, R2, Gu, A2].

Formally, coalgebras are dual as objects to algebras in the sense that the structure is turned around.

Definition 2.26. Let H : A −→ A be an endofunctor of a category A. An H-coalgebra is a pair (A, a)
consisting of a carrier A, an object of A, and the structure a : A −→ HA. A coalgebra homomorphism h
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from (A, a) to (B, b) is a morphism h : A −→ B such that the square

A
a //

h

��

HA

Hh

��

B
b

// HB

(2.18)

commutes.

Remark 2.27.

(i) Coalgebras for a functor H and their homomorphisms form a category

CoalgH .

Coalgebras are dual to algebras in the sense that the dual of CoalgH is the category of algebras for
the functor Hop : Aop −→ Aop:

(CoalgH)op = AlgHop .

(ii) Dually to the situation in algebra, in coalgebra the concept of a final (or, terminal) coalgebra plays a
major rôle. An H-coalgebra (T, t) is final if for any H-coalgebra (A, a) there exists a unique coalgebra
homomorphism

JaK : A −→ T .

This notation is to indicate that a final coalgebra is used to provide semantics of computations in
dynamical systems. In fact, we shall see in the Examples 2.29 how JaK assigns to an element of A
thought of as a state of a system its semantics as an element of the terminal coalgebra. This element
can often be thought of as the behaviour of the state, i. e., the information which can be observed of
the state using (repeatedly) all the observations provided by the coalgebra structure a.

Notice that a final H-coalgebra (T, t) is a terminal object of CoalgH , and as such it is uniquely
determined up to isomorphism.

Dualizing Lambek’s Lemma 2.20 we obtain the following

Lemma 2.28. If (T, t) is a final coalgebra, then t is an isomorphism.

Consequently, a final H-coalgebra is the greatest fixed point of H , or the greatest solution of the domain
equation

X ' HX .

Examples 2.29.

(i) Consider the functor given by HX = X + 1 on sets. Coalgebras α : A −→ A+ 1 are just partial unary
algebras and coalgebra homomorphisms are the strict algebra homomorphisms h : (A,α) −→ (B, β),
i. e.,

β is defined on h(a) if and only if α is defined on a.

Of course, we can also view (A,α) as a deterministic automaton (with unary input) with halting states,
i. e., states which do not have a successor state. Usually, one writes

a −→ a′ and a↓

if a can make a state transition to a′, or if a is a halting state, respectively. The coalgebra homomor-
phisms are functions h : A −→ B preserving halting states and transitions:

(a) a↓ implies h(a)↓, and

(b) a −→ a′ implies h(a) −→ h(a′)
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These functions are called simulations in automata theory. Notice that due to the determinism preser-
vation of halting states and transitions implies their reflection by h.

A final H-coalgebra is carried by
N = N+ {∞}

with the structure map pred : N −→ N+ 1

pred(n) =





n− 1 if n ∈ N \ { 0 }
∗ if n = 0
∞ if n =∞

where ∗ denotes the unique element of 1. For a coalgebra (A,α) the uniquely determined map JαK :
A −→ N assigns to every state a of A its behaviour. More precisely, JαK assigns ∗ to any halting state,
and to any other state a the number of steps the automaton A can make from a before a halting state
is reached—this number may be infinity.

The universal property can also be understood in terms of a definition and a proof principle called
corecursion and coinduction, respectively. We do not give any details of this here. The interested
reader should consult the aforementioned introductory texts [JR, R2, Gu, A2].

(ii) Streams. Coalgebras for the functor given by HX = S × X for a set S are deterministic automata
with output in S. Indeed, a coalgebra structure α = 〈o, s〉 : A −→ S × A gives for each state a ∈ A
a pair consisting of the output of state a and its successor state. Coalgebra homomorphisms are,
again, simulations, i. e., maps preserving (and therefore reflecting) transitions and output. In fact,
h is a coalgebra homomorphism from (A, 〈o, s〉) to (A′, 〈o′, s′〉) if and only if o′(h(a)) = o(a) and
s′(h(a)) = h(s(a)). A final coalgebra for H is carried by the set of streams (i. e., infinite sequences) Sω

with the head and tail function as structure

〈hd, tl〉 : Sω −→ S × Sω .
For a coalgebra (A,α) the mapping JαK : A −→ Sω assigns to a state of A the stream of outputs
produced by the computation that starts at this state.

(iii) Deterministic Automata. The application of the theory of coalgebras to automata theory has been
studied by Jan Rutten [R1]. Here we will just indicate how automata can be understood as coalgebras.
Deterministic automata with an input alphabet Σ are usually presented by a set of states Q, a next
state function δ : Q×Σ −→ Q and a subset F ⊆ Q of final states, equivalently, a function f : Q −→ 2
where 2 = { 0, 1 } with f(q) = 1 if and only if q ∈ F . We disregard initial states since they are
inessential when automata are treated as coalgebras. Currying δ, we get a function δ : Q −→ QΣ

defined by δ(q) = δ(q,−) : Σ −→ Q. Now an automaton is presented by one function

α = 〈δ, f〉 : Q −→ QΣ × 2 ,

thus, it is a coalgebra for the functor given by HX = XΣ × 2. The coalgebra homomorphisms are the
functional bisimulations: h is a coalgebra homomorphism from (Q, 〈δ, f〉) to (Q′, 〈δ′, f ′〉) if

(a) q is final in Q if and only if h(q) is final in Q′, i. e., f ′(h(q)) = f(q), and

(b) h preserves (and therefore reflects) state transitions, i. e.,

h(δ(q, s)) = δ′(h(q), s)

for all q ∈ Q and s ∈ Σ.

A final coalgebra is carried by the set
T = P(Σ∗)

of all formal languages over Σ with the following structure τ : 〈δ, f〉 : T −→ T Σ × 2:

f(L) = 1 if the empty word lies in L

δ(L) = (s 7−→ Ls = {w ∈ Σ∗ | sw ∈ L })
Now for an automaton considered as a coalgebra (A,α) the map JαK : A −→ T assigns to each state a
the language the automaton accepts when we choose a as the initial state of the automaton. This is
the reason why we said that initial states are inessential here. The map JαK summarizes the semantics
of the automaton regardless of what state is the initial one.
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(iv) Finitely branching nondeterministic automata (with unary input) are simply coalgebras for the finite
power set functor Pfin. Equivalently, these are finitely branching directed graphs. However, it may
be misleading to think about Pfin-coalgebras that way because coalgebra homomorphisms are stronger
than the usual graph homomorphisms. In fact, h is a coalgebra homomorphism from a graph G to a
graph H considered as Pfin-coalgebras if and only if h is a graph homomorphism that reflects edges:
if h(a) −→ b is an edge in H then there exists an edge a −→ a′ in G with h(a′) = b. Switching
back to the system theoretic view of Pfin-coalgebras the homomorphisms are precisely the functional
bisimulations, i. e., the maps that preserve and reflect transitions.

A terminal Pfin-coalgebra is the set of all (finite and infinite) strongly extensional finitely branching
trees where the coalgebra structure assigns to a tree the finite set of its maximum proper subtrees,
see [W2].

(v) Labelled transition systems (lts) are an important tool in the semantics of process algebra. An lts is
a triple (L,−→,Act) where Act is a set of (atomic) actions, L is a set of states and −→ is a family of

relations
a−→ on L indexed by elements a of Act. As usual, one writes

s
a−→ s′

if s and s′ are related by
a−→, and we think of this as a state transition from s to s′ “consuming” a.

Of course, every transition system can be summarized by a map

α : L −→ P(Act× L) ,

where (a, s′) ∈ α(s) if and only if s
a−→ s′, i. e., lts are precisely the coalgebras for the endofunctor

P(Act × −) of Set. Coalgebra homomorphism are functional (strong) bisimulations, i. e., those maps
that preserve and reflect transitions: a map h : L −→ L′ between state sets of two lts is a coalgebra
homomorphism if and only if

(a) s
a−→ t implies h(s)

a−→ h(t), and

(b) if h(s)
a−→ t′, then there exists a state t in L with s

a−→ t and h(t) = t′.

It is clear that there can be no final coalgebra as the functor P(Act×−) does not have fixed points. If
however, we were to put a bound on the branching breadth of lts this situation can be remedied. For
example, finitely branching transition systems are coalgebras for Pfin(Act×−), and this functor has a
final coalgebra in Set. It is carried by the set T of all finitely branching strongly extensional trees with
edges labelled in Act. The coalgebra structure T −→ Pfin(Act× T ) assigns to any tree

•

t1 . . . tn

a1

oooooo an
OOOOOO

�����
66666

�����
66666

the finite set of pairs (ai, ti), i = 1, . . . , n. The map JαK : L −→ T assigns to every state its behaviour
in the following way: first take the tree unfolding t of the state according to the transitions of L. Since
this may not be strongly extensional one identifies bisimilar children of any node in t so that a strongly
extensional tree is obtained. Notice that here the notion of bisimulation takes into account the labels
of edges. We leave the technical details to the reader.

(vi) Infinite Σ-trees. Let Σ be a signature of operation symbols with prescribed arity and form the poly-
nomial functor HΣ : Set −→ Set. The HΣ-coalgebras are automata with inputs from the set of natural
numbers and with output from Σ, where for each state the maximum possible input number is the
arity of the output of that state. More precisely, if α : A −→ HΣA is a coalgebra we can think of
A as the set of states and α assigns to every state a its reaction (σ, a1, . . . , an) where σ ∈ Σn, for
some natural number n is the output of a and a1, . . . , an are the successor states corresponding to
the transitions that will occur if at state a we input a number k = 1, . . . , n into the automaton. The
coalgebra homomorphisms are the usual automata simulations, and we leave it to the reader to work
this out. Recall that the initial Σ-algebra is formed by all finite Σ-trees, see Example 2.17(iv). If
we take instead all (finite and infinite) Σ-trees we get the final coalgebra TΣ whose structure map is
the inverse of tree-tupling which is sometimes called “parsing”. It assigns to a Σ-tree t whose root is
labelled by an n-ary operation symbol σ the (n + 1)-tuple (σ, t1, . . . , tn) where ti, i = 1, . . . n, are the
maximum proper subtrees of t.
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(vii) Final coalgebras for finitary set functors. Suppose that H is a finitary endofunctor of Set described as
a quotient ε : HΣ −→ H as in Example 2.17(vii).

In joint work with Jǐŕı Adámek [AM1] we have proved that the final H-coalgebra T is given by the
quotient TΣ/∼∗ where ∼∗ is the following congruence: for every Σ-tree t denote by ∂nt the finite tree
obtained by cutting t at level n and labelling all leaves at that level by some symbol ⊥ not from Σ.
Then we have s ∼∗ t for two Σ-trees s and t if and only if for all n < ω, ∂ns can be obtained from ∂nt
by finitely many applications of the basic equations describing ε, more shortly, s ∼∗ t if and only if
∂ns ∼ ∂nt for all natural numbers n, where ∼ is the congruence of Example 2.17(vii). For example, for
the endofunctor given by HX = { {x, y, } | x, y ∈ X }+ 1 of Example 2.17(vii) the terminal coalgebra
is the coalgebra of all unordered binary trees.

Now we will list some results from the general theory of coalgebras that we will later frequently use.
Dually to Theorem 2.19, we have

Theorem 2.30. The forgetful functor U : CoalgH −→ A creates all colimits and all limits that H preserves.

Remark 2.31. Of course, dualizing the concept of a free algebra yields the important concept of a cofree
coalgebra. While this plays a major rôle in the general theory of coalgebras we will not mention anything
about it here since it plays no rôle for what we are about to present.

Just as initial (or, more generally, free) algebras can be constructed inductively as a colimit of a chain,
a final H-coalgebra can be constructed dually as a limit of an (op-)chain. Again, let us first consider an
endofunctor H of Set. Dual to the initial algebra chain (i. e., the free algebra chain for the case X = 0,
see 2.22(i)) we define by transfinite induction the following chain indexed by all ordinal numbers:

Initial step: T0 = 1, t1,0 ≡ H1
! //1 ,

Isolated step: Ti+1 = HTi, ti+1,j+1 ≡ HTi
Hti,j

//HTj

Limit step: Tj = lim
i<j

Ti with limit cone tj,i : Tj −→ Ti, i < j,

the connecting map tj+1,j is uniquely determined by the commutativity of the squares

Ti+1 = HTi

ti+1,i

��

HTj = Tj+1
Htj,i

oo

tj+1,j

��

Ti Tj
tj,i

oo

i < j .

This chain is said to converge if ti+1,i is an isomorphism for some ordinal number i.

Theorem 2.32. ([AK3])
Let H be an endofunctor of Set. Then the above chain Ti converges if and only if H has a final coalgebra.
Moreover, if i is an ordinal number such that ti+1,i is an isomorphism, then (Ti, t

−1
i+1,i) is a final coalgebra.

This result does not indicate after how many steps a final coalgebra (if it exists) can be obtained.
However, dualizing Theorem 2.25 we see that for a λ-continuous functor, i. e., a functor that preserves limits
of λop-chains, a final coalgebra is obtained in λ steps.

Corollary 2.33. For a λ-continuous functor H, the above final coalgebra chain Ti converges after λ steps
and (Tλ, t

−1
λ+1,λ) is a final H-coalgebra.

Again, this last result holds in every category A having limits of αop-chains, α ≤ λ, and for every
λ-continuous functor on A.

Unfortunately, this result is not as satisfactory as Theorem 2.25 before since many everyday functors
are continuous only for large enough λ, for example, the finite power set functor is not ω-continuous but
only ω1-continuous where ω1 is the first uncountable cardinal. However, for finitary set functors James
Worrell [W1, W2] has proved that the final coalgebra construction converges after ω · 2 steps.

Theorem 2.34. If H is a finitary endofunctor of Set, then the above final coalgebra chain converges after
ω · 2 steps, i. e., (Tω2, t

−1
ω2+1,ω2) is a final H-coalgebra.

In fact, this result was proved for all accessible (equivalently, bounded) set functors. More precisely, if
H is a λ-accessible set functor, see Remark 2.13, then the final coalgebra chain converges after λ · 2 steps.
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Example 2.35. To illustrate the result of Theorem 2.34 let us consider again the finite power set functor
Pfin of Set. The sets Ti, i < ω, consist of all finite strongly extensional trees of depth i. One can show that
the limit Tω can be described as the set of all countable unordered trees modulo the following equivalence ≈:
we have s ≈ t if for all natural numbers n the strongly extensional quotients of the trees obtained by cutting
s and t, respectively, at level n agree. Then for every i < ω, Tω+i ↪−→ Tω is the subset given by equivalence
classes of ≈ given by all those unordered trees which are finitely branching up to level i, i. e., every node that
can be reached from the root by a path with less than i steps has only finitely many children. Thus, in the
second limit step we get the intersection of all Tω+i, i < ω, whence Tω+ω is the set of all equivalence classes
of ≈ given by finitely branching trees. One readily proves that the finitely branching strongly extensional
trees form a set of representatives of the equivalence classes of Tω+ω as desired.

2.4 Monads

In this subsection we recall basic facts about monads, a categorical notion which is central to our work.
Formally, monads are endofunctors M : A −→ A with extra structure. One may think of this structure
as an abstract way of expressing that MX consists of syntactic objects of some kind, e. g., terms over a
signature with variables from a set X . In fact, the axioms of monads capture the essence of substitution of
other syntactic objects for variables. Monads are also a tool that allows to capture algebras with operations
that satisfy equations, e. g., monoids, groups, etc. The action of the monad on objects can then be thought
of as assigning a free algebra to an object of generators. Actually, monads on Set are equivalent to algebraic
theories in the sense of Lawvere [La] and Linton [Li1].

Definition 2.36. A monad is a triple
M = (M, η, µ)

consisting of a functor M : A −→ A and two natural transformations η : Id −→ M , called the unit, and
µ : MM −→M , called the multiplication, such that the following diagrams

M
ηM

//

EEEEEEEE

EEEEEEEE MM

µ

��

M
Mη

oo

yyyyyyyy

yyyyyyyy

M

MMM

Mµ

��

µM
// MM

µ

��

MM µ
// M

commute. The corresponding equations are often called left and right unit laws, and associativity.
A finitary monad is a monad M whose underlying functor is finitary.

Remark 2.37. An equivalent presentation of a monad is as a Kleisli-triple

(M, η, (−̂)) ,

where M is an object assignment of A, η a family of morphisms ηX : X −→ MX indexed by objects of A

and (−̂) is a function assigning to any f : X −→MY a morphism f̂ : MX −→MY subject to three axioms:
for any f : X −→MY and g : Y −→MZ we have

(i) f̂ · ηX = f (extension)

(ii) η̂X = id (unit)

(iii)
̂̂
f · g = f̂ · ĝ (composition)

It is an easy exercise to check that Kleisli-triples and monads are equivalent presentations, see [Ma], Sec. 3,

Ex. 12. In fact, any Kleisli-triple gives a monad: let µX = îdMX and check naturality of η and µ and the
three monad laws. Conversely, every monad yields a Kleisli-triple: let f̂ = µY ·Mf and check the above
three laws.

Examples 2.38.

(i) The identity functor on every category is a monad with η = µ = id .

(ii) On Set the list monad (( )∗, η, µ) is given as follows: to a set X assign the set of lists X∗ of elements
of X , the unit is given by ηX : x 7−→ 〈x〉, and multiplication is flattening: to a list 〈l1, . . . , ln〉 of lists
over X , µX assigns the list obtained by concatenating the constituent lists li, i = 1, . . . , n.
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(iii) For every varietor H , the assignment X 7−→ FX of a free algebra on an object of generators gives a
monad (F, η, µ) with the unit given by the universal arrows ηX : X −→ FX and the components of the
multiplications obtained as the unique homomorphic extensions µX : FFX −→ FX of the identity of
FX .

(iv) The power set functor P : Set −→ Set carries a the structure of a monad: for a set X the unit is
ηX : x −→ {x } and the multiplication µX : PPX −→ PX assigns to a subset of PX the union of its
elements.

(v) Let X be a poset considered as a category. Then a monad is precisely the same as a closure operator.
In fact, M : X −→ X is a monotone map with x ≤ Mx (due to the unit), M ·M = M (due to the
multiplication and the unit laws).

(vi) Let Σ be a finitary signature and let E be a finite set of equations. This defines a finitary variety V of
Σ-algebras. The assignment X 7−→MX of a free algebra in V to the set X of generators is a monad.
The unit is given by the universal arrows ηX : X −→ MX . The multiplication µX is, again, given by
the unique homomorphic extension of idMX .

Definition 2.39. A monad morphism between monads (M, η, µ) and (M ′, η′, µ′) is a natural transformation
m : M −→ N such that the following diagrams

Id
η

//

η′ !!CCCCCCCC M

m

��

M ′

MM
m∗m //

µ

��

M ′M ′

µ′

��

M m
// M ′

commute. Notice that we denote here by ∗ the parallel composition of natural transformations, i. e., m∗m =
Mm ·mM = mM ′ ·M ′m.

Notation 2.40. Just as (finitary) endofunctors on a category A form the categories Fin[A,A] and [A,A],
respectively, (finitary) monads and monad morphisms form categories

M(A) and FM(A) ,

respectively.

Remark 2.41. There is, of course, a canonical notion of morphisms of Kleisli-triples. A morphism between
Kleisli-triples from (M, η, (−̂)) to (M ′, η′, (−)) is a family of morphisms mX : MX −→ M ′X indexed by
objects such that for all objects X and Y and morphisms f : X −→MY the diagrams

Id
η

//

η′ !!CCCCCCCC M

m

��

M ′

MX
�

f

��

mX // M ′X

mY ·f
��

MY mY
// M ′Y

commute. It is easy to prove that the category of Kleisli-triples on A is isomorphic to M(A).

2.4.1 Free Monads and Second-Order Substitution

We have seen in Example 2.38(iii) that for a varietor H the assignment of a free algebra to an object gives a
monad (F, η, µ). Michael Barr [B1] proved that this is actually a free monad on H with the universal arrow
given by the natural transformation

κ ≡ H
Hη

//HF
ϕ

//F (2.19)

where ϕ expresses the structures of the free algebras. Conversely, a functor which has a free monad is a
varietor whenever the base category is “good”, see [Ma, B2] and the following theorem.

Theorem 2.42.

(i) Let H : A −→ A be a varietor. The free algebra monad (F, η, µ) is a free monad on H, i. e., for
each monad (F ′, η′, µ′) and for each natural transformation λ : H −→ F ′ there exists a unique monad
morphism λ : F −→ F ′ such that λ · κ = λ.
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(ii) Conversely, let H : A −→ A be a functor on a complete and well-powered category A. If there exists a
free monad on H, then H is a varietor, and for every object X, FX carries a free H-algebra on X.

Remark 2.43. The first part of this result means that the forgetful functor U : M(A) −→ [A,A] has a
universal arrow at every varietor. However, U may fail to have a left-adjoint. If we restrict the codomain to
finitary functors, then we get an adjoint situation

FM(A) //⊥ Fin[A,A]
oo

since for each finitary functor H a free monad on H is finitary.

Example 2.44. (Second-order substitution of finite Σ-trees)
As polynomial functors HΣ are varietors, the assignment of a free Σ-algebra FΣX (of all finite Σ-trees over
X) to a set X yields a monad FΣ. By Theorem 2.42, FΣ is a free monad on HΣ.

It is well-known that the freeness of the algebras FΣX boils down to substitution of Σ-trees for variables.
It seems to be less well-known that the universal property of the monad FΣ specializes to second-order
substitution, i. e., substitution of trees for operation symbols, see [C]. Before we make this precise we need
to recall an important property of signatures and polynomial functors.

Let Σ be a signature, i. e., Σ : N −→ Set is a functor where N is regarded as a discrete category. Let
J : N −→ Set be the functor which maps a natural number n to the set { 0, . . . , n−1 }. Recall that the functor
( ) · J : [Set, Set] −→ [N, Set] of restriction to N has a left-adjoint LanJ( ), i. e. the functor assigning to a
signature its left Kan extension along J . SinceN is a discrete category, the usual coend formula for computing
left Kan extensions, see e. g. [ML], Theorem X.4.1, specializes to the coproduct in (2.16) in Example 2.17(v).
That is, LanJ (Σ) is the polynomial functor HΣ. By virtue of the adjunction LanJ ( ) a ( ) · J there is for
every signature Σ and every endofunctor G of Set a bijection between natural transformations Σ −→ G · J
and natural transformation HΣ −→ G, and this bijection is natural in Σ and G.

Now let Γ be another signature. Consider each σ ∈ Σn as a flat tree in n distinct variables. A second-order
substitution gives an “implementation” to each such σ as a finite Γ-tree in the same n variables. We model
this by a natural transformation ` : Σ −→ FΓ · J , i. e., a family or maps `n : Σn −→ FΓ{ 0, . . . n− 1 }, n ∈ N.
As we have seen above, this gives rise to a natural transformation λ : HΣ −→ FΓ. Thus, from Theorem 2.42
we get a monad morphism λ : FΣ −→ FΓ. For every set X of variables its action is that of second-order
substitution, i. e., λX replaces every Σ-symbol in a tree t from FΣX by its implementation according to `.
More precisely, let t = σ(t1, . . . , tn) with σ ∈ Σn and let t′(x1, . . . xn) ∈ FΓX be the implementation of σ,
i. e., `n(σ) = t′(0, . . . , n− 1). Then we have

λX(t) = t′(λX(t1), . . . , λX(tn)).

For example, suppose that Σ consists of two binary symbols + and ∗ and a constant 1, and Γ consists of a
binary symbol b, a unary one u and a constant c. Furthermore, let λ be given by ` : Σ −→ FΓ · J as follows:

`0 : 1 7−→
u

c

`2 :

+'&%$ !"#0 '&%$ !"#1
����

////
7−→

b'&%$ !"#0 u'&%$ !"#1

����
////

∗'&%$ !"#0 '&%$ !"#1
����

////
7−→

b

u '&%$ !"#1'&%$ !"#0

����
////

and else `n is the unique map from the empty set. For the set Z = { z, z′ }, the second-order substitution
morphism λZ acts for example as follows:

∗

+ 1

z z′

����
////

����
//// 7−→

b

u u

b c

z u

z′

����
////

����
////
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2.4.2 Algebras for a Monad

It is well-known that for any adjoint situation

B
U

//⊥ A
Foo

, (2.20)

with unit η : Id −→ UF and counit ε : FU −→ Id we obtain a monad

(UF, η, UεF )

on A. Conversely, given a monad M = (M, η, µ) on A there are two ways to get an adjoint situation which
induces the monad M. The first one is via the Kleisli category AM. Objects of AM are those of A and for
morphisms we have AM(X,Y ) = A(X,MY ) with identities ηX : X −→ MX and composition defined as
follows: for f : X−→◦ Y and g : Y −→◦ Z in AM, i. e., we have f : X −→MY and g : Y −→MZ in A, we let

g ◦ f ≡ X
f

//MY
Mg

//MMZ
µZ //MZ .

There is a functor UM : AM −→ A given by

UM(f : X −→◦ Y ) = MX
Mf

//MMY
µY

//MY

with a left adjoint FM : A −→ AM which is identity on objects and is defined on morphisms by

FM(f : X −→ Y ) = X
f

//Y
ηY //MY .

It is an easy task to check that there is indeed an adjoint situation

AM
UM

//⊥ A
FMoo

(2.21)

and that the monad induced by this adjunction is M.
Moreover, the adjunction (2.21) is the smallest one giving M in the following sense: for any adjunc-

tion (2.20) defining M there exists a unique functor K : AM −→ B with U ·K = UM and F = K · FM:

AM
K //

UM

  

B

U

��

A

FM

``

F

??

In fact, K is defined by

KX = FX and K(f : X −→◦ Y ) = f̂ : FX −→ FY ,

where f̂ is the uniquely determined morphism with Uf̂ · ηX = f : X −→ UFY .
The second way to obtain an adjoint situation describing a given monad is via its Eilenberg-Moore

category.

Definition 2.45. Let M = (M, η, µ) be a monad on A. An Eilenberg-Moore algebra for M is a pair (A, a)
consisting of a carrier A and a structure a : MA −→ A subject to the axioms

A
ηA //

DDDDDDDD

DDDDDDDD MA

a

��

A

MMA
µA //

Ma

��

MA

a

��

MA a
// A

which are often called unit law and associativity, respectively.
A homomorphism of Eilenberg-Moore algebras is a homomorphism of the underlying algebras for the

functor M .
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Remark 2.46. Eilenberg-Moore algebras and their homomorphisms form a category AM and we have an
obvious forgetful functor

UM : AM −→ A ,

which always has a left-adjoint FM : A −→ AM defined by

FX = (MX,µX) and F (f : X −→ Y ) = Mf .

Again, the adjunction

AM

UM
//⊥ A

FMoo
(2.22)

induces the monad M.

The categories AM of algebras for a monad have “algebraic flavour” as witnessed for example by the
following result.

Theorem 2.47. The forgetful functor UM creates all limits and all colimits that are preserved by M .

In particular, if A is an lfp category and M is finitary then UM creates filtered colimits. Moreover, we
have the following result, see [AR], 2.78.

Theorem 2.48. Let M be a finitary monad on an lfp category. Then AM is lfp.

Now suppose we have an adjoint situation (2.20) with its induced monad M. Then the adjunction (2.22)
is the largest one inducing M in the following sense: for any adjunction (2.20) inducing M there exists a
unique functor L : B −→ AM satisfying UM · L = U and FM = L · F :

B
L //

U

��

AM

UM

~~

A

F

__

FM

>>

In fact, L is defined by

LB = (UB,UεB : MUB = UFUB −→ UB) and Lf = Uf .

One may think of L as measuring the degree of “algebraicness” of B over A. In fact, if L is an isomorphism
one can regard the category B as a category of algebras.

Definition 2.49. A functor U : B −→ A is called monadic provided that

(i) U has a left adjoint F : A −→ B

(ii) the comparison functor L : B −→ AM, where M is the monad induced by the adjunction F a U , is an
isomorphism of categories.

Monadic functors U : B −→ A can be characterized with respect to the creation of certain coequalizers
by U . Recall that a split coequalizer of a parallel pair f, g : A −→ B is a morphism c : B −→ C so that we
have two more morphisms s and t as in the diagram

A
f

//

g
// B

t

aa

c // C

s

aa

so that c · f = c · g, c · s = id , s · c = f · t and g · t = id . In fact, it is easy to check that c is then a coequalizer
of f and g. Recall further, that a colimit is called absolute provided that it is preserved by every functor.
The proof of the following Theorem can be found in [ML].

Theorem 2.50. (Beck’s Theorem)
Let F a U : B −→ A be an adjunction with an induced monad M. Then the following are equivalent:
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(i) U is monadic

(ii) U creates coequalizers which are U -absolute, i. e., coequalizers of those parallel pairs f, g in B for which
Uf, Ug has an absolute coequalizer in A.

(iii) U creates coequalizers of U -split pairs, i. e., pairs of parallel morphisms f, g in B for which the pair
Uf, Ug has a split coequalizer in A

We conclude this subsection with a number of examples.

Examples 2.51.

(i) Recall that a monoid is an algebra with a binary associative operation and a unit of this operation. The
category of monoids and their homomorphisms is monadic over Set (i. e., the corresponding forgetful
functor is monadic). In fact, this category is isomorphic to SetM where M = (( )∗, η, µ) is the list
monad of Example 2.38(ii). For every set X , the set X∗ together with the operation of concatenation
and the empty list is a free monoid on X .

(ii) More generally, every finitary variety is monadic over Set. In fact, recall that a finitary variety V is a
category of algebras for a signature of operations and finitely many equations between these operations.
It is not difficult to show that V is the category of Eilenberg-Moore algebras for the monad given by
assigning to each set X (of generators) a free algebra in V on X .

(iii) For every varietor H : A −→ A, the category AlgH is monadic over A. In fact, AlgH is isomorphic
to the category AF of Eilenberg-Moore algebras for the free monad F = (F, η, µ) on H . While this is
trivial to prove with the help of Theorem 2.50, a direct proof is quite instructive: the isomorphism
L : AlgH −→ AF assigns to each algebra (A, a) the algebra (A, â) where â : FA −→ A is the unique
homomorphic extension of id : A −→ A. The inverse L−1 takes an algebra (A,α) to

HA
κA //FA

α //A ,

where κ : H −→ F is the canonical transformation of (2.19). We leave the details to the reader. Notice
that the Eilenberg-Moore algebra structure â : FA −→ A induced by an algebra (A, a) is a generalized
version of the computation of finite trees in a Σ-algebra A, see Example 2.23(i).

(iv) The algebras for the power set monad P on Set are the complete lattices; more precisely, partially
ordered sets with all joins, together with the continuous maps, i. e., function preserving all joins.

(v) Finitary monads are algebras. In fact, suppose that A is an lfp category. Then the forgetful functor

U : FM(A) −→ Fin[A,A]

is monadic with its left adjoint assigning to any finitary endofunctor H of A a free monad on H .
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3 Iterative and Completely Iterative Algebras

Is this a dagger which I see before me?

William Shakespeare, Macbeth, Act 2, Scence 1.

It was the idea of Calvin Elgot [E] to study algebraically the semantics of recursive computations without
using the common approach which is based on working with ordered or metrized structures. He introduced
iterative theories, and he and his coauthors proved that the free iterative theory over a signature Σ exists [BE]
and that it is the theory formed by rational trees, see [EBT]. Recall that a Σ-tree is called rational if it has
up to isomorphism finitely many subtrees only, see [Gi2].

Later it has been realized that a much easier approach to iterative theories is via iterative algebras. For a
signature Σ they were studied by Evelyn Nelson [N]. Her work showed that the free iterative algebras are the
algebras of rational trees over a set X , and that this yields a short proof of Elgot’s free iterative theories. The
first attempts to capture rational trees categorically were [GLM1] and [AMV1]. In the categorical approach
one replaces signatures by a finitary endofunctor of Set (or more general base categories). In [AMV1] we
gave a categorical construction of the rational monad generated by such an endofunctor H , and we proved
that it is characterized as the free iterative monad on H . The authors of [GLM1] have generalized our
construction but did not prove the universal property of the rational monad in their setting. Both papers
do not work with iterative algebras. Moreover, our paper [AMV1] is rather long and technical, and besides
we had to put several side conditions on the category and endofunctor we worked with. In Subsection 3.2
below we will introduce and study iterative algebras for every finitary functor H of an lfp category A. We
will show that free iterative algebras exist and we give a coalgebraic construction of them. In this way we
get a generalization of Nelson’s results and later in Section 6 we show that free iterative algebras yield free
iterative monads. Thus we obtain a new proof of Elgot’s classical result in the special case of a polynomial
functor HΣ of Set. At the same time we have generalized the result and, moreover, our proof is conceptually
much simpler then any of the previous ones.

But before that we introduce and study completely iterative algebras in Subsection 3.1, which allow to
give an easy approach to completely iterative theories of Elgot et al. In [EBT] the authors proved that
the theory of all Σ-trees forms a free completely iterative theory on a signature Σ. We will generalize this
classical result in our work. It turns out that complete iterativity of infinite trees is due to the fact that
they form a final coalgebra. The result that final coalgebras form a monad that is completely iterative
was discovered independently and almost at the same time in work by Lawrence Moss [Mo1] and by Peter
Aczel, Jǐŕı Adámek, Jǐŕı Velebil [AAV]. That final coalgebras form a monad was also proved for (generalized)
polynomial endofunctors of an lfp category by Neil Ghani, Christoph Lüth, Federico De Marchi and John
Power [GLMP1, GLMP2], see also [DM]. In our paper [AAMV] we proved that final coalgebras yield a monad
in general, and that this monad is characterized as the free completely iterative monad. More precisely, one
works with a category A with binary coproducts and a functor H having “enough final coalgebras”, i. e., for
every object Y of A there exists a final coalgebra TY of H( ) +Y . Then T forms a free completely iterative
monad on H . In [M1] we have added completely iterative algebras to the picture. We proved that for an
object mapping T of A the following three statements are equivalent:

(a) for every object Y , TY is a final coalgebra for H( ) + Y ,

(b) for every object Y , TY is a free completely iterative H-algebra on Y , and

(c) T is a free completely iterative monad on H .

We shall establish the equivalence of (a) and (b) in Subsection 3.1 below. This is the first part of our
paper [M1]. Its second part deals with completely iterative monads, which will be studied in Section 6 where
we add (c) to the above list of equivalent statements.

3.1 Completely Iterative Algebras

Before we introduce completely iterative algebras in general we would like to illustrate the leading example
of completely iterative algebras for a given signature Σ, i. e., for a polynomial functor HΣ of Set, a bit more.

A Σ-algebra A is called completely iterative, if every system

xi ≈ ti, i ∈ I, (3.23)

where I is some (possibly infinite) set, X = {xi | i ∈ I } is a set of variables and the ti are terms over
X + A, none of which is just a single variable, has a unique solution in A. By a solution we mean a set
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{xi† | i ∈ I } of elements of A such that the above formal equations (3.23) become actual identities in A
when the variables are substituted by the solutions and the terms ti are interpreted in A, i. e.,

xi
† ≡ α

(
ti[xj := xj

†]j∈J
)
, i ∈ I ,

where α : FΣA −→ A is the canonical computation of finite Σ-trees in A, see Example 2.23(i).
For example, suppose we have a signature Σ. The algebra A = TΣ of all finite and infinite Σ-trees is

completely iterative. For example, let Σ consist of a binary operation symbol ∗ and a constant symbol c.
Then the following system

x1 ≈ x2 ∗ t x2 ≈ (x1 ∗ s) ∗ c (3.24)

where s and t are some trees in TΣ has the following solution

x1
† =

∗
∗

∗
∗

∗
∗

∗

t
c

s

t
c

s

t

��

��

��

��

��

��

???
???

???
???

???
???

???

������

%%%%%%
������

%%%%%%������

%%%%%%
������

%%%%%%������

%%%%%%

and x2
† =

∗
∗

∗
∗

∗
∗

∗

c

s

t
c

s

t
c

��

��

��

��

��

��

???
???

???
???

???
???

???

������

%%%%%%������

%%%%%%
������

%%%%%%������

%%%%%%

(3.25)

Observe that it is sufficient to allow for the right-hand sides in (3.24) only so-called flat terms, i. e., terms
t that are either

t = σ(x1, . . . , xn), σ ∈ Σn, x1, . . . , xn ∈ X,
or

t ∈ A.
In fact, for every system (3.23) one can give a system with only flat terms as right-hand sides, which has the
same solution. This is done by introducing (possibly infinitely many) new variables. For example for the
system (3.24) we get the following flat one:

x1 ≈ x2 ∗ z1 z2 ≈ x1 ∗ z4

x2 ≈ z2 ∗ z3 z3 ≈ c
z1 ≈ t z4 ≈ s

(3.26)

Obviously, the solutions x1
† and x2

† are the same trees as before.
Clearly, one can write every system with flat right-hand sides as a single map

e : X −→ HΣX +A ,

and a solution is a map e† : X −→ A such that the following square

X
e† //

e

��

A

HΣX +A
HΣe

†+A
// HΣA+A

[a,A]

OO

where a denotes the algebra structure of A, commutes. The following are the minimal requirements to
formulate these notions.

Assumption 3.1. For the rest of this text we assume that A is a category with binary coproducts and
that H : A −→ A is an endofunctor of A. We shall always denote injections of a coproduct A + B by
inl : A −→ A + B and inr : B −→ A + B, and we denote by can : HA + HB −→ H(A + B) the canonical
morphism [H inl, H inr].
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Definition 3.2. A morphism e : X −→ HX + A of A is called a flat equation morphism in (the object of
parameters) A. Suppose that A is the underlying object of an H-algebra a : HA −→ A. Then a solution of
e in A is a morphism e† : X −→ A such that the following diagram

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[a,A]

OO

(3.27)

commutes.
An H-algebra is called completely iterative (or shortly, cia) if every flat equation morphism in it has a

unique solution.

Notation 3.3. For every flat equation morphism e : X −→ HX + Y and every morphism h : Y −→ Z we
get a flat equation morphism h • e as the “renaming of parameters by h”:

h • e ≡ X
e //HX + Y

HX+h
//HX + Z .

Proposition 3.4. ([M1], Proposition 2.3)
Let (A, a) and (B, b) be completely iterative H-algebras, and let h : A −→ B be a morphism. Then the
following are equivalent:

(i) h : (A, a) −→ (B, b) is an H-algebra homomorphism,

(ii) h is solution-preserving, i. e., for all e : X −→ HX +A we have

(h • e)† = h · e† .

Notation 3.5. We denote by
CIAH

the category of all completely iterative algebras and H-algebra homomorphisms. This choice of morphisms
is explained by Proposition 3.4, and CIAH is a full subcategory of AlgH , the category of all H-algebras and
homomorphisms.

Examples 3.6.

(i) Classical algebras are seldom cias. For example, let HΣ : Set −→ Set be the functor expressing one
binary operation, HΣX = X ×X . Then a group is a cia if and only if its unique element is the unit 1,
since the recursive equation x ≈ x · 1 has a unique solution. A lattice is a cia if and only if it has a
unique element; consider the unique solution of x ≈ x ∨ x.

(ii) In [AMV2] it was proved that the algebra of addition on the augmented positive natural numbers

{ 1, 2, 3, . . .} ∪ {∞}

is a cia w. r. t. the functor HΣ of (i).

(iii) Final coalgebras are completely iterative algebras. More precisely, denote by (T, α) a final coalgebra
for H . Recall that by Lambek’s Lemma 2.28, the structure map α is an isomorphism, whose inverse
we denote by τ : HT −→ T . Then this H-algebra (T, τ) is completely iterative. In fact, consider a flat
equation morphism

e : X −→ HX + T ,

and form the H-coalgebra

e ≡ X + T
[e,inr]

//HX + T
HX+α

//HX +HT
can //H(X + T ) .

Then the left-hand component of the unique coalgebra homomorphism JeK : X+T −→ T is the desired
unique solution e† of e.
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(iv) Infinite trees form completely iterative algebras. Let Σ be a signature. Recall from Example 2.29(vi)
that the algebras Σ-algebra TΣ of all (finite and infinite) Σ-trees is a final HΣ-coalgebra. Thus, TΣ is
a cia.

(v) The final coalgebra for Pfin : Set −→ Set is the coalgebra T of all strongly extensional finitely branching
trees, see Example 2.29(iv). It follows from (iii) that T is a cia.

(vi) Complete metric spaces have been used as a basis for semantics by several authors, see [AN, ARu,
ARe, TR]. Algebras over complete metric spaces are cias. Take A = CMS, the category whose objects
are complete metric spaces (i. e., such that each Cauchy sequence has a limit), where distances are
measured in the interval [0, 1]. The morphisms of CMS are the non-expanding maps, i. e., functions f
from a space (X, dX) to a space (Y, dY ) such that dY (f(x), f(y)) ≤ dX(x, y) for all x, y ∈ X . A stronger
condition is that f be an ε-contraction, i. e., for some ε < 1 we have dY (f(x), f(y)) ≤ ε · dX (x, y) for
all x, y ∈ X . Recall that for given complete metric spaces (X, dX) and (Y, dY ) the hom-set in CMS is
a complete metric space with the metric given by

dX,Y (f, g) = sup
x∈X

dY (f(x), g(x)) .

Now suppose we have a functor H : CMS −→ CMS which is contracting, i. e., there exists a constant
ε < 1 such that for any non-expanding maps f, g : (X, dX) −→ (Y, dY ) between complete metric spaces
we have

dHX,HY (Hf,Hg) ≤ ε · dX,Y (f, g) .

Then every non-empty H-algebra (A, a) is completely iterative. In fact, given any flat equation mor-
phism e : X −→ HX +A in CMS, choose some element a ∈ A and define a Cauchy sequence (e†n)n∈N
in CMS(X,A) inductively as follows: let e†0 = consta, and given e†n define e†n+1 by the commutativity
of the following diagram (compare (3.27))

X

e

��

e†n+1
// A

HX +A
He†n+A

// HA+A

[a,A]

OO

(3.28)

In [AMV3], Lemma 2.9, it is proved that this is indeed a Cauchy sequence in CMS(X,A) and that its
limit yields a unique solution of e.

(vii) Completely metrizable algebras. Many set functors H have a lifting to contracting endofunctors H ′ of
CMS. That is, for the forgetful functor U : CMS −→ Set the following square

CMS
H′ //

U

��

CMS

U

��

Set
H

// Set

commutes. For example, for the functor HX = Xn we have the lifting H ′(X, d) = (Xn, 1
2 · dmax),

where dmax is the maximum metric, which is a contracting functor with ε = 1
2 . Since coproducts

of 1
2 -contracting liftings are 1

2 -contracting liftings of coproducts, we conclude that every polynomial
endofunctor has a contracting lifting to CMS.

Let α : HA −→ A be an H-algebra such that there exists a complete metric, d, on A such that α
is a non-expanding map from H ′(A, d) to (A, d). Then A is a completely iterative H-algebra. In
fact, to every equation morphism e : X −→ HX + A assign the unique solution of e : (X, d0) −→
H ′(X, d0) + (A, d), where d0 is the discrete metric (d0(x, x′) = 1 if and only if x 6= x′).

For example, let A be the interval [ 3
2 , 2] and let α be the unary operation α(x) = 1 + 1

x . Then (A,α)
is an algebra for the functor H = Id on Set, and this algebra is completely metrizable. In fact, α is
a 1

2 -contraction of [ 3
2 , 2], thus, (A,α) is an algebra for the lifting H ′(X, d) = (X, 1

2 · d) of H . Now
consider the formal equation x ≈ α(x) that gives a flat equation morphism e : 1 −→ H1 + A. Its
unique solution e† : 1 −→ A chooses the golden ratio ϕ.
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(viii) Non-empty compact subsets form cias. Let (X, d) be a complete metric space. Consider the set
C(X) of all non-empty compact subspaces of X together with the so-called Hausdorff metric h; for
two compact subsets A and B of X the distance h(A,B) is the smallest number r such that B can
be covered by open balls of radius r around each point of A, and vice versa, A can be covered by
such open balls around each point of B. In symbols, h(A,B) = max{ d(A → B), d(B → A) }, where
d(A → B) = maxa∈A minb∈B d(a, b). It is well-known that (C(X), h) forms a complete metric space,
see e.g. [Ba]. Furthermore, if fi : X −→ X , i = 1, . . . , n, are contractions of the space X with
contraction factors ci, i = 1, . . . , n, then it is easy to show that the map

αX : C(X)n −→ C(X) (Ai)i=1,...,n 7−→
n⋃

i=1

fi[Ai]

is a contraction with contraction factor c = maxi ci (the product C(X)n is, of course, equipped with
the maximum metric). In other words, given the fi, we obtain on C(X) the structure αX of an H-
algebra for the contracting endofunctor H(X, d) = (Xn, c · dmax). Thus, whenever X is non-empty,
then (C(X), αX) is a cia.

(ix) The Cantor “middle-third” set c is the unique non-empty compact subset of the interval [0, 1] which
satisfies c = 1

3 c ∪ ( 2
3 + 1

3c). So let (X, d) be the Euclidean interval I = [0, 1] and consider the 1
3 -

contracting functions f(x) = 1
3x and g(x) = 1

3x+ 2
3 on I . Then αI : C(I)2 −→ C(I) with αI(A,B) =

f [A] ∪ g[B] gives the structure of a cia on C(I) for the functor H(X, d) = (X2, 1
3 · dmax), which is a

lifting of the polynomial endofunctor HΣX = X ×X of Set expressing one binary operation symbol α.
Now consider the formal equation

x ≈ α(x, x)

which gives rise to a flat equation morphism e : 1 −→ H1 +C(I), where 1 denotes the trivial one point
space. Its unique solution e† : 1 −→ C(I) is easily seen to choose the Cantor space.

(x) Continuing with our last point, for each non-empty compact t ∈ C(I), there is a unique s = s(t)
with s = α(s, t). The argument is just as above. But the work we have done does not show that
the map t 7−→ s(t) is continuous. For this, we would have to study a recursive program scheme
ϕ(x) ≈ α(ϕ(x), x) and solve this in (C(I), αI ) in the appropriate sense. Our work in Section 7 does
exactly this, and it follows that the solution to ϕ(x) ≈ α(ϕ(x), x) in the given algebra is the continuous
function t 7−→ s(t).

(xi) (Unary algebras over Set)
Here we have A = Set and H = Id . A unary algebra (A,αA) is completely iterative if and only if

(a) there exists a unique fixed point a0 ∈ A of all αkA : A −→ A, k ≥ 1,

(b) for every sequence (bi)i<ω in A with bi = αA(bi+1) we have bi = a0 for every i < ω (i. e., if a is
an element of A in which an infinite alpha-chain of elements of A ends, then a = a0).

To see that (a) and (b) are necessary, solve the equation x ≈ α(x) to obtain the fixed point a0.
Furthermore, the system

xi ≈ α(xi+1), i < ω,

has as solutions every sequence as in (b); in particular, the constant sequence at a0 is a solution, and
this must be the unique one.

For the sufficiency, suppose that (A,αA) satisfies (a) and (b). Given any equation morphism e : X −→
HΣX +A there is a unique solution e† : X −→ A: If x ∈ X is such that there exist equations

x = x0 ≈ α(x1)

x1 ≈ α(x2)

...

xk−1 ≈ α(xk)

xk ≈ a

31



where a ∈ A, then e†(xk) = a and therefore e†(x) = αk(a). Otherwise we have equations

x = x0 ≈ α(x1)

x1 ≈ α(x2)

x2 ≈ α(x3)

...

and (a) and (b) ensure that the unique solution is given by e†(xi) = a0, for all i.

We have seen above that final coalgebras yield cias. In fact, they are precisely the initial ones.

Theorem 3.7. ([M1], Theorem 2.8)
Let H : A −→ A be any endofunctor.

(i) If (T, α) is a final H-coalgebra, then (T, τ) with τ = α−1 is an initial completely iterative H-algebra.

(ii) Conversely, if (T, τ) is an initial completely iterative H-algebra, then τ is an isomorphism and (T, α)
with α = τ−1 is a final H-coalgebra.

Sketch of Proof. Before we prove the two statements we shall establish one useful fact about the relation
between H-coalgebras and cias. Suppose that (C, c) is any H-coalgebra and (A, a) is a cia. We can form an
equation morphism

e ≡ C
c //HC

inl //HC +A .

Then there is a one-to-one correspondence between solutions of e and morphisms h : C −→ A such that
h = a ·Hh · c (the so-called coalgebra to algebra homomorphisms). Indeed, this follows easily by inspection
of the following diagram:

C
h //

c
%%JJJJJJJJJJ

e

��

A

HC
inl

yyttttttttt
Hh // HA

a

99tttttttttt

inl

$$JJJJJJJJJ

HC +A
Hh+A

// HA+A

[a,A]

OO

Since there exists a unique solution e† for e, there exists a unique coalgebra to algebra homomorphism h. It
is now quite easy to prove the theorem.

(i)⇒ (ii): We have seen in Example 3.6(iii) that (T, τ) is completely iterative. It remains to prove the initial-
ity. Given any cia (A, a) we have by the above considerations a unique coalgebra to algebra homomorphism
h : T −→ A, i. e., unique H-algebra homomorphism h : (T, τ) −→ (A, a).

(ii) ⇒ (i): One first shows that the structure map of an initial cia (T, τ) is an isomorphism. In fact,
(HT,Hτ) is a cia by Proposition 2.6 of [M1]. Thus we obtain an inverse of τ as in the proof of Lambek’s
Lemma 2.20, and so T is a coalgebra with structure α = τ−1. It remains to show that (T, α) is final. Given
any H-coalgebra (C, c) there exists a unique coalgebra to algebra homomorphism h : C −→ T , i. e., a unique
H-coalgebra homomorphism h : (C, c) −→ (T, α). 2

Remark 3.8. Notice that in the proof of part “(ii) ⇒ (i)” of Theorem 3.7 in lieu of the full universal
property of (T, τ) one only uses that the structure map τ is an isomorphism. Thus, the only cia with an
isomorphic structure map is the initial one.

By a free cia on an object Y of A we mean, of course, a cia (TY, τY ) together with a morphism ηY :
Y −→ TY in A such that for every cia (A, a) and every morphism f : Y −→ A in A there exists a unique

homomorphism f̂ : (TY, τY ) −→ (A, a) extending f , i. e., such that the following diagram

Y
ηY

//

f
!!CCCCCCCC TY

�

f

��

HTY
τYoo

H
�

f

��

A HA
aoo
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commutes.
The following result shows that free cias correspond to initial cias in a similar way as is the case for

ordinary H-algebras.

Theorem 3.9. ([M1], Theorem 2.10)
For every object Y of A the following are equivalent:

(i) TY is an initial completely iterative algebra for H( ) + Y .

(ii) TY is a free completely iterative H-algebra on Y .

Corollary 3.10. Let H : A −→ A be any endofunctor.

(i) If (TY, αY ) is a final coalgebra for H( ) + Y the inverse of its structure map gives an H-algebra
τY : HTY −→ TY and a morphism ηY : Y −→ TY , and these form a free cia on Y .

(ii) Conversely, if (TY, τY ) is a free cia on Y via a universal arrow ηY : Y −→ TY then [τY , ηY ] :
HTY + Y −→ TY is an isomorphism and its inverse yields a final coalgebra for H( ) + Y .

This corollary establishes the desired equivalence of the statements (a) and (b) from the introduction of
this section.

Examples 3.11.

(i) The free cias of HΣ : Set −→ Set. Recall from Example 3.6(iv) the algebra TΣ of all (finite and infinite)
Σ-trees. This algebra is a cia. For every set Y the algebra TΣY of all Σ-trees over Y , i. e., finite
and infinite Σ-trees where, however, leaves can be labelled by constant symbols from Σ or variables
from the set Y , is a final coalgebra for HΣ( ) + Y . By Corollary 3.10, this implies that TΣY is a free
completely iterative Σ-algebra on Y .

(ii) The free cias of Pfin : Set −→ Set. Recall the final coalgebra T of Pfin from Example 3.6(v). Analo-
gously, for a set Y a final coalgebra for Pfin( )+Y is the algebra T (Y ) of all finitely branching strongly
extensional trees with leaves partially labelled in the set Y . By Corollary 3.10, this implies that T (Y )
is a free cia on Y .

(iii) The free cias of a finitary set endofunctor. Let H : Set −→ Set be a finitary functor. Recall from
Example 2.29(vii) that H is a quotient of some polynomial functor HΣ via ε : HΣ −→ H and that
the final coalgebra for H is TΣ/∼∗. Analogously, for each set Y we obtain H( ) + Y as a quotient of
HΣ( ) +Y via ε′ = ε+ id , see [AM1]. Notice that the basic equations for ε′ are essentially the same as
those for ε. Thus TY = TΣY/∼∗Y , where ∼∗Y is defined precisely as ∼∗ for TΣ in Example 2.29(vii). For
example, for the functor P2 assigning to a set Y the set of unordered pairs of Y , TY is the coalgebra
of all unordered binary trees with leaves labelled in the set Y .

Definition 3.12. We call an endofunctor H iteratable, if it has for every object Y of A a final coalgebra
TY of H( ) + Y .

Corollary 3.13. For an iteratable endofunctor H the assignment Y 7−→ TY of a free cia to an object yields
a monad T = (T, η, µ).

In fact, the unit is given by the universal arrows ηY : Y −→ TY , and the monad multiplication µY :
TTY −→ TY is obtained as the unique homomorphic extension of id TY . In other words, T is the monad
arising from the adjunction

CIAH
U

//⊥ A
oo

where the left-adjoint assigns to every object of A a free cia on that object, see Subsection 2.4.2.
Observe that an immediate corollary of 3.10 is the Substitution Theorem of [AAMV].

Theorem 3.14. ([AAMV], Theorem 2.17)
Let H be an iteratable endofunctor. Then for every substitution s : X −→ TY there exists a unique H-algebra
homomorphism ŝ : TX −→ TY with ŝ · ηX = s.

Notice that for a polynomial endofunctor HΣ of Set, this theorem states that substitution works for all
(finite and infinite) Σ-trees in precisely the same way as for finite Σ-trees (or terms), see Example 2.23(i).
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Remark 3.15. For every cia (A, a) we obtain a unique homomorphism

ã : TA −→ A

extending idA. It is easy to see that this yields the structure of an Eilenberg-Moore algebra for the monad
T. For a polynomial endofunctor HΣ of Set one can think of ã as “computations of all Σ-trees”, analogously
as for finite Σ-trees in Example 2.23(i).

3.2 Iterative Algebras

In the previous subsection we have seen completely iterative algebras in which every system of flat equations
has a unique solution. In applications it is often desirable to be able to obtain solutions only for systems
which are finitary, i. e., with only finitely many variables. In fact, Calvin Elgot introduced and studied first
iterative theories, which are algebraic theories with unique solutions of certain finitary recursive equations.
And Evelyn Nelson introduced in [N] iterative algebras for a signature Σ to obtain an easier approach to
iterative theories. Recall from [N] that a Σ-algebra A is called iterative if every system (3.23) where the set
X of variables is finite has a unique solution in A. So again, the algebra A = TΣ of all Σ-trees is iterative.
But also its subalgebra RΣ of all rational Σ-trees is iterative, where recall that a Σ-tree is rational, if it has
(up to isomorphism) only finitely many subtrees. Evelyn Nelson proved that for every set X the set RΣX of
all rational Σ-trees over X carries a free iterative algebra on X , and that the assignment X 7−→ RΣX of a
free iterative algebra yields the free iterative theory on Σ. We will now introduce iterative algebras for every
finitary endofunctor of an lfp category A. Furthermore, we will show that every object of A generates a free
iterative algebra, and we provide a canonical construction of it. We present in this subsection the first part
of the paper [AMV2], which is joint work with Jǐŕı Adámek and Jǐŕı Velebil.

Assumption 3.16. For the rest of this subsection we assume that A is a locally finitely presentable category
and that H : A −→ A is a finitary endofunctor, see Section 2.1

Definition 3.17. A flat equation morphism e : X −→ HX+A is called finitary if X is a finitely presentable
object. An H-algebra a : HA −→ A is called iterative if every finitary flat equation morphism e has a unique
solution in A, i. e., there exists a unique morphism e† : X −→ A such that Diagram (3.27) commutes.

Examples 3.18.

(i) Again, classical algebras are seldom iterative. In fact, notice that in Example 3.6(i) all equations are
finitary.

(ii) All completely iterative algebras are obviously iterative. In particular, for a signature Σ, the algebras
TΣX of all Σ-trees over X are iterative HΣ-algebras. The subalgebras RΣX of all rational Σ-trees over
X are iterative, too, but they usually fail to be completely iterative. For example, let Σ be a signature
with a binary operation symbol ∗ and a constant c. Then for rational trees t and s the system (3.26)
gives as solutions for x1 and x2 the trees in (3.25), which are rational. But the tree

∗

∗ 0

∗ 1

2

////

����

////

����

////

is not rational. And so the system

xi ≈ xi+1 ∗ i, i < ω,

gives rise to a flat equation morphism which does not have a solution in RΣω.

(iii) The algebra of addition on
I = (0,∞]
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is iterative, see [AMV2], but it fails to be completely iterative. The equation morphism e given by the
system

x0 ≈ x1 +
1

2

x1 ≈ x2 +
1

4

x2 ≈ x3 +
1

8
...

has two solutions: one is e†(xn) =∞ (n ∈ N), another one is e†(xn) = 2−n (n ∈ N).

(iv) Unary algebras. An algebra α : A −→ A of H = Id on Set is iterative if and only if there exists a
unique fixed point for each αn, n ≥ 1.

Notation 3.19. We denote by Algit H the full subcategory of AlgH that consists of all iterative H-algebras.

As for cias one proves that the choice of all algebra homomorphisms is appropriate for iterative algebras.

Lemma 3.20. ([AMV2], Lemma 2.15)
Let (A, a) and (B, b) be iterative algebras. Then a morphism f is an H-algebra homomorphism if and only

if it preserves solutions of finitary flat equation morphisms, i. e., the equation (f • e)† = f · e† holds for all
finitary e : X −→ HX +A.

The following result is not difficult to prove. It shows that there are enough iterative algebras to force
the existence of free ones.

Proposition 3.21. ([AMV2], Proposition 2.16)
Iterative algebras are closed under limits and filtered colimits.

Corollary 3.22. ([AMV2], Corollaries 2.17 and 2.18)
The category Algit H is a reflective subcategory of AlgH. Thus, every object of A generates a free iterative
H-algebra.

In other words, the natural forgetful functor U : Algit H −→ A has a left adjoint.

Definition 3.23. The finitary monad on A formed by free iterative H-algebras is called the rational monad
of H and is denoted by R = (R, η, µ).

Thus, R is the monad of the above adjunction

Algit H
U

//⊥ A
oo

More detailed, for every object Y of A we denote by RY a free iterative H-algebra on Y with the universal
arrow

ηY : Y −→ RY ,

and the algebra structure
%Y : HRY −→ RY .

Then µY : RRY −→ RY is the unique homomorphism of H-algebras with µY · ηRY = id .
Before turning to concrete examples of free iterative algebras, we will show that it is sufficient to describe

the initial one:

Proposition 3.24. ([AMV2], Proposition 2.20)
For every object Y of A the following are equivalent:

(i) RY is an initial iterative algebra for H( ) + Y ,

(ii) RY is a free iterative H-algebra on Y .

In fact, the proof for iterative algebras is the same as for completely iterative algebras, see Theorem 3.9.
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Examples 3.25.

(i) The rational monad of HΣ : Set −→ Set. Recall from Example 3.18(ii) that for every set Y the algebra
RΣY of all rational Σ-trees over Y is iterative. As proved in [N], RΣY is a free iterative Σ-algebra on
Y . Thus, the rational monad RΣ of the polynomial endofunctor HΣ of Set is given by the formation
of the Σ-algebras RΣY of all rational Σ-trees over Y .

(ii) The rational monad of Pfin : Set −→ Set, the finite power set functor was described in [AM1]: it assigns
to a set X the algebra of all rational strongly extensional finitely branching trees; here rational means,
again, that there are (up to isomorphism) only finitely many different subtrees.

In Section 2 we have seen that initial algebras and initial cias (equivalently, final coalgebras) can be
obtained via a canonical construction. From Corollary 3.22 we know that for every finitary endofunctor on
A an initial iterative algebras exists. We shall now provide a construction of initial iterative algebras. Notice
that by Proposition 3.24 this yields a construction of all free iterative algebras.

To motivate our construction recall that for a signature Σ the rational Σ-trees are precisely those Σ-trees
which arise as solutions of finitary (flat) systems (3.23) where the right-hand side are terms over X that are
not a variable from X .

Now for a finitary functor H on an lfp category A recall that by Afp we denote a chosen set of rep-
resentatives of all finitely presentable objects of A w. r. t. isomorphism. Consider the full subcategory EQ
of CoalgH formed by all coalgebras e : X −→ HX with a carrier from Afp, equivalently, all finitary flat
equation morphisms in the initial object of A. We will show that the initial iterative algebra is a colimit of
the diagram

Eq : EQ −→ A, (X, e) 7−→ X .

We denote by
R0 = colim Eq

a colimit of this diagram and we write e] : X −→ R0, e ∈ EQ, for the colimit injections. Notice that we
obtain a unique morphism i : R0 −→ HR0 so that every e] becomes a coalgebra homomorphism, i. e., the
squares

X
e //

e]

��

HX

He]

��

R0 i
// HR0

commute. In fact, it is easy to check that the morphisms He] · e form a cocone of Eq.

Theorem 3.26. ([AMV2], Theorem 3.1)
An initial iterative algebra is given by the colimit

R0 = colim Eq .

More precisely, i is an isomorphism whose inverse yields the structure %0 : HR0 −→ R0 of an initial iterative
algebra.

Remark. Though easily stated, the proof of this theorem is quite non-trivial. We consider it as one of our
main contributions to the subject. The construction of a free iterative algebra is essential for the proofs of
most of the subsequent results on the rational monad R we present below.

Sketch of Proof. (1) We define a morphism

j : HR0 −→ R0 .

Notice first that the diagram Eq is filtered. In fact, the category of all coalgebras is cocomplete, with
colimits formed at the level of A. Since Afp is closed under finite colimits by Proposition 2.5, it follows
that the category EQ is closed under finite colimits in the category of all H-coalgebras—thus, EQ is finitely
cocomplete, whence filtered.

Consequently, H preserves the colimit of Eq: HR0 = colimH ·Eq with the colimit cocone He]. Since A is
locally finitely presentable it follows that HR0 is a colimit of the diagram DHR0 of all arrows p : P −→ HR0

where P is in Afp, see Proposition 2.9. Thus, in order to define j we need to define morphisms j ·p : P −→ R0
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forming a cocone of the diagram DHR0 . We know that HR0 is a filtered colimit of H · Eq and that P is
finitely presentable. Therefore, p factors through one of the colimit morphisms

P
p

//

p′
''OOOOOOOOOOOOO HR0

HW

Hg]

OO

(3.29)

for some g : W −→ HW in EQ, see Remark 2.3. We form a new object

ep′ ≡ P +W
[p′,g]

// HW
Hinr // H(P +W )

of EQ and define j to be the unique morphism such that the following square

P
inl //

p

��

P +W

ep′
]

��

HR0 j
// R0

commutes for every p in Afp/HR0. To prove that j is well-defined ones proves that

(i) ep′
] · inl is independent of the choice of factorization (3.29), and

(ii) the morphisms ep′
] · inl form a cocone of the diagram DHR0 .

And then one readily shows that j = i−1.

(2) R0 is an iterative algebra with structure j. For every equation morphism

e : X −→ HX +R0 = colim(HX + Eq)

there exists, since X is finitely presentable, a factorization through the colimit morphism HX+f ] (for some
f : V −→ HV in EQ):

X
e //

e0
((QQQQQQQQQQQQQQ HX +R0

HX + V

HX+f]

OO

Recall from 3.1 that can : HX +HV −→ H(X + V ) denotes the canonical morphism. Define a new object,
e, of EQ as follows:

e ≡ X + V
[e0,inr]

//HX + V
HX+f

//HX +HV
can //H(X + V ) .

We define a solution of e by

e† ≡ X
inl //X + V

e] //R0 .

A non-trivial proof now shows that e† is indeed a solution of e and that it is unique, see [AMV2], Lemma 3.5.

(3) Initiality of the iterative algebra (R0, j). Let (A,α) be an iterative H-algebra. Consider the equation
morphisms

X
e //HX

inl //HX +A , e in EQ.

Their solutions (inl · e)† : X −→ A form a cocone of Eq. The unique induced morphism h : R0 −→ A such

that h · e] = (inl · e)† is the desired unique homomorphism of H-algebras (R0, j) to (A,α). 2

Corollary 3.27. ([AMV2], Corollary 3.6)
A free iterative H-algebra RY is a colimit

RY = colim EqY

of the diagram
EqY : EQY −→ A ,

where EQY consists of all finitary equation morphisms e : X −→ HX+Y , and all coalgebra homomorphisms
w.r.t. H(−) + Y , and EqY sends (X, e) to X.
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In fact, this is a consequence of Proposition 3.24 and Theorem 3.26.

Remark 3.28. We denote, again, the colimit morphisms of EqY by

e] : X −→ RY

for all e : X −→ HX + Y in EQY . The appropriate isomorphism is denoted by

iY : RY −→ HRY + Y

It is characterized by the fact that the two coproduct injections of HRY + Y are (in the notation of
Definition 3.23)

inl ≡ HRY
%Y

//RY
iY //HRY + Y and inr ≡ Y

ηY
//RY

iY //HRY + Y .

In other words, iY = [%Y , ηY ]−1.

Example 3.29. Recall from Example 2.29(iii) that deterministic sequential automata with an input alphabet
Σ are the coalgebras for the functor HX = XΣ× 2 on Set, and the final coalgebra T for H is carried by the
set of all formal languages over Σ. Since H is a polynomial functor, an initial iterative algebra R∅ is carried
by a subset of T . For a finite automaton considered as a coalgebra e : X −→ HX the map e] : X −→ R∅
assigns to each state the language accepted by X with that state as the initial one. Thus, our construction
above explains that R∅ is the set of all formal languages accepted by automata with a finite state set, i. e.,
R∅ consists of all regular languages.
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4 Elgot Algebras

Unsheathe your dagger definitions.

James Joyce, Ulysses

In this section we present the results of our paper [AMV3], which is joint work with Jǐŕı Adámek and
Jǐŕı Velebil, again. We study Elgot algebras, a notion of algebra useful for application in the semantics of
recursive computations. In fact, in Section 7 we shall use Elgot algebras to study the semantics of recursive
program schemes such as (1.7) from the introduction, where two functions are recursively defined from the
givens F and G. Recall that one has to distinguish between uninterpreted and interpreted semantics. In
the uninterpreted semantics the givens are not functions but merely function symbols from a signature Σ.
In the present section we prepare a basis for the interpreted semantics in which a program scheme comes
together with a suitable Σ-algebra A, which gives an interpretation to all the given function symbols. From
our discussion in the introduction we have seen that by a suitable Σ-algebra we should understand one in
which all Σ-trees, or all rational ones, respectively, have a canonical computation. That means we want to
describe precisely those algebras A with a canonical map TΣA −→ A, or RΣA −→ A.

More generally, we have seen in the previous section that we can abstract away from signatures and
sets. For an endofunctor H of a category A with finite coproducts the final coalgebras TA for H( ) +A for
every object A yield, if they exist, free cias. Analogously, for a finitary endofunctor H of a locally finitely
presentable category A every object A of A generates a free iterative algebra RA. Our question then is:
what is the largest category of H-algebras in which TA, or RA, respectively, act as free algebras on A?
The answer in case of TA is: complete Elgot algebras. These are H-algebras with an additional function
assigning to each flat equation morphism e a solution e†. Two (surprisingly simple) axioms are put on (−)

†

which stem from the structure of TA: the free cias TA yield the monad T, see Corollary 3.13, and complete
Elgot algebras form precisely the category of Eilenberg-Moore algebras for T, i. e., they are precisely those
algebras with a “canonical” morphism TA −→ A. Moreover, for an object mapping T of A we shall add
another equivalent description to (a)–(c) of the Introduction of Section 3; (a)–(c) are equivalent to

(d) for every object Y , TY is a free complete Elgot algebra on Y .

We also show that (non-complete) Elgot algebras form the Eilenberg-Moore category of the rational
monad R, see Definition 3.23. They are defined precisely as complete Elgot algebras, except that only finitary
flat equation morphisms are considered. Basic examples of (complete) Elgot algebras include continuous
algebras, metrizable algebras, and, of course, all (completely) iterative algebras.

The two axioms of (complete) Elgot algebras are inspired by the axioms of iteration theories of Stephen
Bloom and Zoltán Ésik [BÉ]. In fact, we are able to draw a connection to those structures. For a signature
Σ with a distinguished constant symbol ⊥ the rational trees form an iteration theory whose iteration theory
algebras are certain Eilenberg–Moore algebras for the rational monad RΣ satisfying an extra extensionality
property. However, not every Elgot algebra needs to satisfy this extra property, see Example 4.25 below.

4.1 Properties of (Completely) Iterative Algebras

Before we define Elgot algebras let us investigate properties of solutions in iterative algebras and cias.

Remark 4.1. We are going to prove two properties of iterative algebras and cias: the Functoriality and
the Compositionality for solutions. We will use two “operations” on equation morphisms. One, •, is just
change of parameter names: given an equation morphism e : X −→ HX + Y and a morphism h : Y −→ Z
we obtain the equation morphism h • e : X −→ HX + Z, see Notation 3.3. The other operation combines
two flat equation morphisms

e : X −→ HX + Y and f : Y −→ HY +A

into the single flat equation morphism f e : X + Y −→ H(X + Y ) +A in a canonical way:

f e ≡ X + Y
[e,inr]

//HX + Y
HX+f

//HX +HY +A
can+A

//H(X + Y ) +A, (4.30)

4.2. Functoriality. This states that solutions are invariant under renaming of variables, provided, of course,
that the right-hand sides of equations are renamed accordingly. Formally, observe that every flat equation
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morphism is a coalgebra for the endofunctor H(−)+A. Given two such coalgebras e and f , a renaming of the
variables (or morphism of equations) is a morphism h : X −→ Y which forms a coalgebra homomorphism:

X
e //

h

��

HX +A

Hh+A

��

Y
f

// HY +A

(4.31)

The Functoriality states that
e† = f † · h (4.32)

holds for all equation morphisms h from e to f . In other words: (−)
†

is a functor from the category of all
flat equation morphisms in the algebra A into the comma-category of the object A.

Lemma 4.3. ([AMV3], Lemma 2.16)

In every cia the assignment (−)
†

is functorial.

Proof. For each morphism h of equations the diagram

X
h

//

e

��

Y
f†

//

f

��

A
ED��GF f†·h

HX +A
Hh+A

// HY +A
Hf†+A

// HA+A

[α,A]

OO

BCOO@A
H(f†·h)+A

commutes. Thus, f † · h is a solution of e. Uniqueness of solutions now implies the desired result. 2

Remark 4.4. The same holds for every iterative algebra, except that there we restrict X and Y in 4.2 to
finitely presentable objects.

4.5. Compositionality. This tells us how to perform simultaneous recursion: given an equation morphism
f in A with a variable object Y , we can combine it with any equation morphism e in Y with a variable
object X to obtain the equation morphism f e in A of Remark 4.1. The Compositionality decrees that the
left-hand component of (f e)

†
is just the solution of f † • e, i. e., in lieu of solving f and e simultaneously

we first solve f , plug in the solution in e and solve the resulting equation morphism.
In symbols: given f : Y −→ HY +A and e : X −→ HX + Y the Compositionality states that

(f † • e)† = (f e)
† · inl (4.33)

Remark 4.6. Notice that the coproduct injection inr : Y −→ X + Y is a morphism of equations from f
to f e. The Functoriality then implies that f † = (f e)† · inr. Thus, in the presence of Functoriality, the
Compositionality is equivalent to

(f e)
†

= [(f † • e)†, f †] . (4.34)

Lemma 4.7. ([AMV3], Lemma 2.20)

In every cia the assignment (−)† satisfies the Compositionality.

Remark 4.8. The same holds for every iterative algebra, except that there we restrict X and Y in 4.5 to
finitely presentable objects.

Remark 4.9. As mentioned in the introduction of this section, our two axioms, Functoriality and Compo-
sitionality, are not new as ideas of axiomatizing recursion—we believe however, that their concrete form is
new, and their motivation strengthened by the results below.

The Functoriality resembles the “functorial dagger implication” of Stephen Bloom and Zoltán Ésik [BÉ],
5.3.3. And the Compositionality resembles the “left pairing identity” of [BÉ], 5.3.1. This identity corresponds
also to the Bekić-Scott identity, see e. g. [Mo1], 2.1.
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4.2 The Category of Elgot Algebras

Definition 4.10. Let H be an endofunctor of a category with finite coproducts. An Elgot algebra is an
H-algebra α : HA −→ A together with a function (−)

†
which to every finitary flat equation morphism

e : X −→ HX +A

assigns a solution e† : X −→ A in such a way that the Functoriality (4.32) and the Compositionality (4.33)
are satisfied.

By a complete Elgot algebra we analogously understand an H-algebra together with a function (−)
†

assigning to every flat equation e a solution e† so that Functoriality and Compositionality are satisfied.

Examples 4.11.

(i) Every join semilattice A is an Elgot algebra. More precisely: consider the polynomial endofunctor
HX = X × X of Set (expressing one binary operation). Then for every join semilattice A there is
a “canonical” structure of an Elgot algebra on A obtained as follows: the algebra RA of all rational
binary trees on A has an interpretation on A given by the function α : RA −→ A forming, for every
rational binary tree t the join of all the (finitely many) labels of leaves of t in A. Now given a finitary
flat equation morphism e : X −→ X × X + A, it has a unique solution e† : X −→ RA in the free
iterative algebra RA, and composed with α this yields a structure e 7−→ α · e† of an Elgot algebra on
A. See Example 4.24 for a proof. Recall that in contrast, no nontrivial join semilattice is iterative: it
has too many idempotents, i. e., solutions of x ≈ x ∨ x, see Example 3.6(i).

(ii) Continuous algebras on cpos are complete Elgot algebras. Let us work here in the category

CPO

of all ω-complete posets, i.e., posets (not necessarily with a least element) having joins of increasing
ω-chains; morphisms are the continuous functions, i.e., functions preserving joins of ω-chains. Observe
that the category CPO has coproducts: they are the disjoint unions with elements of different summands
incompatible.

A functor H : CPO −→ CPO is called locally continuous provided that for arbitrary cpos, X and Y , the
derived function from CPO(X,Y ) to CPO(HX,HY ) is continuous (i.e., H(

⊔
fn) =

⊔
Hfn holds for

all increasing ω-chains fn : X −→ Y ). For example, every polynomial endofunctor X 7−→ ∐
n Σn×Xn

of CPO (where Σn are cpos) is locally continuous.

Let H : CPO −→ CPO be a locally continuous functor. Every H-algebra α : HA −→ A with a
least element ⊥ ∈ A is a complete Elgot algebra provided that to every equation morphism e the least
solution e† is assigned, see [AMV3], Proposition 3.5. Notice that the least solution of e : X −→ HX+A
refers to the element-wise order of the hom-set CPO(X,A). We can actually prove a concrete formula
for e† as a join of the ω-chain

e† =
⊔

n∈ω
e†n

of “approximations”: e†0 is the constant function to ⊥, the least element of A, and given e†n, then e†n+1

is defined by the commutativity of Diagram (3.28).

(iii) Many set functors H have a lifting to locally continuous endofunctors H ′ of CPO. That is, for the
forgetful functor U : CPO −→ Set the following square

CPO
H′ //

U

��

CPO

U

��

Set
H

// Set

commutes. For example, every polynomial functor HΣ has such a lifting. Let α : HA −→ A be an
H-algebra such that there exists a CPO-ordering v with a least element on the set A such that α is a
continuous function from H ′(A,v) to (A,v). Then A is a complete Elgot algebra for H . In fact, to
every equation morphism e : X −→ HX+A assign the least solution of e : (X,≤) −→ H ′(X,≤)+(A,v)
where ≤ is the discrete ordering of X (x ≤ y if and only if x = y). We shall see in Example 4.20 below
that not every complete Elgot algebra needs to arise as a CPO-enrichable one.
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(iv) Unary algebras. Let H = Id as an endofunctor of Set. Given an H-algebra α : A −→ A , if α has no
fixed point, then A carries no structure of an Elgot algebra: consider the formal equation x ≈ α(x).

Conversely, every fixed point a0 of α yields a flat cpo structure with a least element a0 on A, i. e.,
x ≤ y if and only if x = y or x = a0. Thus, A is a complete Elgot algebra since it is CPO-enrichable.

(v) Every complete lattice A is a complete Elgot algebra for HX = X×X . Analogously to Example 4.11(i)
we have a function α : TA −→ A assigning to every binary tree t in TA the join of all labels of leaves
of t in A. Now for every flat equation morphism e in A we have its unique solution e† in TA and this
yields a structure e 7−→ α · e† of a complete Elgot algebra. See Example 4.19 for a proof.

4.3 The Eilenberg-Moore Algebras for the Monad T
Recall our standing assumptions that H is an endofunctor of a category A with finite coproducts, and recall
the operation • and of Remark 4.1.

Definition 4.12. A homomorphism h from a complete Elgot algebra (A, a, (−)
†
) to a complete Elgot algebra

(B, b, (−)
‡
) is a morphism h : A −→ B preserving solutions: for each e : X −→ HX+A we have the following

equation

X
e† //A

h //B ≡ X
(h • e)‡

//B . (4.35)

Lemma 4.13. ([AMV3], Lemma 5.2)

Every homomorphism h : (A, a, (−)
†
) −→ (B, b, (−)

‡
) of complete Elgot algebras is a homomorphism of

H-algebras.

Example 4.14. The converse of Lemma 4.13 is true for completely iterative algebras, as proved in Proposi-
tion 3.4, but for complete Elgot algebras in general it is false. In fact, consider the unary algebra id : A −→ A,
where A = { 0, 1 }. This is a complete Elgot algebra with the solution structure (−)

†
given by the fixed point

0 ∈ A, see Example 4.11(v).
Then const1 : A −→ A is a homomorphism of unary algebras that does not preserve solutions. Indeed,

consider the following equation morphism

e : {x} −→ {x}+A, x 7−→ x.

We have e†(x) = 0, and thus 1 = const1 · e†(x) 6= (const1 • e)†(x) = e†(x) = 0.

Notation 4.15. We denote by
Alg†cH

the the (non-full) subcategory of AlgH formed by all complete Elgot algebras and their homomorphism.

The following result establishes that statement (d) from the introduction of this section is equivalent to
(a)–(c) in Section 3, see also Corollary 3.10.

Theorem 4.16. ([AMV3], Theorem 5.3)
Let Y be an object of A. Then the following are equivalent:

(1) TY is a final coalgebra for H( ) + Y , and

(2) TY is a free complete Elgot algebra on Y .

Sketch of Proof. Suppose first that (TY, αY ) is a final coalgebra for H( ) + Y . Let [τY , ηY ] be the inverse
of αY . Then τY : HTY −→ TY is a completely iterative algebra, see Corollary 3.10, and therefore an Elgot
algebra.

Furthermore, (TY, τY , (−)†) is a free Elgot algebra on Y . For any given Elgot algebra (A, a, (−)‡) and
any given morphism m : Y −→ A form the equation morphism

m •αY ≡ TY
αY //HTY + Y

HTY+m
//HTY +A .

It is shown in Theorem 5.3 of [AMV3] that the solution h = (m •αY )
‡

yields the unique homomorphism
h : TY −→ A of Elgot algebras such that h · ηY = m.
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Now conversely, assume that (TY, τY , (−)
†
) is a free Elgot algebra on Y with a universal arrow ηY :

Y −→ TY . It can be shown that [τY , ηY ] is an isomorphism, see [AMV3]. Denote by αY its inverse. Then
(TY, τY ) is a cia; i. e., for every flat equation morphism e : X −→ HX + TY the solution e† is unique. In
fact, suppose that s is any solution of e. It follows that s is a morphism of equations from e to the flat
equation morphism

f ≡ TY
αY //HTY + Y

HTY +ηY //HTY + TY .

Thus, f † · s = e† by the Functoriality of (−)
†
. Next one can show, using the Compositionality, that

f † : TY −→ TY is a homomorphism of Elgot algebras satisfying f † · ηY = ηY . Thus, by the freeness of TY ,
f † = id . This proves that (TY, τY ) is a cia, which implies that it is the free one on Y . It is not difficult
to show that this yields a final coalgebra for H( ) + Y . In fact, for any coalgebra c : C −→ HC + Y the
unique solution of the flat equation morphism ηY • c yields a unique homomorphism (C, c) −→ (TY, αY ) of
coalgebras. 2

The proof of this Theorem 4.16 is once again non-trivial, see [AMV3] for the details. It is another
important contribution and it is the key ingredient needed to prove the following result. Recall that a
functor is called iteratable, if the final coalgebra TX for H( ) +X exists for every object X of A.

Theorem 4.17. ([AMV3], Theorem 5.7)
If H is an iteratable functor, then the category Alg†cH of complete Elgot algebras is isomorphic to the
Eilenberg–Moore category AT of monadic T-algebras (for the free cia monad T of H).

Remark 4.18. By Theorem 4.16, the natural forgetful functor U : Alg†cH −→ A has a left adjoint Y 7−→ TY .
Thus, the monad obtained from this adjunction is T, see Corollary 3.13. To prove that the comparison functor
Alg†cH −→ AT is an isomorphism the easiest proof we know uses Beck’s Theorem, see Theorem 2.50. But it
is not very intuitive. A slightly more technical (and much more illuminating) proof has the following sketch:

Denote for any object Y by (TY, τY , (−)
‡
) a free Elgot algebra on Y with a universal arrow ηY : Y −→ TY .

(i) For every T-algebra a0 : TA −→ A we have an “underlying” H-algebra

α ≡ HA
HηA // HTA

τA // TA
a0 // A,

and the following formula for solving equations: given a flat equation morphism e : X −→ HX + A
put

e† ≡ X
(ηA • e)‡

// TA
a0 // A .

It is not difficult to see that this formula indeed yields a choice of solutions satisfying the Functoriality
and the Compositionality.

(ii) Conversely, given a complete Elgot algebra (A, a, (−)
†
), define a0 : TA −→ A as the solution α†A of the

structure of the final coalgebra αA : TA −→ HTA+ A considered as a flat equation morphism in A.
One readily proves that a0 satisfies the two axioms of an Eilenberg-Moore algebra.

(iii) It is necessary to prove that the above passages extend to the level of morphisms and they form functors
which are mutually inverse.

Example 4.19. Let A be a complete lattice. Recall from Example 4.11(vi) the function α : TA −→ A
assigning to every binary tree t in TA the join of all labels of leaves of t in A. Since joins commute with joins
it follows that α : TA −→ A is the structure of an Eilenberg-Moore algebra on A. Thus, A is a complete
Elgot algebra as described in Example 4.11(vi).

Example 4.20. Not every complete Elgot algebra for an endofunctor of Set needs to be CPO-enrichable.
To see this consider the polynomial endofunctor HX = X +X + 1 expressing two unary operations s and t
and a constant ⊥. Its free cia monad T assigns to every set X the set TX = { s, t }∗ ×X + { s, t }∞, where
S∞ denotes the set of all (finite and infinite) sequences of elements of S and S∗ denotes the set of all finite
such, respectively.

Now consider the set C = { 0, 1 } equipped with the following algebra structure

γ : TC −→ C

(w, i) 7−→ i, i = 0, 1, w ∈ { s, t }∗

v 7−→
{

1 if v = up, u ∈ { s, t }∗, p = ttt . . .,
0 else
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It is not difficult to check that this is a structure of an Eilenberg-Moore algebra for the monad T . Thus, C
is a complete Elgot algebra by Theorem 4.17.

The two formal equations
x ≈ s(x) and x ≈ t(x) (4.36)

give rise to two flat equation morphism e, f : 1 −→ H1 + C; e and f map the unique element of 1 to the
left-hand and middle component of H1 = 1 + 1 + 1, respectively. From the definition of (−)

†
on C as in

Remark 4.18 we see that e† : 1 −→ C and f † : 1 −→ C pick 0 and 1 in C, respectively. However, if C were
CPO-enrichable both solutions would have to choose the smallest element in the order on C. Thus, there
does not exist any order of C such that C is a continuous algebra and the Elgot algebra structure associated
to γ above assigns to each flat equation morphism its least solution.

4.4 The Eilenberg-Moore Algebras for the Monad R
Throughout this subsection H denotes a finitary endofunctor of a locally finitely presentable category A.

In the following result the concept of homomorphism of Elgot algebras is defined analogously to Defin-
ition 4.12: the equation (4.35) is required to hold for finitary flat equation morphisms e only. We denote
by

Alg†H

the category of all Elgot algebras and their homomorphisms.

Lemma 4.21. ([AMV3], Lemma 4.2)

Every homomorphism h : (A, a, (−)
†
) −→ (B, b, (−)

‡
) of Elgot algebras is a homomorphism of H-algebras.

Notice that although the statement of this result is similar to Lemma 4.13, its proof uses slightly different
techniques, see [AMV3]. The converse of Lemma 4.21 is again false, see Example 4.14.

Proposition 4.22. ([AMV3], Proposition 4.6)
A free iterative algebra on Y is a free Elgot algebra on Y .

Sketch of Proof. Since every iterative algebra is an Elgot algebra one only has to prove that a free iterative
algebra RY has the universal property. Suppose that (A,α, (−)

†
) is an Elgot algebra and let m : Y −→ A

be a morphism. Recall the construction of RY from Theorem 3.26. Define a morphism h : RY −→ A by
commutativity of the following triangles

RY
h // A

X

e]

OO

(m • e)†

77ooooooooooooo

for all e : X −→ HX + Y in EQY . In fact, the morphisms (m • e)† form a cocone of EqY , whence h is
well-defined. Now one has to show that h preserves solutions, satisfies the equation h · ηY = f , and is
uniquely determined, see [AMV3]. 2

Theorem 4.23. ([AMV3], Theorem 4.7)
The category Alg†H of Elgot algebras is isomorphic to the Eilenberg-Moore category AR of R-algebras for
the rational monad R of H.

Sketch of Proof. The proof of this theorem is analogous to the proof of Theorem 4.17. By Proposition 4.22
the natural forgetful functor V : Alg†H −→ A has a left adjoint Y 7−→ RY . Thus, the monad obtained
by this adjunction is the rational monad R. Ones proves that the comparison functor Alg†H −→ AR is an
isomorphism, using Beck’s theorem, see Theorem 2.50. 2

Example 4.24. Let A be a join semilattice. Recall from Example 4.11(i) the function α : RA −→ A
assigning to a rational binary tree t in RA the join of the labels of all leaves of t in A. Since joins commute
with joins it follows that this is the structure of an Eilenberg-Moore algebra on A. Thus, A is an Elgot
algebra as described in Example 4.11(i).
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Example 4.25. Iteration algebras of [BÉ] are Elgot algebras. More precisely, let Σ be a signature with
a special chosen constant symbol ⊥. Then the algebraic theory RΣ formed by all rational Σ-trees is an
iteration theory, see [BÉ], Example 6.4.8. Recall that any morphism n −→ m in this algebraic theory is
essentially just a morphism n −→ RΣm in the Kleisli category of the monad (associated to) RΣ, where n and
m are considered as sets in the usual way. Furthermore, every interpretation i : n −→ A of variables in an
Eilenberg-Moore algebra A of the monad RΣ gives rise to a unique homomorphism î : RΣn −→ A extending
i. Now an RΣ-iteration algebra in the sense of [BÉ], Definition 7.1.1, is an Eilenberg-Moore algebra (A,α)
of the monad RΣ that satisfies the following extensionality property: Suppose that f, g : n −→ n + m are
two morphisms in the algebraic theory RΣ, i. e., morphisms f, g : n −→ RΣ(n+m) in the Kleisli category of
the monad RΣ. If for all interpretations i : n+m −→ A we have a commuting square

n+m

g

��

f
// RΣ(n+m)

�

i

��

RΣ(n+m) �

i

// A

then also for all j : m −→ A the square

n
f†

//

g†

��

RΣm
�

j

��

RΣm �

j

// A

commutes, where f † and g† are the solutions of f and g, respectively, in the iteration theory RΣ.
Obviously, any RΣ-iteration algebra is an Elgot algebra for the polynomial functor associated to the

signature Σ. But not conversely. In fact, for the signature Σ with two unary operation symbols s and t
and the constant symbol ⊥, the algebra (C, γ) of Example 4.20 yields by precomposition with the inclusion
RΣC ↪−→ TΣC an Eilenberg-Moore algebra for RΣ, whence an Elgot algebra for HΣ. However, the two formal
equations (4.36) give rise to morphisms 1 −→ RΣ(1 + 0) that violate the desired extensionality property. In

fact, we have î · f = î · g = i for all i : 1 + 0 −→ C. But ĵ · f † picks 0 while ĵ · g† picks 1 for the unique
j : 0 −→ C.

45



5 Solution Theorems
If you are not part of the solution,

you are part of the problem.

Eldridge Cleaver, speech in San Francisco, 1968

In Section 3.1 and 3.2 we started by considering non-flat systems (3.23) of formal recursive equations for
Σ-algebras. We then argued that due to the possibility of flattening such a system it suffices to consider flat
equation morphisms X −→ HX +A in general. We shall make this more precise in this section by showing
that for all (completely) iterative algebras much more general systems of recursive equations have unique
solutions. For polynomial endofunctors of Set, this implies that our notion of iterative algebra coincides with
that presented by Evelyn Nelson [N]. As we shall see in the Section 6, this also implies that the rational
monad R is iterative and that the free cia monad T is completely iterative.

Notice first that the requirement stated in (3.23) that no right-hand side of a system is a variable is
important, the equation x ≈ x has a unique solution only in the trivial one-point algebra. Systems satisfying
the above condition are called guarded.

In the current section we present the result of Sections 3 and 4 of [M1] and [AMV2], respectively. We
start with completely iterative algebras.

5.1 Solution Theorem for Completely Iterative Algebras

We assume in this subsection that A is a category with finite coproducts. Recall from Corollary 3.13 that
for an iteratable endofunctor H , free cias exist on every object Y of A. As before we denote by

τY : HTY −→ TY and ηY : Y −→ TY

the structure and universal arrow of the free cia TY . Moreover, recall from Remark 3.15 that for every cia
(A, a) we denote by

ã : TA −→ A

the unique H-algebra homomorphism with ã · ηA = id .

Definition 5.1. By an equation morphism is meant a morphism

e : X −→ T (X +A)

in A where X is any object (of “variables”) and A is any object (of “parameters”).
The equation morphism e is called guarded if it factors through the summand HT (X + A) + A of

HT (X +A) +X +A = T (X +A) (see Corollary 3.10(ii)):

X
e //

e0
''

T (X +A)

HT (X +A) +A

[τX+A,ηX+A·inr]

OO

Given a cia (A, a) and an equation morphism e we call a morphism e† : X −→ A a solution of e in A if
the square

X
e† //

e

��

A

T (X +A)
T [e†,A]

// TA

�

a

OO

(5.37)

commutes.

Remark 5.2. For a polynomial endofunctorHΣ of Set an equation morphism e is the same as a system (3.23)
where all right-hand sides ti are Σ-trees over X + A, and guardedness of e corresponds precisely to the
requirement that no ti be a variable from X . The commutativity of (5.37) means that the assignment
e† of variables of X to elements of A has the following property: form first the “substitution” mapping
[e†, A] : X + A −→ A (which replaces variables by their solution according to e† and leaves parameters
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unchanged). Apply this substitution to the right-hand sides of the given system e of formal equations, and
compute the resulting infinite trees in A. This yields the same assignment of variables to elements of A as
e†. That means that the formal equations x ≈ e(x) become actual identities in A after the substitution
x 7−→ e†(x) is performed on both sides of the equations and the right-hand side is evaluated in A.

Formally, one extends [e†, A] to the unique homomorphism

ã · T [e†, A] : T (X +A) −→ A

from the free cia on X +A to A. Precomposed with e it yields the morphism e†.

Theorem 5.3. In every cia, for every guarded equation morphism there exists a unique solution.

Sketch of Proof. Let (A, a) be a cia. Given a guarded equation morphism e with a factor e0 as in Defini-
tion 5.1, form the flat equation morphism

e ≡ T (X +A)
[τ,η]−1

//HT (X +A) +X +A
[inl,e0,inr]

//HT (X +A) +A

and consider its unique solution s : T (X +A) −→ A in the cia A. One readily proves that the morphism

e† ≡ X
inl //X +A

η
//T (X +A)

s //A

is the desired unique solution of e in A. 2

Remark 5.4. We have chosen to present in this summary a slightly different version of the solution theorem
from [M1]. However, the above Theorem 5.3 follows immediately from Theorem 3.9 of [M1].

5.2 Solution Theorem for Iterative Algebras

It is well-known that for an iterative algebra for a polynomial functor of Set one can uniquely solve guarded
system (3.23) where the set of variables is finite and where all right-hand sides ti are rational trees. We shall
now present the corresponding result in our more general setting. We assume in this subsection that A is
an lfp category and that H is a finitary endofunctor of A.

Definition 5.5. By a rational equation morphism in an object A we mean a morphism

e : X −→ R(X +A), X finitely presentable ,

and e is called guarded if it factors through the summand HR(X +A) +A of R(X+A) = HR(X+A)+X+A
(see Remark 3.28):

X
e //

e0
''

R(X +A)

HR(X +A) +A

[%,η·inr]

OO

Suppose that A is an underlying object of an iterative H-algebra a : HA −→ A. We denote (analogously
to ã in the previous subsection) by

â : RA −→ A

the unique homomorphism of H-algebras with â · ηA = id . Then by a solution of e in the iterative algebra
A is meant a morphism e† : X −→ A in A such that the square

X

e

��

e† // A

R(X +A)
R[e†,A]

// RA

�

a

OO

commutes.

Theorem 5.6. ([AMV2], Theorem 4.6)
If A is an iterative H-algebra, then every guarded rational equation morphism e in A has a unique solution.
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Sketch of Proof. Let a : HA −→ A be an iterative algebra and let e be a guarded rational equation morphism
with a factor e0 as in Definition 5.5.

Recall from Corollary 3.27 that R(X +A) = colim EqX+A with colimit cocone g] : W −→ R(X +A) for
all g : W −→ HW + X + A in EQX+A. Since this colimit is filtered and H is finitary, we have a filtered
colimit HR(X +A) +A = colimHEqX+A +A with the colimit cocone formed by all Hg] +A. Since X is a
finitely presentable object, the morphism e0 : X −→ colimHEqX+A +A factors through the colimit cocone:

X
e0 //

w
((RRRRRRRRRRRRRRRR HR(X +A) +A

HW +A

Hg]+A

OO

for some object g : W −→ HW +X +A of EQX+A and some morphism w.
We define a finitary flat equation morphism as follows:

e ≡W +X
[g,inm]

// HW +X +A
[inl,w,inr]

// HW +A
Hinl+A

// H(W +X) +A

where inm : X −→ HW + X + A is the middle coproduct injection. Now consider the unique solution
e† : W +X −→ A in the iterative algebra A. A non-trivial proof shows that the morphism

e† ≡ X inr // W +X
e† // A

is the desired unique solution of e. 2

Remark 5.7. It follows from Theorem 5.6 that for a polynomial endofunctor HΣ of Set our notion of
iterative algebra coincides with that of Evelyn Nelson [N]. In fact, she required that iterative algebras have
unique solutions of guarded systems (3.23) with finitely many variables where all right-hand sides ti are
terms over X + A, i. e. elements of a free HΣ-algebra on X + A. It is not difficult to formulate this for an
arbitrary finitary functor on our lfp category A. Indeed, recall that every object X of A generates a free
algebra FX , see Theorem 2.25. Now one formulates the notions of finitary equation morphism, solution and
guardedness by replacing R by F in Definition 5.5. Then Theorem 5.6 implies that an H-algebra is iterative
if and only if it admits unique solutions of all guarded finitary equation morphisms. For details, see [AMV2],
Definition 4.2 and Theorem 4.4.
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6 Iterative and Completely Iterative Monads

Und diese Monaden sind die wahrhaften Atomi der Natur
und mit einem Worte / die Elemente derer Dinge.

Gottfried Wilhelm Leibniz, Monadologie, 1724

For a polynomial endofunctor of Set Evelyn Nelson [N] has proved that the algebraic theory induced by
free iterative algebras is a free iterative theory in the sense of Calvin Elgot [E]. More generally, in this section
we will show that the rational monad R of a finitary endofunctor H , introduced in Definition 3.23, is iterative
and it can be characterized as the free iterative monad on H . Similarly, for an iteratable endofunctor H ,
i. e., all free cias TY of H exist, the free cia monad T, see Corollary 3.13, is a free completely iterative monad
on H .

As we shall see the universal property of the monads R and T yields an abstract version of the notion of
second-order substitution, see Example 2.44. In fact, for a polynomial endofunctor HΣ of Set the freeness of
T yields second-order substitution of all Σ-trees, and the freeness of R means that rational trees are closed
under this second-order substitution. The (generalized) second-order substitution is a key ingredient of our
treatment of the semantics of recursive program schemes in Section 7.

The current section presents the main results of the two papers [AMV2] and [M1].

6.1 Ideal Monads

For a polynomial endofunctor of Set induced by a signature Σ it follows from the universal property of
the free completely iterative algebras TΣX that substitution of trees for variables works for all Σ-trees in
precisely the same way as for terms (i. e., all finite Σ-trees), and it follows from the universal property of
free iterative algebras RΣX that rational Σ-trees are closed under substitution. For example, let X be a
set of variables and let s : X −→ TΣY be a mapping that assigns to each variable its substitute, a Σ-tree
over Y . The unique induced homomorphism ŝ : TΣX −→ TΣY from the free cia TΣX on X to TΣY with
ŝ · ηY = s performs on any given tree of TΣX the substitution of variables according to s to obtain a tree of
TΣY . Analogously, every substitution s : X −→ RΣY yields by the freeness of the iterative algebra RΣX a
unique H-algebra homomorphism RΣX −→ RΣY extending s and performing substitution of rational trees.

Notice that the fact that each ŝ : TΣX −→ TΣY is an H-algebra homomorphism results in the following
property of substitution of all Σ-trees: for each tree t which is not just a leaf labelled by a variable, i. e.,
for all elements of the left-hand coproduct component HΣTΣX of TΣX , the result of any substitution will
never be just a leaf labelled in Y , i. e., ŝ(t) lies in HΣTΣY . Or, more concisely, non-variables are preserved
by substitution.

Whereas the concept of variables and substitution is appropriately captured categorically by the concept
of a monad, the idea of “non-variable” and its preservation by substitution is not. However, we will need
such a concept when we speak of guarded systems of equations for an arbitrary monad below. In fact, in
the setting of algebraic theories (i. e., finitary monads on Set) Calvin Elgot [E] introduced the concept of an
ideal theory. In [AAMV] we proved that Elgot’s ideal theories are equivalent to the following concept.

For a monad S = (S, η, µ) over Set we can form the complements of the image ηX [X ] of X under ηX in
SX , say,

σX : S′X −→ SX

for all objects X .
The monad is called ideal provided σ : S ′ −→ S is a subfunctor of S, and the monad multiplication has

a domain-codomain restriction µ′ : S′S −→ S′. In this subsection we present the corresponding concept for
general base categories.

Assumption 6.1. For the rest of Section 6 we assume that A is a category with finite coproducts such that
coproduct injections are monomorphic.

The last requirement that coproduct injections are monomorphic is a mere technicality and could even
be totally avoided, see Section 5 of [M1] or Remarks 5.8 and 5.12(1) of [AMV2]. However, we obtain
this slightly increased generality at the expense of having to make the following notions and results more
technically involved. Hence, we decided to keep the additional requirement for the convenience of the reader
and as this property is very common indeed.
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Definition 6.2. By an ideal monad is understood a six-tuple

S = (S, η, µ, S′, σ, µ′)

consisting of a monad (S, η, µ), a subfunctor σ : S ′ ↪−→ S and a natural transformation µ′ : S′S −→ S′ such
that

(i) S = S′ + Id with coproduct injections σ and η, and

(ii) µ restricts to µ′ along σ, i.e., the following square

S′S
µ′

//

σS

��

S′

σ

��

SS µ
// S

commutes.

Examples 6.3.

(i) Free monads are ideal. If F = (F, η, µ) is a free monad on the endofunctor H with the universal
arrow κ : H −→ F , then the functor HF + Id is a monad with unit η̃ = inr : Id −→ HF + Id and
multiplication

µ̃ ≡ (HF + Id)2 = HF (HF + Id) +HF + Id

HF (κF+Id)+HF+Id

��

HF (FF + Id) +HF + Id

HF [µ,η]+HF+Id

��

HFF +HF + Id

[Hµ,inl]+Id

��

HF + Id

see Lemma 3.4 of [M2]. Thus, the natural transformation inl ·Hη : H −→ HF + Id induces a unique
monad morphism α : F −→ HF + Id with α · κ = inl ·Hη. It is not difficult to show that the natural
transformation

β ≡ HF + Id
[κF,Id]

// FF + Id
[µ,η]

// F

is a monad morphism and furthermore an inverse of α. In fact, use the ideas from the proof of
Theorem 3.1 of [M2]. Thus F is a coproduct of HF and Id via the injections ϕ = β · inl and η = β · inr.
Since coproduct injections are monomorphic we obtain a subfunctor ϕ : HF ↪−→ F making F an ideal
monad. In fact, it is easy to show using the associativity of µ and naturality of κ that the desired
restriction of µ is µ′ = Hµ : HFF −→ HF . We leave the details to the interested reader.

(ii) The free cia monad T = (T, η, µ) together with the endofunctor HT and the natural transformation

τ : HT ↪−→ T

expressing the H-algebra structure τY : HTY −→ TY of each TY is ideal. The restriction of µ here is

µ′ = Hµ : HTT −→ HT .

In fact, we know that TY = HTY + Y with the coproduct injections τY and ηY : this follows from
Corollary 3.10(ii). And the following square

HTT
Hµ

//

τ

��

HT

τ

��

TT µ
// T

commutes because each µY is a homomorphism of H-algebras.
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(iii) Similarly, if H is a finitary endofunctor of an lfp category A, then the rational monad R is ideal. In
fact, recall from Remark 3.28 that R = HR + Id . We consider the subfunctor HR ↪−→ R expressing
the H-algebra structure %Z : HRZ −→ RZ of each RZ. The “restriction” of µ is µ′ = Hµ again.

(iv) The monad on Set given by the free algebras with a binary commutative operation is ideal. In fact,
this is the free monad on the endofunctor P2 that assigns to every set X the set of unordered pairs
from X , see Example 2.23(iii) and Theorem 2.42(i).

(v) The free semigroup monad X 7−→ X+ on Set is ideal. Here X+ denotes the set of all non-empty words
on X and S′X ↪−→ X+ is the subset of words of length at least 2, and µ′ is the obvious restriction of
the concatenation of words to that subset.

(vi) The free monoid monad X 7−→ X∗ on Set is not ideal. In fact, recall that the unit ηX maps elements of
X to words of length 1. Now consider the word xx′ in {x, x′ }∗ and the substitution s that substitutes
x by itself and x′ by the empty word. Then ŝ(xx′) = x whence µ cannot have the necessary restriction.

(vii) Classical algebraic theories (groups, lattices, etc.) are usually not ideal.

(viii) Coproducts of ideal monads exist and are ideal. Assume that A has colimits of ω-chains and let
S = S′+ Id and M = M ′+ Id be ideal monads so that S ′ and M ′ preserve colimits of ω-chains. Then
a coproduct of S and M in the category of monads of A exists and is an ideal monad, see [GUs].

Definition 6.4.

(i) An ideal monad morphism from an ideal monad (S, ηS , µS , S′, σ, µ′S) to an ideal monad
(U, ηU , µU , U ′, ω, µ′U ) is a monad morphism m : (S, ηS , µS) −→ (U, ηU , µU ) which has a domain-
codomain restriction to the ideals. That means that there exists a natural transformationm′ : S′ −→ U ′

such that the square

S′

σ

��

m′ // U ′

ω

��

S m
// U

commutes.

(ii) Given a functor H , a natural transformation λ : H −→ S is called ideal provided that it factors through
σ : S′ ↪−→ S, i. e., there exists a natural transformation λ′ : H −→ S′ with σ · λ′ = λ.

Example 6.5. For every endofunctor H , a free monad F, a rational monad R and a free cia monad T (if
they exist) come with canonical ideal natural transformations

H
Hη

//HF
ϕ

//F , HR
Hη

//HR
%

//R , HT
Hη

//HT
τ //T . (6.38)

For a polynomial endofunctor HΣ of Set these transformations express the operation symbols of the signature
Σ (regarded as flat Σ-trees over the set X) as terms in FΣX or (rational) Σ-trees in TΣX and RΣX ,
respectively.

Theorem 6.6. A free monad F on H (if it exists) is a free ideal monad on A. More precisely, for any
monad S and any natural transformation λ : H −→ S there exists a unique monad morphism λ : F −→ S
such that λ ·κ = λ. Furthermore, if S is an ideal monad and λ an ideal natural transformation, then λ is an
ideal monad morphism.

Proof. If F = (F, η, µ) is a free monad on H we know from Example 6.3(i) that F is an ideal monad. We
only need to show that the last part of the statement of our Theorem. So consider any ideal monad S and
any ideal natural transformation λ. Then for the unique induced monad morphism λ : F −→ S consider the
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diagram

HF

Hλ

��

κF // FF
µ

//

λ∗λ

��

F
ED ��GF ϕ

λ

��

HS

λ′S
��

λS

""EEEEEEEE

S′S

µ′

��

σS
// SS

µS

!!BBBBBBBB

S′ σ
// S

All its inner parts commute: the upper part is the definition of ϕ, see Example 6.3, the two parts below it
commute since λ · κ = λ and since λ is a monad morphism, the inner triangle commutes since λ is an ideal
natural transformation and the lowest part commutes since S is an ideal monad. Thus, the left-hand edge
µ′ · λ′S ·Hλ : HF −→ S′ is the desired restriction of λ. 2

6.2 The Universal Properties

Definition 6.7. Let S = (S, η, µ, S ′, σ, µ′) be an ideal monad on A.

(i) By an equation morphism is meant a morphism

e : X −→ S(X +A)

in A where X is an object (“of variables”) and A is an object (“of parameters”). We call e finitary if
X is a finitely presentable object of A.

(ii) By a solution of e is meant a morphism e† : X −→ SA for which the square

X
e† //

e

��

SY

S(X + Y )
S[e†,ηY ]

// SSY

µY

OO

commutes.

(iii) The equation morphism e is called guarded if it factors through the summand S ′(X + Y ) + Y of
S(X + Y ) = S′(X + Y ) +X + Y :

X
e //

((

S(X + Y )

S′(X + Y ) + Y

[σX+Y ,ηX+Y inr]

OO

(iv) The ideal monad S is called completely iterative provided that every guarded equation morphism has
a unique solution. And S is called iterative if every guarded finitary equation morphism has a unique
solution.

Clearly, any completely iterative monad is also iterative. Furthermore, we have the following result:

Theorem 6.8.

(i) If H is an iteratable endofunctor, then its free cia monad T is completely iterative.

(ii) If H is a finitary endofunctor of the lfp category A, then the rational monad R of H is iterative.
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In fact, this follows easily from Theorems 5.3 and 5.6. For the full proof of (ii) see Corollary 4.7 of [AMV2].
The proof of (i) is completely analogous.

Theorem 6.9. ([M1], Theorem 4.3)
Let H be an iteratable endofunctor of A. Then the monad T is a free completely iterative monad on H.
That is, the canonical transformation κ = τ · Hη : H −→ T , see Example 6.5, has the following universal
property: for every completely iterative monad S and every ideal natural transformation λ : H −→ S there
exists a unique monad morphism λ : T −→ S such that the triangle

H
κ //

λ
  

@@@@@@@@ T

λ

��

S

commutes. Furthermore, this λ is an ideal monad morphism.

Sketch of Proof. For every object A of A consider SA as an H-algebra with the structure

HSA
λSA //SSA

µA //SA .

This is a completely iterative algebra. In fact, every flat equation morphism e : X −→ HX + SA yields the
following equation morphism w. r. t. S:

e ≡ X e // HX + SA
λX+SA

// SX + SA
can // S(X +A) .

It is easy to verify that e is guarded, and that solutions of e w. r. t. the completely iterative monad S are in
1-1-correspondence with solutions of e. Thus, since e has a unique solution so does e.

Now use that (TA, τA) is a free cia on A to obtain a unique H-algebra homomorphism λA : TA −→ SA
extending ηSA, i. e., such that λA · ηA = ηSA. One readily proves that λ is natural in A, that it is a monad
morphism from T to S, that it is uniquely determined, and that it is an ideal monad morphism. In fact, see
Theorem 4.4 of [M1] for the details. 2

Theorem 6.9 shows that any iteratable endofunctor admits a free completely iterative monad. The
converse is the main result of [M2], see also [M1] for an improved proof. This establishes that a free
completely iterative monad on an endofunctor is precisely the monad of free cias. Notice that this result
does not need any side conditions on A as is the case in Theorem 2.42 relating free monads and free algebras.

Theorem 6.10. ([M1], Theorem 6.1)
Every endofunctor generating a free completely iterative monad is iteratable. More precisely, if H has a free
completely iterative monad T = (T, η, µ, T ′, t, µ′), then H is iteratable, and moreover, for any object A, TA
is the final coalgebra for H( ) +A.

Sketch of Proof. Given a free completely iterative monad T on H with a canonical transformation κ : H −→
T . Then we obtain a completely iterative monadHT+Id , see [M2], Lemmas 3.3 and 3.5, with an ideal natural
transformation inl·Hη : H −→ HT+Id . Thus, we obtain a unique ideal monad morphism α : T −→ HT+Id
such that α · κ = inl ·Hη. One readily shows that the natural transformation

β ≡ HT + Id
κ+Id

//TT + Id
[µ,η]

//T

is an inverse of α. Then it is not difficult to show that TA is a final coalgebra for H( ) +A. In fact, every
coalgebra c : C −→ HC +A yields a guarded equation morphism

e ≡ C
c //HC +A

[κC ,ηA]
//TC + TA

can //T (C +A) .

The solutions of e are in one to one correspondence with coalgebra homomorphisms from (C, c) to (TA, αA).
Since there exists a unique solution e† it follows that (TA, αA) is the desired final coalgebra. 2
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Theorem 6.11. ([AMV2], Theorem 5.13)
Let H be a finitary endofunctor of an lfp category A. Then the rational monad R is the free iterative monad
on H. That is, the canonical transformation κ = % · Hη : H −→ R, see Example 6.5, has the following
universal property: for every iterative monad S and every ideal natural transformation λ : H −→ S there
exists a unique ideal monad morphism λ : R −→ S such that the triangle

H
κ //

λ
  @@@@@@@@ R

λ

��

S

commutes. Furthermore, this λ is an ideal monad morphism.

Remark 6.12. The proof of Theorem 6.11 is analogous to the proof of Theorem 6.9. Furthermore, Theo-
rem 6.11 has the following equivalent, and more categorical, formulation. Let A be an lfp category and recall
that Fin[A,A] is the category of all finitary endofunctors of A and natural transformations between them.
For the category

FIM(A)

of all finitary iterative monads (i.e., iterative monads (S, η, µ, S ′, σ, µ′) with S and S′ finitary) and ideal
monad morphisms we have a forgetful functor

U : FIM(A) −→ Fin[A,A], S 7−→ S ′ .

Theorem 6.11 states that U has a left adjoint, viz, the functor H 7−→ R.
A similar formulation of Theorem 6.9 is possible when A is a locally presentable category, see Remark 2.13,

and only accessible functors are considered, see [M1], Remark 4.4, for the precise formulation.

Remark 6.13. Observe that in case of a polynomial endofunctor HΣ of Set the results of Theorems 6.9
and 6.11 specialize to second-order substitution of all (rational) Σ-trees. In fact, recall Example 2.44, and
notice that for signatures Σ and Γ a natural transformation λ : HΣ −→ TΓ essentially gives an “implemen-
tation” to each operation symbol of Σ as a Γ-tree. When infinite trees are involved there is usually the
restriction to so-called non-erasing substitutions; i. e., all Σ-symbols are assigned to trees which are not just
single node trees labelled by a variable. That means that λ is an ideal natural transformation. The action
of the induced monad morphism λ : TΣ −→ TΓ is to perform for every set X the second-order substitution
of trees of TΣX according to λX . The result of Theorem 6.11 now implies that if for all sets X , the image
of λX consists of rational trees of RΓX then the above monad morphism has a domain-codomain restriction
to λ : RΣ −→ RΓ, i. e., the result of second-order substitution according to λ applied to rational Σ-tree is a
rational Γ-tree. Shortly, rational trees are closed under second-order substitution.
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7 Recursive Program Schemes

Describe, using diagrams where appropriate,
the exact circumstances leading to your death.

Grant Naylor, Red Dwarf: Infinity Welcomes Careful Drivers.

In this section we present the results of our paper [MM], which is joint work with Larry Moss. Here we shall
be interested in the semantics of recursive program schemes such as the one given in (1.7). Their classical
theory is compactly presented in [G]. Recall that we distinguish between uninterpreted and interpreted
semantics of recursive program schemes. For example, let Σ be a signature of givens consisting of a binary
symbol F and a unary one G. Then (1.7) is an uninterpreted recursive program scheme and its semantics
is given by the infinite trees in (1.8), which are the result of unfolding the given scheme. An interpreted
scheme comes with an algebra having operations for all the givens. A basic example is the recursive program
scheme (1.9) defining the factorial function. The standard way to obtain this interpreted solution is to
turn the natural numbers into a continuous algebra, and to compute the least fixed point of the continuous
function induced by (1.9).

In this section we shall present a generalization of the classical theory based on the results of the previous
sections. The point in a nutshell is that knowing that Σ-trees (over a set X) are the final coalgebra for a
polynomial functor on Set allows us to provide an uninterpreted semantics to recursive program schemes,
i. e., we show how to study and solve (suitably generalized) recursive program schemes in final coalgebras.
A part of the proof of our Solution Theorem 7.9 below is inspired by the work of Neil Ghani, Christoph
Lüth and Federico De Marchi, see [GLM2]. They have obtained a general solution theorem with the aim
of providing a categorical treatment of uninterpreted recursive program scheme solutions. However, the
connection we provide to (generalized) second-order substitution in Theorem 6.9 is new in our work.

Furthermore, we present an interpreted semantics of recursive program schemes. We show how to give
an interpreted solution to recursive program schemes in arbitrary complete Elgot algebras as introduced in
Section 4. Recall that in the classical theory a fundamental result states that uninterpreted and interpreted
solutions are consistent. We explained this in the introduction, see (1.12). In our categorical treatment of
recursive program schemes we can formulate this precisely, and we shall see that it follows immediately from
the proofs of our solution theorems for (un)interpreted program schemes.

Finally, we present several applications of our theory. Our method for obtaining interpreted solutions
easily specializes to the usual denotational semantics using complete partial orders. We also show how to
solve recursive program schemes in complete metric spaces, see Examples 1.13 and 1.14 in the introduction.
Furthermore, we obtain application which go beyond the possibilities of the classical theory. For example, it
is possible to recursively define operations satisfying certain equations like commutativity with a recursive
program scheme directly in out setting.

7.1 Iteratable Endofunctors

Assumption 7.1. For the rest of Section 7 we assume that A is a category with finite coproducts (having
monomorphic injections). In addition all endofunctors on A we consider are assumed to be iteratable, see
Definition 3.12.

There are fairly mild conditions. In fact, monomorphic coproduct injections could even be avoided,
see our discussion after Assumption 6.1. However, we admit that iteratability is not a very nice notion
with respect to closure properties of functors—for example, iteratable functors need not be closed under
coproducts or composition, see [AAMV], Example 2.12. In the concrete categories we consider here there
are stronger yet much nicer conditions that ensure iteratability:

Examples 7.2.

(i) Recall from Remark 2.13 that in the category Set an endofunctor is called accessible if it preserves
λ-filtered colimits for some regular cardinal λ. Every accessible endofunctor is iteratable, see [B3]. In
particular, functors derived from signatures on Set are iteratable. We discussed the final coalgebra
TΣX of HΣ( ) +X in Example 2.29(vi).

(ii) Recall from Example 4.11(i) the category CPO of ω-complete partial orders and continuous functions.
Unfortunately, not all locally continuous functors of CPO need be iteratable. For a counterexample
consider the endofunctor assigning to a cpo X the power set of the set of order components of X . This
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is a locally continuous endofunctor but it does not have a final coalgebra. However, every accessible
endofunctor H of CPO has a final coalgebra, see [B3], and moreover, H is iteratable.

(iii) Recall the category CMS of complete metric spaces from Example 3.6(vi). Every contracting endo-
functor on CMS is iteratable, see [ARe].

Notation 7.3. As we shall frequently have to deal with final coalgebras coming from two different functors
we denote from now on for an endofunctor H of A by

T(H)X

the final coalgebra for H( ) +X (or, equivalently, a free cia on X). Whenever confusion is unlikely we will
drop the parenthetical (H) and simply write TX as before. Recall from Corollary 3.13 that T(H) carries
the structure of a monad whose unit and multiplication we denote by

ηH : Id −→ T and µH : TT −→ T ,

respectively. Recall furthermore, that the structures of the free cias TX yield a natural transformation

τH : HT −→ T ,

and from Example 6.5 we have the canonical natural transformation

κH ≡ H
HηH

//HT
τH //T .

We shall frequently drop the superscripts if confusion is unlikely.

Examples 7.4. We mention additional examples of iteratable endofunctors of interest.

(i) Recall from Example 3.11(iii) that every finitary endofunctorH of Set comes as a quotient ε : HΣ −→ H
of some polynomial functor HΣ and that its free cias TX are given as a quotient of Σ-trees over X
modulo finite and infinite application of the basic equations describing ε.

(ii) The free cias of the finite power set functor Pfin are the algebras TY of strongly extensional finitely
branching trees over Y , see Example 3.11(ii). There is also a different but very elegant description
of TY using non-well founded sets, see [BM]. In fact, assuming the Anti-Foundation Axiom, a final
Pfin-coalgebra is carried by the set HF1 of hereditarily finite sets. Similarly, TY is the set HF1(Y ) of
hereditarily finite sets generated from the set Y .

(iii) In our applications, the key point is that certain Set functors lift to (iteratable) endofunctors of CPO.
And we need to know that those liftings are locally continuous. In fact, let H be an iteratable Set
functor with a locally continuous lifting H ′ on CPO, see Example 4.11(iii). Then H ′ is iteratable, and
moreover, the final coalgebra functor T(H ′) is a lifting of T(H):

CPO
T(H′)

//

U

��

CPO

U

��

Set
T(H)

// Set

(7.39)

To see this first recall that for every set X the final coalgebra T(H)X is obtained from the final
coalgebra chain Ti of H( ) +X , see Theorem 2.32. In fact, T(H)X is the coalgebra (Tj , t

−1
j+1,j) for the

smallest ordinal number j for which tj+1,j is bijective. Since the forgetful functor U preserves limits, it
follows that for a cpo X the final coalgebra chain of H ′( )+X has the Ti as underlying sets. However,
in CPO the continuous map tj+1,j might not be invertible. But since the chain of underlying sets
converges at index j we know that for all ordinal numbers k the connecting maps tj+k,j : Tj+k −→ Tj
are monomorphisms of CPO. Moreover, all cpos Tj+k have (up to isomorphism) the same underlying
set Tj and therefore the partial orders on the Tj+k, k ≥ 0, form a decreasing chain of subsets of Tj×Tj .
This implies that the final coalgebra chain has to converge at some index j + k, k ≤ card(Tj × Tj).
By standard arguments it follows that the cpo Tj+k is the final coalgebra of H ′( ) + X . Thus, we
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may choose T(H ′)X = Tj equipped with the cpo structure given by Tj+k , whence the square (7.39)
commutes as desired.

For example, every polynomial functor HΣ has a locally continuous and iteratable lifting H ′. The lift
is the functor

H ′X = Σ0 + Σ1 ×X + Σ2 ×X2 + · · ·
on CPO. Here each Σn is a discretely ordered set, + is the coproduct of CPO (a lift of the coproduct
on Set) and × the usual product. It should be noted that even if X has a least element ⊥, H ′X almost
never has one. Finally, T(H ′)X is the Σ-tree algebra TΣX with the order induced by the order of the
cpo X—we describe this order more detailed later in Example 7.24(i).

(iv) For a set endofunctor H with a contracting lifting H ′ on CMS, see Example 3.6(vii), we have that H
is iteratable and U · T(H ′) = T(H) · U , for the forgetful functor U : CMS −→ Set. In fact, this follows
from the results of [ARe] since U preserves limits. Recall that every polynomial functor HΣ of Set has
a contracting lifting to CMS. The final coalgebra T(H ′)X is the Σ-tree algebra TΣX equipped with a
suitable complete metric. We will discuss this metric later in Remark 7.26.

7.2 Uninterpreted Recursive Program Schemes

The classical treatment of recursive program schemes fits into our work in the following way: Suppose we
have a signature Σ of given operation symbols. Let Φ be a (finite) signature of new operation symbols.
Classically a recursive program scheme (or shortly, RPS ) gives for each operation symbol f ∈ Φn a term tf

over Σ + Φ in n variables. We thus have a system of formal equations

f(x1, . . . , xn) ≈ tf (x1, . . . , xn), f ∈ Φn, n ∈ N . (7.40)

Now observe that the names of the variables in (7.40) do not matter. More precisely, regarding Φ as a functor
from N to Set as in Example 2.44, any RPS as in (7.40) gives rise to a natural transformation

Φ −→ TΣ+Φ · J , (7.41)

where recall that J : N −→ Set is the inclusion functor mapping a number n to the set { 0, . . . , n− 1 }. The
formulation in (7.41) insures that in each equation of an RPS such as (7.40), if the symbol on the left side is
n-ary, then the variables that can appear on the right are the n elements of { 0, . . . , n− 1 }. Notice as well
that our formulation extends the classical notion of RPS in the sense that by taking TΣ+Φ we allow infinite
trees on the right-hand sides. Furthermore, we will generalize this notion of RPS.

The natural transformation in (7.41) corresponds to a unique natural transformation

HΦ −→ TΣ+Φ . (7.42)

as explained in Example 2.44. The point is that the formulation in (7.42) is more useful to us than the
one in (7.41) because (7.42) involves a natural transformations between endofunctors on one and the same
category.

Now notice that TΣ+Φ = T(HΣ +HΦ), where HΣ and HΦ denote the polynomial functors for Σ and Φ,
respectively. With this in mind, we can rewrite (7.42), and we see that recursive program schemes correspond
to natural transformations of the following form:

HΦ −→ T(HΣ +HΦ) .

Example 7.5. Let Σ contain a unary operation symbol G and a binary one F . The signature Φ of recursively
defined operations contains two unary symbols ϕ and ψ. Consider the recursive program scheme (1.7). The
polynomial functor expressing the givens is HΣ = X+ (X ×X) and the recursively defined operations Φ are
expressed by HΦX = X +X . Thus, the scheme (1.7) gives a natural transformation HΦ −→ T(HΣ +HΦ).

Similarly, the RPS (1.9) defining the factorial function with the signature Σ of givens and the signature
Φ containing the unary symbol f gives rise to a natural transformation HΦ −→ T(HΣ +HΦ).

In the classical treatment of recursive program schemes one gives an uninterpreted semantics to systems
like (1.7) which are in Greibach normal form; i. e., every term on the right-hand side of the system has as its
head symbol a symbol from the signature Σ of givens. The semantics assigns to each of the new operation
symbols a tree over Σ. These trees are obtained as the result of unfolding the recursive specification of the
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RPS. But much has been omitted so far. We have given no general account of any solution method, or even,
why the trees in (1.8) solve the scheme (1.7).

We will now abstract away from signatures and sets and study the uninterpreted and the interpreted
semantics of recursive program schemes considered as natural transformations of the form V −→ T(H + V )
where H , V , and H+V are iteratable endofunctors on the category A. To say what a solution of a recursive
program scheme is we use the universal property of the monads T(H) as presented in Theorem 6.9. It gives
an abstract version of second-order substitution. Here are our central definitions, generalizing recursive
program schemes from signatures to completely iterative monads.

Definition 7.6. Let V and H be endofunctors on A. A recursive program scheme (or RPS, for short) is a
natural transformation

e : V //T(H + V ) .

We sometimes call V the variables, and H the givens.
The RPS e is called guarded if there exists a natural transformation f : V −→ HT(H +V ) such that the

following diagram commutes:

V
e //

@Af

//

T(H + V )

(H + V )T(H + V )

τH+V

OO

HT(H + V )

inl∗T(H+V )

OO
(7.43)

A solution of e is an ideal natural transformation e† : V −→ T(H) such that the following triangle
commutes:

V
e† //

e

��

T(H)

T(H + V )
[κH ,e†]

99sssssssss
(7.44)

Remark 7.7. Recall that [κH , e†] is the unique ideal monad morphism extending σ = [κH , e†] : H + V −→
T(H), see Theorem 6.9. Observe that therefore it is important to require that e† be an ideal natural
transformation since otherwise σ is not defined.

Remark 7.8.

(i) From the discussion at the beginning of this subsection it follows that our definition is a generalization
of the classical notion of RPS (to the category theoretic setting), and it extends the classical work as
well by allowing infinite trees on the right-hand sides of equations.

Our notion of guardedness captures precisely the requirement that all right-hand sides of (7.40) have
their root labelled by a symbol from the givens Σ. In the classical treatment of RPS this is precisely
what is called Greibach normal form of an RPS, see [C].

Notice that the two recursive program schemes of Example 7.5 are in Greibach normal form, whence
they give rise to guarded RPS in the sense of Definition 7.6.

(ii) Suppose that H = HΣ and V = HΦ are polynomial endofunctors of Set, and consider the recursive
program scheme e : HΦ −→ T(HΣ + HΦ) as a set of formal equations as in (7.40). Then for every

set X of syntactic variables the X-component e†X : HΦX −→ TΣX of a solution assigns to a flat tree
(f, x1, . . . , xn) = (f, ~x) from HΦX a Σ-tree over X . The commutativity of the triangle (7.44) gives
the following property of solutions: apply to the right-hand side tf (~x) of f(~x) in the given RPS the
second-order substitution that replaces each operation symbol of Φ by its solution, and each operation
symbol of Σ by itself—this is the action of [κH , e†]X . The resulting tree in TΣX is the same tree as

e†X(f, ~x).

Theorem 7.9. ([MM], Theorem 6.15)
Every guarded recursive program scheme has a unique solution.
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Sketch of Proof. Let H : A −→ A be any iteratable functor. Then T = T(H) is a final coalgebra for the
functor H · + Id on the endofunctor category [A,A]. This result extends to the comma-category H/M(A)
whose objects are pairs (S, σ : H −→ S) where S is a monad on A and σ is a natural transformation, and
whose morphisms h : (S1, σ1) −→ (S2, σ2) are monad morphisms h : S1 −→ S2 with h · σ1 = σ2. In fact,
we obtain a functor H on H/M(A) with H(S, σ) = (HS + Id , inl · Hη), where η : Id −→ S is the unit of
the monad S. This functor restricts to the subcategory of H/M(A) formed by all pairs (S, σ), where S is
a completely iterative monad and σ an ideal natural transformation, and by all ideal monad morphisms,
see 6.4. Furthermore, T together with κH : H −→ T , see Notation 7.3, is the final H-coalgebra.

Now suppose we are given a guarded RPS e : V −→ T(H + V ). Then we have a natural transformation
σ = inl·[HηH+V , f ] : H+V −→ HT(H+V )+Id which is ideal in the sense that it factors throughHT(H+V ).
Notice that HT(H + V ) + Id is obtained by applying the functor H to (T(H + V ), κH+V · inl). Thus it is a
monad; in fact, it is a completely iterative monad. Use the universal property of the free completely iterative
monad T(H + V ), see Theorem 6.9, to obtain a monad morphism e : T(H + V ) −→ HT(H + V ) + Id . It is
easy to see that this gives rise to a H-coalgebra, and so there exists a unique coalgebra homomorphism h
from this coalgebra to the final one carried by (T(H), κH), which gives a monad morphism. Now define

e† ≡ V
inr // H + V

κH+V
// T(H + V )

h // T(H) .

A non-trivial proof shows that this is indeed the desired unique solution of e, see [MM] for details. 2

Remark 7.10. The first part of the above proof showing the finality of T(H) and defining the monad
morphism h uses similar ideas than the proof of the main result of [GLM2]. However, the second part in
which it is proved that e† is a solution of e and that this solution is unique is new in our work. It connects
solutions to the (generalized) second-order substitution as presented in Theorem 6.9.

Remark 7.11. In the leading example of a classical RPS for given signatures, the formation of the morphism
e corresponds to the formation of a flat system of equations, where for every (finite and infinite) tree there is
a recursion variable. More precisely, suppose we have signatures Σ and Φ, and an RPS as in (7.40) which is
in Greibach normal form. The component of e : T(HΣ +HΦ) −→ HT(HΣ +HΦ) at some set X of syntactic
variables is a flat equation morphism eX : TΣ+ΦX −→ HTΣ+ΦX +X . Therefore it can be seen as a set of
formal equations, which we will now describe. For every tree t ∈ TΣ+ΦX we have a variable t. If t is a single
node tree labelled by the syntactic variable x ∈ X then we have the formal equation

t ≈ x ,

and otherwise we have, for some n ∈ N and some σ ∈ Σn,

t ≈ σ(t1, . . . , tn) ,

where the tree s = σ(t1, . . . , tn) is the result of the following second-order substitution applied to t: every
symbol of Φ is substituted by its right-hand side in the given RPS, and every symbol of Σ by itself. Since
the given RPS is guarded the head symbol of s is a symbol of Σ for all trees t. Observe that forming the
right-hand sides of this system corresponds to the application of one step of Kleene’s computation rule,
see [G].

Now the component at X of the induced natural transformation h : T(HΣ +HΦ) −→ T(HΣ) assigns to
every t ∈ TΣ+ΦX of the flat system given by eX its solution in the cia TΣX , i. e., the Σ-tree obtained by
unfolding the recursive definition of t in the flat system. Thus, to every element (f, ~x) of HΦX the component
of the uninterpreted solution e† at X assigns the tree unfolding of (f, ~x) according to the system given by
eX .

Examples 7.12.

(i) For the guarded RPS of (1.7) the flat system obtained from eX for X = {x } includes the equations of
the system

x ≈ x ϕ(Gx) ≈ F (Gx,ϕ(GGx))

ϕ(x) ≈ F (x, ϕ(Gx)) F (x, ϕ(Gx)) ≈ F (x, F (Gx,ϕ(GGx)))

ψ(x) ≈ F (ϕ(Gx), GGx) GGx ≈ G(Gx)

ϕ(ψ(x)) ≈ F (F (ϕ(Gx,GGx)), ϕ(G(F (ϕ(Gx), GGx))))
...
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It is clear that the solution of this system in the cia TΣX will assign to ϕ(x) and ψ(x) the trees of (1.8).

(ii) The recursive program scheme of (1.9) yields for X = {n } the extension e which at X gives a system
including the following formal equations:

f(n) ≈ ifzero(n, one, f(pred(n)) ∗ n)

n ≈ n

one ≈ one (7.45)

f(pred(n)) ∗ n ≈ ifzero(pred(n), one, f(pred(pred(n)))) ∗ n
f(pred(n)) ≈ ifzero(pred(n), one, f(pred(pred(n)) ∗ pred(n)))

...

The map hX assigns to f(n) the following infinite tree

ifzero

n one ∗

ifzero n

pred(n) one ∗

ifzero pred(n)

pred(pred(n)) one ∗

ifzero pred(pred(n))

ttttttt
JJJJJJJ

ttttttt

JJJJJJJJ

tttttt
JJJJJJJ

ttttttt
JJJJJJJ

ooooooo

JJJJJJJ

ttttttt
JJJJJJJ

Notice that the nodes labelled by a term correspond to appropriately labelled finite subtrees.

Example 7.13. Let us now present an example of RPSs which are not captured in the classical setting.
Sometimes one might wish to recursively define new operations from old ones where the new operations
should satisfy certain extra properties automatically. We demonstrate this with an RPS defining recursively
a new operation which is commutative. Suppose the signature Σ of givens consists of a ternary symbol F and
a unary one G. Let us assume that we want to require that F satisfies the equation F (x, y, z) = F (y, x, z)
in any interpretation. Then Σ is modelled by the endofunctor HX = X3/∼ + X where ∼ is the smallest
equivalence on X3 with (x, y, z) ∼ (y, x, z). To be an H-algebra is equivalent to being an algebra A with
a unary operation GA and a ternary one FA satisfying FA(x, y, z) = FA(y, x, z). Suppose that we want to
define a commutative binary operation ϕ by the formal equation

ϕ(x, y) ≈ F (x, y, ϕ(Gx,Gy)) . (7.46)

To do it we express ϕ by the endofunctor V assigning to a set X the set of unordered pairs of X . It is not
difficult to see that the formal equation (7.46) gives rise to a guarded RPS e : V −→ T(H+V ). In fact, to see
the naturality use the description of the terminal coalgebra T(H + V )Y given in Example 3.11(iii). Notice
that in the classical setting we are unable to demand that (the solution of) ϕ is a commutative operation at
this stage: this fact would be proved separately once a solution has been obtained. Here we have encoded
this additional requirement into our RPS—every solution will be commutative. In fact, the components of
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the uninterpreted solution e†X : V X −→ T(H)X assign to an unordered pair {x, y } in V X the tree

F

{x, y }
����

F

?????

F

{Gx,Gy }
����

F

?????

F

{GGx,GGy }
����

where for every node labelled by F the order of the first two children cannot be distinguished; we indicate
this with set-brackets in the picture above.

7.3 Interpreted Recursive Program Schemes

We have seen in the previous section that for every guarded recursive program scheme we can find a unique
uninterpreted solution. In practice, however, one is more interested in finding interpreted solutions. In the
classical treatment of RPS this means that a recursive program scheme defining new operation symbols of a
signature Φ from given ones in a signature Σ comes together with some Σ-algebra A. An interpreted solution
of the recursive program scheme in question is, then, an operation on A for each operation symbol in Φ such
that the formal equations of the RPS become valid equations in A.

Of course, in general an algebra A will not admit interpreted solutions. We shall show in this section that
any complete Elgot algebra (A, a, ( )∗) admits an interpreted solution of every guarded recursive program
scheme. Moreover, if A is a cia, interpreted solutions are unique. We also show that uninterpreted solutions
and interpreted ones are consistent as explained informally in (1.12). This is a fundamental result for
algebraic semantics.

After having presented our main results we turn to applications. In Subsection 7.3.1 we prove that in
the category CPO our interpreted program scheme solutions agree with the usual denotational semantics
obtained by computing least fixed points. Similarly, we show in Subsection 7.3.2 for the category CMS that
our solutions are the same as the ones computed using Banach’s Fixed Point theorem. Furthermore, we
present new examples of recursive program scheme solutions pertaining to fractal self-similarity.

Notation 7.14. Recall from Theorem 4.17 that for every iteratable functor H the category of complete
Elgot algebras for H and their homomorphisms is isomorphic to the category of Eilenberg-Moore algebras
for T(H). Analogously as in Remark 3.15, we denote for any complete Elgot algebra (A, a, (−)

∗
) by

ã : TA −→ A

its associated structure of an Eilenberg-Moore algebra for T = T(H), and we shall refer to ã as evaluation
morphism of the complete Elgot algebra (A, a, (−)∗).

Definition 7.15. Let (A, a, (−)
∗
) be a complete Elgot algebra w.r.t. H and let e : V −→ T(H + V ) be an

RPS. An interpreted solution of e in A is a structure of a V -algebra

e‡A : V A −→ A ,

such that the (H + V )-algebra [a, e‡A] : (H + V )A −→ A is a complete Elgot algebra and such that the
triangle

V A

eA

��

e‡A // A

T(H + V )A

[̃a,e‡A]

99tttttttttt
(7.47)

commutes, where the diagonal arrow denotes the evaluation morphism of the complete Elgot algebra [a, e‡A].

61



Remark 7.16.

(i) In our leading example where H = HΣ and V = HΦ are polynomial endofunctors of Set the commu-
tativity of (7.47) states precisely that an interpreted solution provides operations on A which turn the
formal equations of the given recursive program scheme into actual identities. More precisely, suppose
that e is a recursive program scheme given by formal equations (7.40). The interpreted solution e‡A
gives for each n-ary operation symbol f of the signature Φ an operation fA : An −→ A, and the
commutativity of (7.47) gives the following property of fA: take for any ~a ∈ An the right-hand side
tf (~a) in the given recursive program scheme, then evaluate tf (~a) in A using the given operations for

Σ and the ones provided by e‡A for Φ on A—this is the action of [̃a, e‡A]. The resulting element of A is
the same as fA(~a).

(ii) The requirement that [a, e‡A] be the structure morphism of a complete Elgot algebra may seem odd at

first. However, we need to assume this in order to be able to use [̃a, e‡A] in (7.47). Furthermore, the
requirement has a clear practical advantage: operations defined recursively by means of an interpreted
solution of an RPS may be used in subsequent recursive definitions. For example, for polynomial
functors of Set as in (i) above the Elgot algebra with structure map [a, e‡A] has operations for all
operation symbols of Σ + Φ. Thus, it can be used as an interpretation of givens for any further
recursive program scheme with signature Σ + Φ of givens.

Theorem 7.17. ([MM], Theorem 7.3)
Let (A, a, (−)

∗
) be a complete Elgot algebra for H and let e : V −→ T(H + V ) be a guarded RPS. Then the

following hold:
(i) there exists an interpreted solution e‡A of e in A,

(ii) if A is a completely iterative algebra, then e‡A is the unique interpreted solution of e in A.

Sketch of Proof. Recall the H-coalgebra structure e from the proof of Theorem 7.9. The component at A of
e yields a flat equation morphism

eA : T(H + V )A −→ HT(H + V )A+A

w.r.t. the given complete Elgot algebra. Denote its solution (eA)∗ by β, and define

e‡A ≡ V A
inr //(H + V )A

κH+V
A //T(H + V )A

β
//A . (7.48)

A non-trivial proof shows that this morphism is an interpreted solution of e, and that it is the unique
interpreted solution if A is a cia. 2

Definition 7.18. For any guarded RPS e and any complete Elgot algebra (A, a, (−)∗), let e‡A be the
interpreted solution obtained from (7.48) above. We call this the standard interpreted solution of e in A.

Finally, we state the “Fundamental Theorem of Algebraic Semantics”, which establishes that uninter-
preted and interpreted solutions are consistent, see (1.12).

Theorem 7.19. ([MM], Theorem 7.7)
Let (A, a, ( )∗) be a complete Elgot algebra and consider its evaluation morphism ã : T(H)A −→ A. Let e be

any guarded recursive program scheme, let e‡A : V A −→ A be the standard interpreted solution of e in A of
Theorem 7.17, and let e† : V −→ T(H) be the (uninterpreted) solution of Theorem 7.9. Then the following
triangle commutes:

V A
e†A //

e‡A ##HHHHHHHHHH T(H)A

�

a

��

A

(7.49)

Furthermore, the standard interpreted solution e‡A is uniquely determined by the commutativity of the above
triangle.
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Remark. Notice that (e†)A is the component at A of the natural transformation e† whereas e‡A is not a
component of some natural transformation but merely a morphism from V A to A. Also observe that the
commuting triangle (7.49) above gives a precise meaning to the informal triangle of (1.12).

Sketch of Proof. Recall the morphisms h : T(H +V ) −→ T(H) and β : T(H +V )A −→ A from the proofs of
Theorems 7.9 and 7.17, respectively. It is not difficult to show that the equation β = ã·hA holds. Precompose
both sides with κH+V

A · inr : V A −→ T(H + V )A to obtain the desired result.

The uniqueness of e‡A follows since neither e†A nor ã depend on e‡A. 2

7.3.1 Interpreted Solutions in CPO

We shall show in this subsection that if we have A = CPO, the category of complete partial orders from
Example 4.11(ii), as our base category, then interpreted solutions of guarded RPSs e in a continuous algebra
are given as least fixed points of a continuous function on a function space. In this way we recover the usual
denotational semantics from our categorical interpreted semantics of recursive program schemes.

Example 7.20. Recall the RPS (1.9), see also Example 7.5. Clearly, the intended interpreted solution is
the factorial function on the natural numbers N.

To obtain a suitable complete Elgot algebra in which we can find an interpreted solution of (1.9), we
turn the natural numbers into an object of CPO. Let N⊥ be the flat CPO obtained from the discretely
ordered N by adding a bottom element ⊥, i. e., x ≤ y if and only if x = ⊥ or x = y. We equip N⊥ with
the obvious strict operations oneN⊥ , predN⊥ and ∗N⊥ , which are all continuous. In addition, we use the
continuous operation

ifzeroN⊥(n, x, y) =




⊥ if n = ⊥
x if n = 0
y else

Hence we have a continuous Σ-algebra with ⊥, and therefore N⊥ is an Elgot algebra w.r.t. HΣ : Set −→ Set,
see Example 4.11(iii).

The interpreted solution e‡N⊥ : HΦN⊥ −→ N⊥ will certainly be some function or other on N⊥. But
how do we know that this function is the desired factorial function? Usually one would simply regard the
RPS (1.9) itself as a continuous function R on CPO(N⊥,N⊥) acting as

f( ) 7−→ ifzeroN⊥( , 1, f(predN( ) ∗N⊥ ) , )

That means that we interpret all the operation symbols of Σ in the algebra N⊥. The usual denotational
semantics assigns to the formal equation (1.9) with the interpretation in N⊥ the least fixed point of R.
Clearly this yields the desired factorial function. And it is not difficult to work out that the least fixed point
of R coincided with the interpreted solution e‡N⊥ obtained from Theorem 7.17. We shall do this shortly in
greater generality.

In general, any recursive program scheme can be turned into a continuous function R on the function
space CPO(V A,A). Theorem 7.21 below shows that the least fixed point of R is the same as the interpreted
solution obtained from Theorem 7.17.

We assume throughout this subsection that H , V and H + V are locally continuous (and, as always,
iteratable) endofunctors of CPO. We also consider a fixed guarded RPS e : V −→ T(H+V ), and anH-algebra
(A, a) with a least element ⊥. By Example 4.11(ii), we know that this carries the structure of a complete
Elgot algebra (A, a, (−)

∗
), where (−)

∗
assigns to every flat equation morphism its least solution. As before

we will use the notation ã : T(H)A −→ A for the evaluation morphism. Furthermore, observe that for every
continuous map f : V A −→ A we have a complete Elgot algebra on A with structure [a, f ] : (H+V )A −→ A.
Due to Remark 4.18(i), its evaluation morphism satisfies

[̃a, f ] · κH+V
A = [a, f ] . (7.50)

Theorem 7.21. ([MM], Theorem 7.10)
The following function R on CPO(V A,A)

f 7−→ V A
eA //T(H + V )A

[̃a,f ]
//A (7.51)

is continuous. Its least fixed point is the standard interpreted solution e‡A : V A −→ A of Theorem 7.17.

63



Sketch of Proof. To see the continuity of R is suffices to prove that (̃ ) : CPO(HA,A) −→ CPO(T(H)A,A) is
continuous. Let us write T for T(H). Recall from Remark 4.18 that for every continuous map a : HA −→ A
the evaluation morphism ã is the least solution of the flat equation morphism αA : TA −→ HTA + A,
i. e., ã is the least fixed point of the continuous function F (a,−) : CPO(TA,A) −→ CPO(TA,A) with
F (a, f) = [a,A] · (Hf + A) · αA. Observe that F is continuous in the first argument a, and so F is a
continuous function on the product CPO(HA,A) × CPO(TA,A). It follows from standard arguments that
taking the least fixed point in the second argument yields a continuous map CPO(HA,A) −→ CPO(TA,A).

But this is precisely the desired one (̃ ).

We prove that e‡A is the least fixed point of R. Notice that the least fixed point of R is the join t of the

increasing chain in CPO(V A,A) given by t0 = const⊥ and ti+1 = [̃a, ti] · eA, for i ∈ N.

Furthermore, recall that the interpreted solution e‡A is defined by β · κH+V
A · inr, where β = (eA)∗ is the

least solution of the flat equation morphism which is obtained from the component at A of the H-coalgebra
e, see Theorem 7.17. By Example 4.11(ii), the solution β of eA is the join of the chain given by β0 = const⊥
and βi+1 = [a,A] ·H(βi +A) · eA, for i ∈ N.

Observe that e‡A is a fixed point of R, see (7.47). Thus, we have t v e‡A. To show the reverse inequality

one proves by induction on i the inequalities βi v [̃a, t], for i ∈ N, see [MM]. This implies that β v [̃a, t] and

therefore e‡A = β · κH+V
A · inr v [̃a, t] · κH+V

A · inr = t, by (7.50) above. 2

Remark 7.22. The result of Theorem 7.21 implies a concrete formula

e‡A =
⊔

n<ω

e‡n

for the interpreted solution of the guarded RPS e in the continuous algebra A. In fact, the least fixed point
of R is the join of the ascending chain

⊥ v R(⊥) v R2(⊥) v · · ·

where ⊥ = const⊥ is the least element of CPO(VA,A). Thus, with e‡0 = const⊥ and

e‡n+1 ≡ VA
eA //T(H + V )A

[̃a,e‡n]
//A

we obtain the above formula for e‡A.

Remark 7.23. Suppose that H , V and H + V are iteratable endofunctors of Set, which have locally
continuous liftings H ′ and V ′ to CPO. Then we have a commutative square

CPO

U

��

T(H′+V ′)
// CPO

U

��

Set
T(H+V )

// Set

by Example 7.4(iii). Assume that the guarded RPS e : V −→ T(H +V ) has a lifting e′ : V ′ −→ T(H ′+V ′);
i. e., a natural transformation e′ such that U ∗ e′ = e ∗ U . Now consider any CPO-enrichable H-algebra
(A, a) as a complete Elgot algebra, see Example 4.11(iii). Then we can apply Theorem 7.21 to obtain an

interpreted solution e‡A of e in the algebra A as a least fixed point of the above function R of (7.51).

Example 7.24.

(i) Suppose we have signatures Σ and Φ. Then the polynomial functors HΣ and HΦ have locally continuous
liftings H ′Σ and H ′Φ. Since the lifting of HΣ + HΦ is a lifting of HΣ+Φ we know that T(H ′Σ + H ′Φ)
assigns to a cpo X the algebra TΣ+ΦX with the cpo structure induced by X , see Example 7.4(iii).
More precisely, to compare a tree t to a tree s replace all leaves labelled by a variable from X by a
leaf labelled by some extra symbol ? to obtain relabelled trees t′ and s′. Then t < s holds in TΣ+ΦX
if and only if t′ and s′ are isomorphic as labelled trees, and for any leaf of t labelled by a variable x
the corresponding leaf in s is labelled by a variable y with x v y in X .
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Now consider any system as in (7.40) which is in Greibach normal form, and form the associated
guarded RPS e : HΦ −→ TΣ+Φ. Then e has a lifting e′ : H ′Φ −→ T(H ′Σ +H ′Φ). In fact, for every cpo
X the component e′X = eX : HΦX −→ TΣ+ΦX is a continuous map since the order in HΦX is given
similarly as for TΣ+ΦX on the level of variables only.

Let (A, a) be a CPO-enrichable HΣ-algebra; i. e., a continuous Σ-algebra with a least element ⊥. We
wish to consider the continuous function R on CPO(HΦA,A) which assigns to a continuous algebra

structure ϕ : HΦA −→ A the algebra structure R(ϕ) = [̃a, ϕ] · e′A. The structure R(ϕ) gives to each

n-ary operation symbol f of Φ the operation tfA : An −→ A which is obtained as follows: take the term
tf provided by the right-hand side of f in our given RPS, then interpret all operation symbols of Σ in
tf according to the the given algebraic structure a and all operation symbols of Φ according to ϕ; the
action of tfA is evaluation of that interpreted term.

Theorem 7.21 states that an interpreted solution e‡A of e in the algebra A can be obtained by taking

the least fixed point of R; in other words, the interpreted solution e‡A gives the usual denotational
semantics.

(ii) Apply the previous example to the RPS of (1.9) considered as a natural transformation, see Exam-
ple 7.5. Then Theorem 7.21 states that the interpreted solution of the RPS (1.9) in the complete
Elgot algebra N⊥ is obtained as the least fixed point of the function R of Example 7.20. That is, the
interpreted solution gives the desired factorial function.

(iii) Recall the guarded RPS e from Example 7.13. Consider again the algebra N⊥ together with the
following two operations:

FN⊥ (x, y, z) =

{
x if x = y
z else

GN⊥(x) =

{
bx2 c if x ∈ N
⊥ x = ⊥

Since the first operation obviously satisfies FN⊥(x, y, z) = FN⊥(y, x, z) we have defined an H-algebra.
It is not difficult to check that the set functor H has a locally continuous lifting H ′ on CPO and that
N⊥ is a continuous H ′-algebra. In fact, the existence of the lifting H ′ follows from the fact that the
unordered pair functor V : Set −→ Set can be lifted to CPO; the lifting assigns to a cpo (X,≤) the
set of unordered pairs with the following order: {x, y } v {x′, y′ } if and only if either x ≤ x′ and
y ≤ y′, or x ≤ y′ and y ≤ x. Thus, we have defined a complete Elgot algebra for H : Set −→ Set, see
Example 4.11(iii). The interpreted solution e‡N⊥ : VN⊥ −→ N⊥ is given by one commutative binary
operation ϕN⊥ on N⊥. We leave it to the reader to verify that for natural numbers x and y, ϕN⊥(x, y)
is the natural number represented by the greatest common prefix in the binary representation of x and
y, e. g., ϕN⊥(12, 13) = 6. Notice that we do not have to prove separately that ϕN⊥ is commutative.
The way we have formed the RPS e in Example 7.13 ensures that the interpreted solution must be
given by a commutative operation.

(iv) Least fixed points are RPS solutions. Let A be a poset with joins of all subsets which are at most
countable, and let f : A −→ A be a function preserving joins of ascending chains. Take f and binary
joins to obtain an algebra structure on A of the polynomial set functor HΣX = X+X×X expressing a
binary operation symbol F and a unary one G. Obviously, this functor has a lifting H ′ : CPO −→ CPO
and A is a CPO-enrichable algebra, i. e., A is a complete Elgot algebra. Turn the formal equations (1.7)
into a recursive program scheme e : HΦ −→ T(HΣ +HΦ) as demonstrated in Example 7.5. The RPS
e has a lifting e′ : V ′ −→ T(H ′ + V ′), where V ′ denotes the lifting of HΦ. The interpreted solution

e‡A : V ′A −→ A gives two continuous functions ϕA and ψA on A. Clearly, we have ϕA(a) =
∨
n∈N f

n(a),
and in particular ϕA(⊥) is the least fixed point of f .

7.3.2 Interpreted Solutions in CMS

Recall the category CMS of complete metric spaces from Example 3.6(vi), and let H,V : CMS −→ CMS be
contracting endofunctors. We shall show in this subsection that for every guarded RPS e : V −→ T(H + V )
we can find a unique interpreted solution in every non-empty H-algebra A. More precisely, assume that we
have such a guarded RPS e, and let (A, a) be a non-empty H-algebra. Then A is a cia, and in particular it
carries the structure of an Elgot algebra. Notice that for every non-expanding map f : V A −→ A we obtain
an algebra structure [a, f ] : (H + V )A −→ A, thus we have the induced evaluation morphism

[̃a, f ] : T(H + V )A −→ A .
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As in CPO, the RPS e induces a function R on CMS(V A,A), see (7.51). The standard procedure for obtaining
an interpreted solution would be to prove that R is a contracting map, and then invoke Banach’s Fixed Point
theorem to obtain a unique fixed point of R. Here we simply apply Theorem 7.17. Notice, however, that we
cannot completely avoid Banach’s Fixed Point theorem: it is used in the proof that final coalgebras exist for
contracting functors, see [ARe].

Corollary 7.25. ([MM], Corollary 7.14)

The interpreted solution e‡A : V A −→ A of e in A as obtained in Theorem 7.17 is the unique fixed point of
the function R on CMS(V A,A) defined by (7.51).

Proof. In fact, being a fixed point of R is equivalent to being an interpreted solution of e in the cia A, whose
unique existence we have by Theorem 7.17. 2

Remark 7.26. Let HΣ be a polynomial functor on Set and denote by H ′ a contracting lifting to CMS as
described in Example 3.6(vii). For a complete metric space Y the final coalgebra T(H ′)Y of H ′( ) + Y
is the set TΣY of all Σ-trees over Y with a suitable complete metric. This metric can be described as
follows. Recall from [ARe] that T(H ′)Y is obtained as Tω after ω steps of the final coalgebra chain for
H ′( ) + Y , see Section 2.3. That means the metric on TΣY is the smallest metric such that all projections
tω,i : TΣY = Tω −→ Ti are non-expanding. We illustrate this with an example adapted from [ARe]. Let
HΣX = X ×X be the functor expressing one binary operation symbol ∗. Then we can represent T0 = 1 by
a single node tree labelled with ⊥ and Ti+1 = Ti×Ti+Y by trees which are either single node trees labelled
in Y , or which are composed by joining two trees from Ti with a root labelled by ∗:

T0 : ⊥

T1 : y,

∗

⊥ ⊥
����

////

T2 : y,

∗

y y′
����

////
,

∗

y ∗

⊥ ⊥

����
////

����
//// ,

∗

∗ y

⊥ ⊥

////

����

����
//// ,

∗

∗ ∗

⊥ ⊥ ⊥ ⊥

////

����

����
))))

����
))))

...

The distance on T1 is that of Y for single node trees and 1 otherwise. The distance on T2 is again that of
Y between single node trees, and 1 between single node trees and all other trees. Furthermore, the distance
between trees of different shapes is 1

2 , and finally, dT2(y ∗ y′, z ∗ z′) = 1
2 max{ dY (y, z), dY (y′, z′) } as well as

dT2(y ∗ t, y′ ∗ t) = dT2(t ∗ y, t ∗ y′) = 1
2dY (y, y′), where t = ⊥∗⊥, etc. In general, the distance on Ti+1 is that

of Y between single node trees, it is 1 between single node trees and trees of height at least 1, and otherwise
we have dTi+1(s ∗ t, s′ ∗ t′) = 1

2 max{ dTi(s, s′), dTi(t, t′) }. For the metric on TΣY , we have

dTΣY (s1, s2) = sup
i<ω

dTi(tω,i(s1), tω,i(s2)).

This is the smallest metric for which the projections are non-expanding. (One may also verify directly that
this definition gives a complete metric space structure and that H ′( ) + Y preserves the limit, so that we
indeed have a final coalgebra.) Finally notice that the metric of TΣY depends on the choice of the lifting H ′.
For example, if we lift the functor HΣ as H ′(X, d) = (X2, 1

3dmax), the factor 1
2 would have to be replaced

by 1
3 systematically.

Example 7.27.

(i) Consider the endofunctor H ′ : CMS −→ CMS obtained by lifting the polynomial set functor HΣX =
X ×X +X expressing a binary operation F and a unary one G as described in Example 3.6(vii). The
Euclidean interval I = [0, 1] together with the operations F (x, y) = x+y

4 and G(x) = 1
2 sin(x) is an H ′-

algebra, whence a cia. Use only the first equation in (1.7) to obtain a guarded RPS e : Id −→ T(HΣ+Id)
where Id expresses the unary operation symbol ϕ. Let V ′ be contracting lifting of Id with a contraction
factor of ε = 1

2 . Then e gives rise to a guarded RPS e′ : V ′ −→ T(H ′ + V ′) in CMS. The unique
interpreted solution of e′ in I consists of a function ϕI : I −→ I satisfying ϕI (x) = 1

4 (x+ ϕI(
1
2 sinx)),

that is, ϕI is the unique function f satisfying (1.13).
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(ii) Self similar sets are solutions of interpreted program schemes. Recall from Example 3.6(viii) that for
every complete metric space (X, d) we obtain the complete metric space (C(X), h) of all non-empty
compact subspaces of X . Furthermore, contractive mappings of X yield structures of cias on C(X).
Now consider the functor H ′ on CMS with H(X, d) = (X3, 1

3dmax), where dmax is the maximum metric.
It is a lifting of the polynomial functor HΣ on Set expressing one ternary operation α. Let A = [0, 1]2,
be equipped with the usual Euclidean metric. Consider the contracting maps f(x, y) = ( 1

3x,
1
3y),

g(x, y) = ( 1
3x + 1

3 ,
1
3y), and h(x, y) = ( 1

3x + 2
3 ,

1
3y) of A. Then it follows that αA : C(A)3 −→ C(A)

with α(D,E, F ) = f [D] ∪ g[E] ∪ h[F ] is an 1
3 -contracting map, whence a structure of an H ′-algebra.

The following formal equation
ϕ(x) ≈ α(ϕ(x), x, ϕ(x))

gives rise to a guarded RPS e : Id −→ T(HΣ + Id), where the identity functor expresses the operation
ϕ. If we take the lifting of Id to CMS which is given by V ′(X, d) = (X, 1

3d), then e gives rise to
a natural transformation e′ : V ′ −→ T(H ′ + V ′). Its interpreted solution in the algebra C(A) is a
1
3 -contracting map ϕA : C(A) −→ C(A) which maps a non-empty compact subspace U of A to a space
of the following form: ϕA(U) has three parts, the middle one is a copy of U scaled by 1

3 , and the
left-hand and right-hand one look like copies of the whole space ϕA(U) scaled by 1

3 . For example we
have the assignment

0 1

1

ϕA7−→

1

1
3

0

(iii) Coming back to Example 3.6(x) let us consider (C(I), αI ), where I = [0, 1] is the Euclidean interval and
αI is the structure of a cia arising from fx = 1

3x and g(x) = 1
3x+ 2

3 as described is Example 3.6(viii).
The formal equation

ϕ(x) ≈ α(ϕ(x), x)

gives similarly as in (i) above a guarded RPS e : Id −→ T(HΣ+Id), whereHΣX = X×X now expresses
the binary operation α. Again, we have liftings V ′(X, d) = (X, 1

3d) and H ′(X, d) = (X2, 1
3dmax) of

Id and HΣ, respectively. So the RPS e lifts to the guarded RPS e′ : V ′ −→ T(H ′ + V ′) in CMS.
Its unique interpreted solution is given by the 1

3 -contracting map ϕI : C(I) −→ C(I) satisfying
ϕI(t) = αI(ϕI (t), t) = f [ϕI(t)] ∪ g[t] for every non-empty closed subset t of the interval I , cf. (1.14).
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8 Conclusions and Further Research
There is a theory which states that if ever anyone discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

Douglas Adams, The Restaurant at the end of the Universe.

In this summary we have presented the material of our papers [AMV1, AMV2, AMV3, AAMV, M1, M2,
MM]. We have started with the study of iterative and completely iterative algebras for an endofunctor, and
we have shown that the free (completely) iterative algebras yield an easy description of free (completely)
iterative monads. In this way we have generalized and extended the classical results of Calvin Elgot and his
coauthors [E, BE, EBT] following the footsteps of Evelyn Nelson [N]. We have seen that free completely
iterative algebras or free completely iterative monads are equivalently given by final coalgebras. We believe
that this characterization of final coalgebras as free algebras of some sort is a new and interesting result.
In particular, for our subsequent work on semantics of recursive program schemes that connection between
coalgebra and algebra is a corner stone—it opens up the possibility to apply coalgebraic methods in algebraic
semantics.

In the second part of our work we have introduced and studied (complete) Elgot algebras and we char-
acterized them as the Eilenberg-Moore algebras for free (completely) iterative monads. We then argued
that the structure of Elgot algebras captures the most important structural properties of algebras that are
suitable for algebraic semantics.

In the last part we have shown how to apply our results to provide semantics of recursive program schemes
in a category theoretic way. We have seen that the universal property of free completely iterative monads
serves as a generalized second-order substitution and it therefore allows to formulate in a category theoretic
way the notion of a solution of a recursive program scheme. We then proved that every guarded recursive
program scheme has a unique uninterpreted solution. Next we provided a canonical interpreted semantics
of guarded recursive program schemes in complete Elgot algebras.

As the semantics of recursive program schemes is a topic at the heart of theoretical computer science
it is an important problem to see whether it can be handled using coalgebraic methods. We are pleased
that we can report a success in this matter. Our applications show that we have developed a unified view of
solution principles for a large class of recursive definitions including the usual algebraic semantics of recursive
program schemes. Of course, our more abstract theory takes somewhat more effort to build. But we feel
that the gain in conceptual clarity more than outweighs this small disadvantage.

In addition to the material we have presented here we have obtained a number of results which are closely
related but cannot be treated in detail here. We will discuss them briefly now.

Our whole work rests on the assumption that enough final coalgebras for an endofunctor exist. While this
is a weak assumption, there are important examples of endofunctors not satisfying this requirement, e. g.,
the power set functor on Set. In our paper [AMV4] we have shown that this can be circumvented by working
in the category Class of classes in lieu of Set. We proved that every endofunctor of Class has an initial algebra
and a final coalgebra so that all endofunctors generate free completely iterative monads. In particular, we
gave a description of the final coalgebra for the power set functor. The fact that every endofunctor of Class
has a final coalgebra was also independently discovered by Daniela Cancila [Ca]. In [AMV5] we have extended
our work from Set to other categories K. More precisely, we start with any locally small, cocomplete and
cowell-powered category K, and we consider its free cocompletion K∞ under transfinite colimits, e. g., for
K = Set we have K∞ = Class. We proved that every endofunctor H of K extends essentially uniquely
to an endofunctor H∞ of K∞, and that H∞ has a final coalgebra. Moreover, if K is a locally finitely
presentable category then H∞ generates a completely iterative monad in such a way that every guarded
equation morphism which lies in the base category K has its solution in K, too. For example, for the power
set functor that means that every guarded equation morphism can be uniquely solved in Set—one does not
need to worry about classes at all.

Another line of our current research has been inspired by the work of Tarmo Uustalu [U]. He proposed to
study complete iterativity with respect to a so-called base in lieu of an endofunctor. A base is a functor from
the category A to the category of (finitary) monads on A. Bases allow an interesting extension of our theory
which captures algebras satisfying certain equations and where the iterativity can be restricted. In fact, we
have taken up the task to extend the results on iterative algebras and iterative monads of [AMV1, AMV2]
presented here to bases with the series of papers [AMV6, AMV7, AMV8, AMV9, AMV10]. In [AMV11] we
present one application of this extended theory; a categorical description of the monad of algebraic trees,
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i. e., those trees that arise as uninterpreted solutions of (classical) recursive program schemes, see [C].
Very recently, we have turned our attention to recursive coalgebras, inspired by the work of Venanzio

Capretta, Tarmo Uustalu and Varmo Vene [CUV]. A coalgebra is recursive if it admits a unique coalgebra-
to-algebra homomorphism into any given algebra. In the paper [ALM] which arose from the second author’s
diploma thesis, we have proved that for a finitary endofunctor of Set preserving inverse images a coalgebra
is recursive if and only if it admits a coalgebra homomorphism into the initial algebra, or if and only if it
satisfies the dual concept of complete iterativity. Applications of recursive coalgebras lie, for example, in the
realm of the semantics of functional programs using divide-and-conquer strategies such as Quicksort etc. In
the subsequent work [AM2] we will extend the above equivalences beyond finitary functors: the same results
hold for all endofunctors of Set preserving inverse images, and moreover, the category Set can be generalized
substantially.

Now let us mention a few points which seem worthwhile to be addressed in future research. Our work
on recursive program scheme semantics is only in its beginning phase. We suspect that much more can
be said about the relation of our work to operational semantics. One should investigate higher-order re-
cursive program schemes using our tools. The paper [MU] addresses variable binding and infinite λ-terms
coalgebraically, and this may well be relevant. Back to the classical theory, one of the main goals of the
original theory is to serve as a foundation for program equivalence. It is not difficult to prove the sound-
ness of fold/unfold transformations in an algebraic way using our semantics; this was done in [Mo2] for
uninterpreted schemes. One would like more results of this type. The equivalence of interpreted schemes
in the natural numbers is undecidable, and so one naturally wants to study the equivalence of interpreted
schemes in classes of interpretations. The classical theory proposes classes of interpretations, many of which
are defined on ordered algebras, see [G]. It would be good to revisit this part of the classical theory to see
whether Elgot algebras suggest tractable classes of interpretations.

One of our applications of recursive program schemes showed how to define operations satisfying basic
equations, e. g., commutativity. One would like tools to consider more general equations, e. g., associativity.
This can however not be achieved by using endofunctors and natural transformations to express recursive
program schemes as we have done. One should start with monads expressing givens and variables, e. g., a
binary associative operation is expressed by the list monad on Set. But at the moment we are even lacking
the most basic tools to study recursive program schemes this way. For example, we need an analogue of
a free completely iterative monad on an endofunctor, i. e., we need the completely iterative reflection of a
given monad. We have taken first steps in this direction with [M3].

Another topic for future research is the investigation of the connection of our work to other approaches
to semantics, e. g., the traced monoidal categories of [JSV, Ha] or the iteration theories of Stephen Bloom
and Zoltán Ésik [BÉ]. For example, the assignment of a free iterative monad to a finitary set endofunctor
gives rise to a monad on Fin[Set, Set]. We have characterized the Eilenberg-Moore algebras of this monad
in [M4]. We call those Elgot monads, analogously to Elgot algebras. They are monads providing for any
guarded equation morphism a canonical solution, i. e., such that certain axioms of the solution operation are
fulfilled. These axioms are very similar to the iteration theory axioms. But the precise relationship of Elgot
monads and iteration theories needs still to be investigated.

Finally, to conclude this thesis let us sum up the gist of our work in one sentence: We believe to have
contributed to the part of the theory of coalgebras which pertains to the semantics of recursion by exploring
and using the structure of monads that arises from final coalgebras—in other words, we studied the connection
of coalgebras, monads and semantics. Of course, much remains to be done, or as Albert Einstein put it:

The important thing is not to stop questioning.
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Appendix

In this appendix we include the following of our papers:

[AMV1] Free Iterative Theories: a coalgebraic view
[AMV2] From Iterative Algebras to Iterative Theories
[AMV3] Elgot Algebras
[AAMV] Infinite Trees and Completely Iterative Theories: A Coalgebraic View
[M1] Completely Iterative Algebras and Completely Iterative Monads
[M2] On Iteratable Endofunctors
[MM] The Category Theoretic Solution of Recursive Program Schemes

These papers contain the results with full proofs that we have presented in the preceeding sections. Each of
the papers may, of course, be read on its own. Together they can serve as a reference for all the details we
had to omit.
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Every finitary endofunctor of Set is proved to generate a free iterative theory in the sense of

Elgot. This work is based on coalgebras, specifically on parametric corecursion, and the

proof is presented for categories more general than just Set.

1. Introduction

Iterative algebraic theories were introduced by Calvin C. Elgot in Elgot (1975) as a

concept serving the study of computation (on, say, Turing machines) at a level abstracting

from the nature of external memory. The main example presented by Elgot is the theory

of rational trees, that is, infinite trees that are solutions of systems of finitary iterative

equations. Or, equivalently, that possess only finitely many subtrees. He and his coauthors

later proved that this theory is a free iterative theory on a given (finitary) signature (Elgot

et al. 1978).

The purpose of the present paper is to generalise Elgot’s result from signatures (in other

words, polynomial endofunctors of the category of sets) to finitary endofunctors of Set

and some ‘set-like’ categories, for example, the category of posets. Using a very general

Solution Theorem, developed in previous work, which shows by coalgebraic methods

how iterative equations can be solved in categories, we prove that finitary endofunctors

generate free iterative theories (in other words, finitary monads), called rational monads.

We construct the rational monad in two steps:

(1) A rational monad of a strongly finitary endofunctor, that is, a finitary endofunctor

‘preserving finiteness’, is constructed in Section 4.

and

(2) A rational monad of a general finitary endofunctor is derived in Section 5.

We work with categories called strongly LFP, which we introduce in Section 2. And we

assume that the given endofunctor preserves monomorphisms. For the category Set this

last assumption can be omitted, as we show in Section 6. For all these cases the common

formulation of a rational monad, R, is: R assigns to every object Y (of ‘parameters’) the

union RY of all images of solutions of finitary flat equations with parameter Y .

In the rest of the introduction we explain the concepts mentioned above, and give

further references.

† The first and third authors acknowledge the support of the Grant Agency of the Czech Republic under the

Grant No. 201/02/0148.
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1.1. What is a rational tree?

The algebra of finite and infinite Σ-labelled trees has, for every finitary signature Σ,

the important property that iterative equational systems of a certain (liberal) type have

unique solutions. And when we solve finitary flat iterative systems, we obtain precisely

the so-called rational trees. We will now describe this in more detail.

For any set X of variables, we use

TΣX

to denote the algebra of all finite and infinite Σ-labelled trees with variables from X. That

is, trees labelled so that a node with n > 0 children is labelled by an n-ary operation

symbol (an element of Σn), and a leaf is labelled by a variable or a constant symbol (an

element of X + Σ0). The operations on TΣX are given by tree-tupling. Now consider a

system of iterative equations†

x0 ≈ t0(x0, x1, x2, . . . , y0, y1, y2, . . .)

x1 ≈ t1(x0, x1, x2, . . . , y0, y1, y2, . . .)

... (1)

xn ≈ tn(x0, x1, x2, . . . , y0, y1, y2, . . .)

...

where ti are trees with leaves labelled by variables from X = {x0, x1, x2, . . .} and parameters

from Y = {y0, y1, y2, . . .}, that is,

ti ∈ TΣ(X + Y ) for i = 0, 1, 2, . . .

Such a system is called guarded if none of the trees ti is a variable from X. This
condition alone guarantees that there exists a unique solution of (1), that is, a unique list

xi
†(y0, y1, y2, . . .) of trees in TΣY such that the expected identities

x0
† = t0(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)

x1
† = t1(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)

...

xn
† = tn(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)

...

hold in TΣY .

Theorem 1.1. Every guarded system of iterative equations has a unique solution.

This is a special case of a much more general Solution Theorem, which we mention in

Section 1.2 below.

† We use ≈ to denote formal equations and = to denote the identity of the two sides.
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Example 1.2. Let Σ consist of binary operation symbols + and ∗ and a constant symbol

⊥. The following system of iterative equations

x0 ≈ x1

y ⊥

����

����

����
����

∗

+

x1 ≈
x0 ⊥

����

����

∗

is guarded. The solution is given by the following trees in TΣY :

x0
† =

.
.
.

⊥ y ⊥

⊥ y ⊥

����

����
����

����

����
����

����
���� ����

����

�������
�������

+

∗ ∗
+

∗ ∗
+

x1
† =

x0
†

⊥�������

�������

������

����

∗

A guarded equational system (1) is called finitary if it has only finitely many variables

and the right-hand sides ti are finite trees (such as those in Example 1.2). It is easy to see

that every finitary system has a simple reduction to a finitary flat system, that is, one with

finitely many variables, and with right-hand sides ti that are either

(a) flat trees

x0 . . . xn−1

σ
�����

����� with σ ∈ Σn and x0, . . . , xn−1 ∈ X

or

(b) single parameters from Y .

Observe that (a) includes single constant symbols σ ∈ Σ0.

Example 1.3. A reduction of the system of Example 1.2 is obtained by introducing new

variables z0, z1 and z2 as follows:

x0 ≈
x1 z0

����

����

+

z0 ≈
z1 z2

����

����

∗
z1 ≈ y z2 ≈ ⊥

x1 ≈
x0 z2

����

����

∗

The unique solution of this reduced system is the original solution x0
† and x1

† together

with the obvious new trees zi
† for i = 0, 1, 2.

Definition 1.4. A tree in TΣY is called rational if it can be obtained by solving a finitary

flat system of equations.
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Thus, the trees x0
† and x1

† in Example 1.2 are examples of rational trees. Rational

trees are fully characterised as those trees in TΣY that have, up to tree isomorphism, only

finitely many subtrees (Elgot et al. 1978). For example, all subtrees of x0
† in Example 1.2

are isomorphic to one of the following five (obtained by breadth-first search of the nodes

of x0
†):

x0
†

�������

������� x1
†

�������

�������
y ⊥

����

����

∗
⊥ y

Now the subalgebra

RΣY

of TΣY of all rational trees has a solution property ‘almost as strong’ as the algebra TΣY

itself.

Theorem 1.5. Every finite guarded system of iterative equations with rational right-hand

sides has a unique solution in RΣY .

A direct proof of this theorem is not difficult, but we do not have to discuss it here

because we are going to prove a much more general result, called the Rational Solution

Theorem, see Corollary 5.8.

1.2. What is a solution in general?

In this subsection we recall briefly some results, which were obtained independently by

Larry Moss (Moss 2001) and the present authors in collaboration with Peter Aczel (Aczel

et al. 2002). The reader can find more details in the extended abstract Aczel et al. (2001),

which has already been published.

We now generalise infinite trees, which are elements of the final coalgebra TΣX of the

polynomial endofunctor HΣ( ) + X, to final coalgebras of H( ) + X for an arbitrary

endofunctor H . Recall that, given a signature Σ, the corresponding polynomial functor

HΣ : Set −→ Set

defined by

HΣA = Σ0 + Σ1 × A+ Σ2 × A2 + · · ·
has the property that HΣ-algebras are just the classical universal algebras of signature Σ.

A final HΣ-coalgebra is well known to be the coalgebra TΣ� of all finite and infinite Σ-

labelled trees without variables (Adámek and Koubek 1995). Now the functor HΣ( ) +X

is also polynomial (for the signature obtained from Σ by adding a constant symbol for

every variable in X), thus,

TΣX is a final coalgebra of HΣ( ) +X.

In our previous work (Aczel et al. 2002) we have introduced the concept of an iteratable

endofunctor of Set (or, more generally, of any category with binary coproducts): it is an
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endofunctor H such that H( )+X has a final coalgebra, for every X. We use the notation

TX

to denote a final coalgebra of H( )+X, and the coalgebra-structure (which, by Lambek’s

Lemma (Lambek 1968), is an isomorphism between TX and HTX + X) is denoted by

giving names to the coproduct injections of TX (as a coproduct of HTX and X) as

follows:

ηX : X −→ TX (‘injection of variables’)

and

τX : HTX −→ TX (‘TX becomes an H-algebra’).

Recall that an endofunctor is called finitary if it preserves filtered colimits. Every finitary

endofunctor is iteratable, see Example 2.11 of Aczel et al. (2002). The above concept of

a guarded system of equations can be formalised by a function e : X −→ T (X + Y ),

xi �→ ti. And since T (X + Y ) =
(
HT (X + Y ) + Y

)
+ X is a coproduct with injections

[τX+Y , ηX+Y · inr] : HT (X + Y ) + Y −→ T (X + Y ) and ηX+Y · inl : X −→ T (X + Y ),

to say that the right-hand sides ti are never variables from X is precisely to say that e

factors through [τX+Y , ηX+Y · inr]. Hence, the notion of a guarded system (1) generalises

as follows.

Definition 1.6. Let H be an iteratable endofunctor. We define a guarded equation morphism

for H to be a morphism of the form

e : X −→ T (X + Y )

(X is the ‘object of variables’ and Y the ‘object of parameters’) that factors through the

coproduct injection [τX+Y , ηX+Y · inr] : HT (X + Y ) + Y −→ T (X + Y ):

X
e ��

��

T (X + Y )

HT (X + Y ) + Y

[τ,η·inr]

��

The H-algebras TX have a rich structure. First, substitution of trees in TΣX for

variables generalises to all iteratable endofunctors. Recall that given an interpretation of

variables x ∈ X as trees s(x) over Y , that is, a function s : X −→ TΣY , the corresponding

substitution of trees from TΣY into (leaves of) trees of TΣX is a homomorphism

ŝ : TΣX −→ TΣY

of Σ-algebras. Moreover, ŝ is the unique homomorphic extension of s. This can be

generalised to all iteratable endofunctors.

Theorem 1.7 (Substitution Theorem). For every morphism s : X −→ TY there exists a

unique homomorphism ŝ : TX −→ TY of H-algebras extending s (that is, with s = ŝ ηX).

The proof can be found in Moss (2001) or Aczel et al. (2001) (and a slightly improved

version in Aczel et al. (2002)).
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Corollary 1.8. (T , η, (̂ ) ) is a Kleisli triple, that is, the following three axioms are satisfied:

(i) η̂X = idTX , for every object X,

(ii) ŝ ηX = s, for every morphism s : X −→ TY ,

and

(iii) r̂ ŝ = ̂̂r s , for every pair s : X −→ TY and r : Y −→ TZ .

As shown in Manes (1976), axioms (i)–(iii) are equivalent to having a monad (T , η, µ),

where µX = i d̂TX : TTX −→ TX. Observe that µX is a homomorphism of H-algebras

(since every ŝ is). However, this monad is usually not finitary; thus, it cannot be identified

with an algebraic theory in the sense of Lawvere.

Example 1.9. For every signature Σ we have a monad (TΣ, η, µ), where TΣX is the algebra

of all finite and infinite Σ-labelled trees above, η is the insertion of variables (as one-node

trees), and µ is the usual substitution of trees into trees. This monad is seldom finitary.

(In fact, it is finitary iff all operations of Σ are either unary or nullary.)

Next, we can introduce solutions for equation morphisms e : X −→ T (X + Y ) by

mimicking the case of trees as follows. A solution of e is a morphism e† : X −→ TY . It

has the property that when the following ‘substitution’ morphism

s = [e†, ηY ] : X + Y −→ TY

is considered (that is, every variable xi is substituted by the tree e†(xi) = xi
† ∈ TY , while

parameters are unchanged), the composite

X
e �� T (X + Y )

ŝ �� TY

(corresponding to performing the substitution s on all variables of the right-hand sides

of (1)) is equal to e†.

Definition 1.10. We define a solution of an equation morphism e : X −→ T (X + Y ) to be

a morphism e† : X −→ TY such that the triangle

X
e†

��

e

��

TY

T (X + Y )

̂[e† ,ηY ]

��														

commutes.

The following result is called Parametric Corecursion in Moss (2001) and Solution

Theorem in Aczel et al. (2001); see also a much improved version of the proof in Aczel

et al. (2002).

Theorem 1.11 (Solution Theorem). Given an iteratable endofunctor H , every guarded

equation morphism has a unique solution.
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1.3. What is a rational monad?

Consider a finitary endofunctor H of Set (that is, H preserves filtered colimits). The

following generalises the above finitary flat systems of equations for H = HΣ.

Definition 1.12. We define a finitary flat equation morphism for H to be a morphism of

the following form

e : X −→ HX + Y (X finite).

In brief, finitary flat equation morphisms are just the finite coalgebras of the endofunctor

H( ) + Y . (If H = HΣ, then a finitary flat equation morphism

e : X −→
∐
n∈ω

Σn ×Xn + Y (X finite)

is precisely the concept as introduced above.) Every finitary flat equation morphism gives

rise to a guarded equation morphism using τX : HTX −→ TX above as follows:

X
e �� HX + Y

τXHηX+Y �� TX + Y
[T inl,ηX+Y ·inr] �� T (X + Y ). (2)

By a harmless abuse of notation, we use e† : X −→ TY to denote the unique solution of

(2). We have proved in Aczel et al. (2002) that for flat equation morphisms we have

solution = corecursion.

That is, e† is the unique homomorphism of the coalgebra X into the final coalgebra TY .

Mimicking the above definition of RΣY as the algebra of all solutions of finitary flat

equation systems (for H = HΣ), we introduce below an H-algebra

RY =
⋃

im(e†)

as a union of images of all solutions of finitary flat equation morphisms with the parameter

set Y (and an arbitrary finite set X of variables). In Adámek et al. (2002) we show that this

definition of RY can be formulated equivalently using all finitary equation morphisms,

not just the flat ones.

These H-algebras RY , which are subalgebras of TY , also have a rich structure; we are

going to prove the following.

Rational Substitution Theorem: Every morphism s : X −→ RY has a unique extension

into a homomorphism s̃ : RX −→ RY of H-algebras (see Theorem 5.14).

Rational Solution Theorem: Every guarded equation morphism e : X −→ R(X+Y ) where

X is finite has a unique solution e‡ : X −→ RY (see Corollary 5.8).

As a corollary of the Rational Substitution Theorem, we conclude immediately that R

is also a monad on Set, this time a finitary monad (or, equivalently, Lawvere’s algebraic

theory (Manes 1976)). We call this monad the rational monad generated by the given

finitary endofunctor H .
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1.4. A rational monad is a free iterative monad

C.C. Elgot has studied algebraic theories (in other words, finitary monads on Set) with

the property that certain iterative equations have unique solutions; he called such theories

iterative (Elgot 1975). From Section 1.2 above, it is quite natural to call, for a given monad

(S, η, µ), any morphism

e : X −→ S(X + Y )

an equation morphism (for S). Recall that every monad defines substitution: given s :

X −→ SY we have the corresponding homomorphism ŝ = µY · Ss : SX −→ SY of free

S-algebras. Now, a morphism e† : X −→ SY will be called a solution of e if the triangle

X
e†

��

e

��

SY

S(X + Y )

̂[e† ,ηY ]

��















commutes. But how can we express the property of e being guarded? (Or ideal, which is

a slightly stricter concept that Elgot used: for trees this means that the right-hand sides

are neither variables, nor single parameters. But this difference is inessential as we prove

below – see Remark 4.31.) For that purpose, Elgot introduced the concept of an ideal

algebraic theory. Translated into the language of monads, it yields the following definition

(see Aczel et al. (2002) for a very simple proof that our formulation is equivalent to

Elgot’s):

Definition 1.13. A monad (S, η, µ) is called ideal if:

(i) S = S ′ + Id and η : Id −→ S is the right-hand injection (notation: σ : S ′ −→ S for

the left-hand one)

and

(ii) µ restricts to µ′ : S ′S −→ S ′, that is, there is a natural transformation µ′ such that the

square

S ′S
µ′

��

σS

��

S ′

σ

��
SS µ

�� S

commutes.

This definition applies to all categories with finite coproducts such that coproduct

injections are monomorphic.

Example 1.14. The monad T defined by Corollary 1.8 is ideal: here T = HT + Id with

injections τ (=σ) and η. Also, the monad R defined by the Rational Substitution Theorem

is ideal, as we prove below.
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For ideal monads (S, η, µ) we call an equation morphism e : X −→ S(X + Y ) guarded

if it factors through [σX+Y , ηX+Y inr] : S ′(X + Y ) + Y −→ S(X + Y ):

X
e ��

��

S(X + Y )

S ′(X + Y ) + Y

[σ,η·inr]

��

Definition 1.15. (Elgot 1975) A finitary monad S in Set is called iterative if it is ideal and

every guarded equation morphism e : X −→ S(X + Y ) with X and Y finite has a unique

solution.

The restriction to finite sets Y , in comparison to the Rational Solution Theorem above,

is inessential because the rational monad is finitary. Thus, results using finitely presentable

parameter objects Y extend easily to results on arbitrary Y .

The main result of the present paper is the fact that every finitary endofunctor of Set

generates a free iterative monad, viz., the rational monad. For polynomial endofunctors

this is the main result of Elgot et al. (1978), but is proved in a completely different manner.

This situation is analogous to the main result in Aczel et al. (2002) concerning completely

iterative monads, as introduced in Elgot et al. (1978): they are defined as above, except that

the requirement that X and Y be finite is dropped. We have proved that every iteratable

endofunctor generates a free completely iterative monad, viz., the above monad T .

1.5. Beyond the category of sets

The concept of an ideal monad is immediately extended to any category with finite

coproducts. And we can also extend Definition 1.15 naturally, as follows.

Definition 1.16. A monad S is called iterative if it is ideal and every guarded equation

morphism e : X −→ S(X + Y ) with X and Y finitely presentable (see Section 2.2 below)

has a unique solution.

However, for the main result of our paper, stating that every finitary endofunctor

generates a free iterative monad, we need to make rather strong additional assumptions

on the category we work with. This contrasts to the situation of Aczel et al. (2002), where

the result that every iteratable functor generates a free completely iterative monad is

proved for all categories having finite coproducts with monomorphic injections. In the

present paper we will assume that the given category is strongly LFP, that is, it has to

be extensive and locally finitely presentable with finitely presentable objects closed under

strong quotients and have finite hom-sets for finitely presentable objects. We introduce

these concepts in Section 2.

Examples 1.17. The category SetS (for S-sorted operations) is strongly LFP. Also, the

category of posets (for order-enriched operations) is strongly LFP.

The only additional assumption on the finitary endofunctor is that it preserves mono-

morphisms, an assumption not needed for set functors, as we show in Section 6.



J. Adámek, S. Milius and J. Velebil 268

In the next section we recall everything about locally finitely presentable categories that

we need later. Even for readers only interested in A = Set, this section brings information

about finitary monads that will be used further.

2. Finitary monads

2.1. Finitary Kleisli triples in Set.

Recall the concept of a Kleisli triple (T , η, (̂ ) ) on a category A, which is equivalent to

that of a monad on A (Manes 1976). It consists of:

(1) A function assigning to every object X in A an object TX and a morphism ηX :

X −→ TX.

and

(2) A function assigning to every morphism s : X −→ TY a morphism ŝ : TX −→ TY

so that the axioms (i)–(iii) of Corollary 1.8, hold.

A finitary Kleisli triple in Set consists, analogously, of two functions: one assigns to every

finite set X a set TX and a morphism ηX : X −→ TX, and the other one assigns to

every morphism s : X −→ TY with X and Y finite a morphism ŝ : TX −→ TY so that

(i)–(iii) of corollary hold. In Adámek et al. (2002) we proved that there exists a unique

finitary monad on Set, that is, a monad (T , η, µ) such that T preserves filtered colimits,

generating that triple in the expected sense:

(a) For every finite set X, the given ηX : X −→ TX is the component of the unit

η : Id −→ T .

and

(b) For every s : X −→ TY with X and Y finite, the usual ‘substitution formula’

ŝ = µY · Ts : TX −→ TY

holds.

In other words, a finitary Kleisli triple can be extended to a Kleisli triple corresponding

to a finitary monad, and vice versa.

Let us also recall from Manes (1976) that finitary monads on Set are precisely the

same as Lawvere’s algebraic theories: given a finitary monad (T , η, µ), we can consider its

theory consisting of natural numbers as objects, and functions n −→ Tk as morphisms

from n to k. The composite of

n
f ��Tk and k

g ��Tl

is

n
f �� Tk

Tg �� TTl
µl �� Tl

Conversely, every Lawvere’s theory represents a finitary variety V whose monad (describ-

ing V-free algebras) is finitary.
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2.2. Locally finitely presentable (LFP) categories

We generalise the concept of a finite set in Set to that of a finitely presentable object A in

a category A: it is an object such that the hom-functor A(A, ) : A −→ Set preserves

filtered colimits.

Definition 2.1. (Gabriel and Ulmer 1971). A category is called LFP if it is cocomplete and

has a set of finitely presentable objects whose closure under filtered colimits is the whole

category.

Remark 2.2. It follows that every LFP category A has, up to isomorphism, only a set of

finitely presentable objects. Moreover, if

Afp

denotes a set of representatives of finitely presentable objects (considered as a full

subcategory), then for every object X of A we have:

(i) The comma-category Afp/X (consisting of all morphisms a : A −→ X with A in Afp)

is filtered.

and

(ii) X is a canonical colimit of the diagram

DX : Afp/X −→ A

given by

DX(a : A −→ X) = A.

Consequently,

(iii) A is a free cocompletion of Afp under filtered colimits. That is, every functor

F : Afp −→ B, where B has filtered colimits, has an extension, unique up to natural

isomorphism, to a functor F ′ : A −→ B preserving filtered colimits.

See Adámek and Rosický (1994).

Examples 2.3.

(i) Set is LFP, choose Setfp to be the full subcategory of natural numbers.

(ii) The category Pos of posets and monotone maps is LFP, here Posfp is a full subcat-

egory representing all finite (in other words, finitely presentable) posets.

(iii) The category Gra of graphs (sets with a binary relation) and graph homomorphisms

is LFP with Grafp representing all finite graphs.

(iv) Every variety V of (finitary, many-sorted) algebras is LFP. An algebra V in V is

a finitely presentable object iff it can be presented by finitely many generators and

finitely many equations.

Definition 2.4. We define a finitary Kleisli triple on an LFP category A to be a triple

(T , η, (̂ ) ) where T is a function assigning to every finitely presentable object X an object

TX, with a morphism ηX : X −→ TX, and (̂ ) is a function assigning to every morphism
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s : X −→ TY with X and Y finitely presentable a morphism ŝ : TX −→ TY so that:

(i) η̂X = idTX , for all X in Afp;

(ii) ŝ ηX = s, for all s : X −→ TY , (X, Y in Afp);

and

(iii) r̂ ŝ = ̂̂r s , for all s : X −→ TY and r : Y −→ TZ (X, Y , Z in Afp).

Example 2.5. Every finitary monad (T , η, µ) on an LFP category A generates a finitary

Kleisli triple with ŝ = µY · Ts for all s : X −→ TY with X, Y in Afp .

Remark 2.6. It is proved in Adámek et al. (2002) that finitary Kleisli triples on an LFP

category A correspond precisely to finitary monads on A. In fact, the correspondence

extends to the level of morphisms of Kleisli triples and monads.

Recall that, given monads (T , η, µ) and (T ′, η′, µ′) on a category, a monad homomorphism

is a natural transformation ρ : T −→ T ′ such that the diagrams

T
ρ �� T ′

Id

η

���������� η′

����������
and

TT
Tρ ��

µ

��

TT ′ ρT ′
�� T ′T ′

µ′

��
T ρ

�� T ′

commute. If the components of ρ are monomorphisms, then (T , η, µ) is called a submonad

of (T ′, η′, µ′).

Expressed by Kleisli triples, a homomorphism is given by assigning, to every object X,

a morphism ρX : TX −→ T ′X such that (a) ρX · ηX = η′
X and, (b) given s : X −→ TY ,

the square

TX
ŝ ��

ρX

��

TY

ρY

��
T ′X

ρ̂ys

�� T ′Y

commutes (where we use (̂ ) for both Kleisli triples). When both triples are finitary, we

restrict to X and Y finitely presentable in the above definition.

The precise formulation of the correspondence mentioned above is given by the following

proposition (Adámek et al. 2002).

Proposition 2.7. Let A be an LFP category. The category of finitary Kleisli triples on

A and their homomorphisms is equivalent to the category of finitary monads on A and

their homomorphisms.

Corollary 2.8. The category of finitary monads on A is coreflective in the category of all

monads on A. A coreflection of a monad T is the finitary monad generating the same

finitary Kleisli triple as T .

Remark 2.9. From Corollary 2.8 it follows trivially that for a finitary monad R and an

arbitrary monad T , given any morphism of the corresponding finitary Kleisli triples, there

is a unique extension to a monad homomorphism from R to T .
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2.3. Strongly LFP categories

In the subsequent sections we have several additional requirements on the LFP category

we work with, which we now summarise in an (admittedly ad hoc) definition. The main

point is that Set has all these properties.

Recall that a category with coproducts and pullbacks is said to be extensive if every

commutative diagram

A0
a0 ��

f0

��

A

f

��

A1
a1��

f1

��
X0

inl
�� X0 +X1 X1

inr
��

comprises a pair of pullback squares iff the top row is a coproduct diagram. Equivalently,

coproducts are disjoint and universal (Carboni et al. 1993).

In particular, extensive categories have the property that

coproduct injections are monomorphisms,

and

a coproduct of two monomorphisms is monomorphic.

Recall that an epimorphism e is called strong iff it has the diagonal fill-in property with

respect to all monomorphisms m (that is, given morphisms u, v with ve = mu, there exists

d with u = de and v = md). Strong quotients are quotients carried by strong epimorphisms.

Remark 2.10. Every LFP category has a factorisation of morphisms as strong epimor-

phisms followed by monomorphisms (Adámek and Rosický 1994, 1.61).

Definition 2.11. A category is called strongly LFP if it is LFP and extensive, hom-sets of

finitely presentable objects are finite, and a strong quotient of a finitely presentable object

is finitely presentable.

Examples 2.12.

(i) Set is strongly LFP.

(ii) Pos and Gra are strongly LFP.

(iii) Every category of relational structures (of any finitary relational signature) is strongly

LFP: the finitely presentable objects are those with finitely many elements, and with

all relations but finitely many empty.

2.4. Finitary endofunctors of an LFP category

It follows from Remark 2.2(iii) above that the category Fin[A,A] of finitary endofunctors

of an LFP category A is equivalent to the functor category [Afp ,A]. From this result it

follows that Fin[A,A] is itself an LFP category. We now describe its finitely presentable

objects.
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For any pair A, B of finitely presentable objects of on LFP category A we use

A • B : Afp −→ A to denote the following functor:

A • B : X �→
∐

Afp (A,X)

B. (3)

These functors were called step functors in Adámek (1997) and were proved to be finitely

presentable in [Afp ,A] (see Lemma 1 there).

Proposition 2.13. Every functor F in [Afp ,A] is a filtered colimit of functors that are

finite colimits of step functors.

Proof. See the proof of Theorem 3 in Adámek (1997).

Definition 2.14. A finitary functor F : A −→ A is called strongly finitary if it preserves

finitely presentable objects.

Proposition 2.15. For an LFP category A the following are equivalent:

(i) The category Afp has finite hom-sets.

(ii) Every finitary endofunctor of A is a filtered colimit of strongly finitary endofunctors.

Proof. (i) ⇒ (ii): Since the category of finitary endofunctors of A is equivalent to

[Afp ,A], it suffices to show that every functor F : Afp −→ A is a filtered colimit of

functors that preserve finitely presentable objects.

By (i), every functor A • B is strongly finitary and a finite colimit of strongly finitary

functors is strongly finitary. Now use Proposition 2.13.

(ii) ⇒ (i): Suppose that A and B are finitely presentable objects in A with Afp(A,B)

infinite. We show that the object

(A • A)B =
∐

Afp (A,B)

A (4)

is not finitely presentable in A, and therefore the functor A • A is not strongly finitary.

Since A • A is finitely presentable, it cannot be expressed as a filtered colimit of strongly

finitary functors: in fact, A • A would be a retract of one of them, but retracts of strongly

finitary functors are strongly finitary.

We prove that
∐

J A is not finitely presentable for any infinite set J . In fact,
∐

J A is a

filtered colimit of
∐

I A for all finite sets I ⊆ J . If
∐

J A were finitely presentable, some of
the colimit maps, that is, some canonical map

cI :
∐
I

A −→
∐
J

A (I finite)

would be a split epimorphism (because the identity of
∐

J A would factor through cI ,

by definition of finite presentability). However, cI is not an epimorphism: choose distinct

morphisms f, g ∈ Afp(A,B) and let f, g :
∐

J A −→ B be morphisms whose components

are equal for all indices in I , but whose j-components (for some j ∈ J \ I) are f and g,

respectively. Then f �= g but fcI = gcI .
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Corollary 2.16. Suppose that A is a strongly LFP category. Every finitary endofunctor

H preserving monomorphisms can be expressed as a filtered colimit of strongly finitary

functors preserving monomorphisms.

Proof. Use Proposition 2.15 and express H as a filtered colimit

H = colim
d

Hd

of strongly finitary functors and use αd : Hd −→ H to denote a colimit cocone. The

category Fin[A,A] � [Afp ,A] of finitary endofunctors of A is LFP, therefore, it has

(StrongEpi, Mono)-factorisations of morphisms, see Remark 2.10. Moreover, both strong

epimorphisms and monomorphisms are defined component-wise in any functor category.

We can factor each αd : Hd −→ H in Fin[A,A] as a strong epimorphism followed by a

monomorphism:

Hd
αd ��

εd 		













 H

Kd

νd

����������

Since each εd is pointwise a strong epimorphism, every functor Kd is strongly finitary: given

a finitely presentable object X, we have KdX is a strong quotient of a finitely presentable

object HdX (we know that Hd is strongly finitary), thus, KdX is finitely presentable.

It is easy to see that the cocone (νd : Kd −→ H) is a filtered colimit, this follows, once

again from the fact that εd : Hd −→ Kd are (strong) epimorphisms.

It remains to show that every functor Kd preserves monomorphisms. Let m : X −→ Y

be a monomorphism. From commutativity of the square

HX
Hm �� HY

KdX

νd

��

Kdm
�� KdY

νd

��

it follows that (νd)Y ·Kdm is a monomorphism, thus, Kdm is a monomorphism.

3. Some properties of solutions

Assumptions 3.1. We use H to denote a finitary, monomorphism preserving endofunctor

of a strongly LFP category A.

Notice that every finitary functor is iteratable, which implies (as in the case A = Set

mentioned in Section 1.2 above) that final coalgebras

TX

of H( ) +X form a ‘completely iterative’ monad T (Aczel et al. 2001). As in Section 1.2,

T is a coproduct T = HT + Id with injections

τ : HT −→ T and η : Id −→ T .
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Notation 3.2. Put

τ∗ ≡ H
Hη ��HT

τ ��T .

Observe that τ, η and τ∗ have monomorphic components (because A has monomorphic

coproduct injections, and H preserves monomorphisms).

The concept of a flat system of equations as introduced in the Introduction (see

Sections 1.1 and 1.3) immediately generalises as follows.

Definition 3.3. We define a flat equation morphism to be a morphism

e : X −→ HX + Y ,

that is, a coalgebra of H( ) + Y . It is called finitary if X is finitely presentable.

Remark 3.4. Every flat equation morphism e : X −→ HX + Y yields a guarded equation

morphism in the sense of Section 1.3 by composing with the following monomorphism

mX,Y ≡ HX + Y
τ∗+Y ��TX + Y

[T inl,ηX+Y ·inr] ��T (X + Y ).

We also write, whenever there is no danger of confusion,

e† : X −→ TY

for the unique solution of the corresponding guarded equation. Thus e† is the unique

morphism such that the square

X
e†

��

e

��

TY

HX + Y

mX,Y

��
T (X + Y )

T [e† ,η]

�� T 2Y

µY

��

commutes. The following proposition was proved in Aczel et al. (2002).

Proposition 3.5 (Solution is Corecursion). For every flat equation morphism e : X −→
HX + Y , the (unique) solution e† : X −→ TY is precisely the unique homomorphism of

the coalgebra e : X −→ HX + Y into the final coalgebra TY of H( ) + Y .

Remark 3.6. We also need a simple result concerning general iterative monads, see

Definitions 1.13 and 1.16.

Let S be an iterative monad. An equation morphism e : X −→ S(X + Y ) that factors

through σX+Y is, of course, guarded. Moreover, the unique solution e† : X −→ SY factors

through σY : if e = σX+Y · e′, then

e† = µY · S[e†, ηY ] · σX+Y · e′ = σY · (µ′
Y · S ′[e†, ηY ] · e′).
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Lemma 3.7. Let S be an iterative monad and let e : X −→ S(X + Y ) and e′ : X ′ −→
S(X ′ + Y ) be guarded equation morphisms. For every morphism h : X −→ X ′ such that

the square

X
e ��

h

��

S(X + Y )

S (h+Y )

��
X ′

e′
�� S(X ′ + Y )

commutes, we have

e† = (e′)
† · h.

Proof. The diagram

X
h ��

e

��

X ′ (e′)†
��

e′

��

SY

S(X + Y )
S (h+Y ) ��

S [(e′)†·h,η]



S(X ′ + Y )
S [(e′)†

,η] �� SSY

µY

��

obviously commutes.

Remark 3.8.

(i) Returning to flat equation morphisms, the corresponding statement here is a direct

corollary of Proposition 3.5: given flat equation morphisms e : X −→ HX + Y and

e′ : X ′ −→ HX ′ + Y , we have, for every homomorphism h : X −→ X ′ of those

coalgebras (of H( ) + Y ), that

e† = (e′)
† · h.

(ii) In particular, when both e† and (e′)† happen to be monomorphisms (that is,

subobjects of TY ), then the existence of a homomorphism h : e −→ e′ implies

e† ⊆ (e′)†. The converse is also true: if e† ⊆ (e′)†, then the unique h : X −→ X ′

with e† = (e′)†
h is a homomorphism. In fact, consider the following diagram:

X
e ��

h

��
e†

��

HX + Y

Hh+Y

��
He†+Y

��

X ′ e′
��

(e′)†

��

HX ′ + Y

H(e′)†+Y

��
TY HTY + Y

The outer and lower squares commute by Proposition 3.5. Hence the upper square

commutes when extended by H(e′)† +Y , which is a monomorphism since H preserves

monomorphisms (by assumption) and monomorphisms are closed under coproducts.

Thus h : e −→ e′ is a homomorphism, as desired.
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4. Rational monad – strongly finitary case

Assumptions 4.1. Throughout this section, A denotes a strongly LFP category, and H

an endofunctor that preserves monomorphisms and is strongly finitary, that is, not only

preserves filtered colimits but also finite presentability (if X is a finitely presentable object,

then so is HX).

In the next section we extend the results to all finitary endofunctors preserving

monomorphisms.

Recall from Remark 2.10 that the category A has (StrongEpi, Mono)-factorisations of

morphisms. We use im(f) to denote the monomorphic part of the factorisation of f.

The following definition generalises the definition of the algebra RΣY of all rational

trees as solutions of systems of finitary flat equations, see Section 1.1.

Definition 4.2. For every finitely presentable object Y of A, we define

RY =
⋃

im(e†) (e a finitary flat equation morphism)

that is, we define an object RY together with a monomorphism

εY : RY −→ TY

to be the subobject of TY that is the union of images of all solutions e† : X −→ TY of

finitary flat equation morphisms e : X −→ HX + Y (X finitely presentable).

Remark 4.3. Explicitly, for every finitary flat equation morphism e : X −→ HX + Y , we

factor e† : X −→ TY as a strong epimorphism k : X −→ X ′ followed by a monomorphism

m : X ′ −→ TY . Then εY is the union of all those monomorphisms m. Union here means

just the supremum in the lattice of subobjects, but this is actually a colimit, as we see

below.

Observe that each of the images m is, itself, a solution of a finitary flat equation

morphism e′ : X ′ −→ HX ′ +Y . In fact, since finitely presentable objects are closed

under strong quotients, X ′ is finitely presentable, and, since Hm is a monomorphism (by

assumption onH), so isHm+Y (since coproducts are extensive, and thus monomorphisms

are stable under finite coproducts, see Section 2.3). Thus we can use the diagonal fill-in

property to find a coalgebra structure e′ on X ′ such that the diagram

X
e ��

k

��

HX + Y

Hk+Y

��
X ′ e′

��

m

��

HX ′ + Y

Hm+Y

��
TY HTY + Y

commutes. Now m is a coalgebra homomorphism, and it follows from Proposition 3.5

that m = (e′)†.
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Notation 4.4. For every finitely presentable object Y of A, we use

EQY

to denote the category of all finitary flat equations with the parameter object Y . That is:

objects are all finitary flat equation morphisms e : X −→ HX + Y (X in Afp)

and

morphisms are coalgebra homomorphisms with respect to H( ) + Y :

X
e ��

h

��

HX + Y

Hh+Y

��
X ′

e′
�� HX ′ + Y

The category EQY comes with a forgetful functor into the underlying category A. We

denote it by

EqY : EQY −→ A, (X
e ��HX + Y ) �→ X.

Remark 4.5. Recall that a full subcategory D0 of a filtered category D is cofinal if every

object of D has a morphism into an object of D0; it follows that (in every category)

colimits of D-diagrams coincide with colimits of the restricted D0-diagrams.

Proposition 4.6. For every finitely presentable object Y , EqY is a small, filtered diagram,

and RY can be defined as a colimit

RY = colimEqY .

Proof. First, notice that EQY is the full subcategory of Coalg(H( ) + Y ) of those

coalgebras with carrier from Afp . Since Afp is small and for each object X of A there

is only a set of morphisms e : X −→ HX + Y , it follows that EQY is a small category.

Moreover, observe that EQY is filtered because it is finitely cocomplete: in fact, the

category of coalgebras has colimits formed on the level of A, and since finite colimits

of finitely presentable objects are finitely presentable, it follows that EQY is closed under

finite colimits in Coalg(H( ) + Y ). Remark 4.3 shows that the filtered diagram EqY has

a cofinal subdiagram formed by all finitary flat equation morphisms with monomorphic

solutions. (In fact, for every object e of EQY we have constructed a morphism k : e −→ e′

in EQY with e′ having monomorphic solution m.)

Now we have defined RY as the union of all (e′)† = m : X ′ −→ TY , and since this union

is filtered, it is a colimit of the corresponding filtered diagram (whose morphisms are all

existing subobject inclusions, or, equivalently, all morphisms of EQY , see Remark 3.8(ii));

this is true in every LFP category, see Adámek and Rosický (1994, 1.63). That diagram is

cofinal in EqY , whence EqY has the same colimit, that is, RY = colimEqY .
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Notation 4.7.

(i) We use

e	 : X −→ RY (for all e : X −→ HX + Y in EQY )

to denote the colimit cocone of EqY .

(ii) Observe that for any finitely presentable object Y of A, inr : Y −→ HX + Y is an

object of EQY . We use

ηRY : Y −→ RY

to denote the colimit morphism inr	.

Example 4.8. Let H = HΣ be a polynomial endofunctor of Set. Then RY is the algebra of

all rational trees over Y , and for every finitary flat equation system e : X −→ HΣX+Y the

colimit morphism e	 : X −→ RY is a codomain restriction of the solution e† : X −→ TY .

Remark 4.9. Notice that for every finitely presentable object Y of A the monomorphism

εY : RY −→ TY

of Definition 4.2 makes the triangles

X

e	

��

e†



�
��

��
��

�

RY εY
�� TY

commutative for all e : X −→ HX + Y in EQY . This is obvious if e† is monomorphic;

otherwise use the fact established in the proof of Proposition 4.6 that the finitary flat

equation morphisms with monomorphic solutions form a cofinal subcategory of EQY .

This makes εY uniquely determined by the equations εY e
	 = e†.

Proposition 4.10. (RY = HRY + Y .) For every finitely presentable object Y of A the

diagram EqY has the colimit

colimEqY = HRY + Y

with the following colimit cocone

X
e ��HX + Y

He	+Y ��HRY + Y (for e : X −→ HX + Y in EQY )

Proof.

(i) The morphisms δe = (He	+Y ) ·e form a cocone of EqY , that is, for every morphism

X
e ��

h

��

HX + Y

Hh+Y

��
X ′

e′
�� HX ′ + Y

of EQY we have

δe = δe′ · h.



Free iterative theories: a coalgebraic view 279

Indeed, since h is a morphism, we know that

e	 = (e′)	 · h.

Therefore, the diagram

X
e ��

h

��

HX + Y
He	+Y ��

Hh+Y

��

HRY + Y

X ′
e′

�� HX ′ + Y

H(e′)	+Y

�������������

commutes.

(ii) In order to complete the proof, we shall show that the unique morphism

i : RY −→ HRY + Y with i · e	 = δe (for e in EQY )

is an isomorphism. Define j : HRY + Y −→ RY as follows. Since H preserves

filtered colimits, we have

HRY = colimHEqY ,

and therefore

HRY + Y = colim(HEqY + Y )

with colimit cocone He	 + Y (e in EQY ). Define for every

e : X −→ HX + Y in EQY

a new member

e0 ≡ HX + Y
He+Y �� H(HX + Y ) + Y

of EQY . Note that HX+Y lies in Afp since H is strongly finitary and Afp is closed

under coproducts.

Define a morphism j : HRY + Y −→ RY by the commutativity of the following

triangles:

HRY + Y
j �� RY

HX + Y

He	+Y

��

e
	
0

������������
for all e in EQY .

The morphism j is well-defined since e	0 (for e in EQY ) form a cocone. In fact, for

every morphism h : e −→ e′ in EQY , it is easy to show that Hh + Y : e0 −→ e′
0 is

also a morphism of EQY . But then

e
	
0 = (e′

0)
	 · (Hh+ Y ),

as desired.

(ii a) Proof of j · i = id : It is our task to show that

jie	 = e	 for all e in EQY .
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For this observe that e is a morphism in EQY from e to e0. Therefore

j · i · e	 = j · (He	 + Y ) · e = e
	
0 · e = e	.

(ii b) Proof of i · j = id : Here we must show that

i · j · (He	 + Y ) = He	 + Y for all e in EQY .

But this is again easily seen:

i · j · (He	 + Y ) = i · e	0 = (He	0 + Y ) · (He+ Y ) = He	 + Y

where the last step again uses e : e −→ e0 in EQY .

Remark 4.11. We have established that

RY = HRY + Y (Y in Afp)

with coproduct injection given by j · inl and j · inr. Note that j · inl = ηRY : Y −→ RY .

Indeed, the diagram

Y
inr	=ηRY ��

inr

����
���

���
��

inr

���
��
��
��
��
��
��
��
��
��
��

RY

HY + Y

inr
	
0

������������

HηRY +Y

��
HRY + Y

j

������������������������

commutes.

Notation 4.12. From now on we shall use for any finitely presentable object Y the follow-

ing notation for the coproduct injections:

ρY : HRY −→ RY and ηRY : Y −→ RY .

Corollary 4.13. Let Y be a finitely presentable object. For every finitary flat equation

morphism e : X −→ HX + Y , the diagram

X

e	

��

e �� HX + Y

He	+Y

��
RY HRY + Y

commutes.

Proof. In fact, to show that

e	 =
[
ρY , η

R
Y

]
· (He	 + Y ) · e,
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just use the fact that [ρY , η
R
Y ] = j and that (since e : e −→ e0 is a morphism in EQY ),

e	 = e
	
0 · e. Thus,

e	 = e
	
0 · e =

[
ρY , η

R
Y

]
· (He	 + Y ) · e

Remark 4.14.

(i) For any finitely presentable object Y , we have

εY = HεY + Y .

More precisely, if i : RY −→ HRY +Y denotes the isomorphism of Proposition 4.10,

then its composite with HεY + Y : HRY + Y −→ HTY + Y = TY is equal to εY .

This follows from the equalities

εY · e	 = (HεY + Y ) · i · e	 (e in EQY ).

In fact, consider the following diagrams:

X
e ��

e†

��

e	



�
��

��
��

��
HX + Y

He†+Y

��

He	+Y

�����
���

���
��

RY
i ��

εY����
��
��
��

HRY + Y

HεY +Y ����
���

���
���

TY HTY + Y
[τ,η]

��

The upper square commutes by definition of i, the two outer triangles by Remark 4.9.

The outer square commutes since the solution e† of e is given by corecursion, see

Proposition 3.5. Thus, the lower square commutes, too.

(ii) Consequently, εY is a homomorphism of H-algebras:

εY · ρY = τY ·HεY

with

εY · ηRY = ηY . (5)

In fact, εY · ηRY = inr† for inr : Y −→ HY + Y , and it is easy to verify that inr† = ηY .

Corollary 4.15. For every finitely presentable object Y , the square

HRY
HεY ��

ρY

��

HTY

τY

��
RY εY

�� TY

is a pullback.
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Proof. In fact, since A is extensive, for every morphism f : A −→ B the squares

A
f ��

inl

��

B

inl

��
A+ Y

f+Y
�� B + Y

are pullbacks. Apply this to f = HεY .

Theorem 4.16 (Rational Substitution Theorem). For every morphism

s : X −→ RY (X, Y finitely presentable),

there exists a unique extension to a homomorphism

s̃ : RX −→ RY

of H-algebras (that is, a unique homomorphism with s = s̃ · ηRY ).

Proof. (I) Existence: We are going to find a morphism s̃ such that the square

RX
s̃ ��

εX

��

RY

εY

��
TX

ε̂Y ·s
�� TY

(6)

commutes. It follows from Remark 4.14(ii) and Theorem 1.7 that

εY · s̃ · ηRY = ̂εY · s · ηX = εY · s,

which, since εY is a monomorphism by definition, proves that s̃ extends s. It also follows

that s̃ is a homomorphism of H-algebras: to conclude s̃ · ρX = ρY ·H s̃ , use the fact that

εY is a monomorphism and that the diagram

HRX
H s̃ ��

Hε

��

ρ

���
��

��
��

��
HRY

Hε

��

ρ

�����
��
��
��

RX
s̃ ��

ε

��

RY

ε

��
TX

ε̂·s
�� TY

HTX
H ε̂·s

��
τ

�����������
HTY

τ

�����������

commutes (because the inner square is the above square (6), the outer one is its image

and ̂εY · s , εX and εY are homomorphisms of H-algebras).

In order to define s̃ , use the fact that RY = colimEqY is a filtered colimit and X is

finitely presentable. Thus, there exists an object

f : V −→ HV + Y of EQY
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such that s factors through its colimit morphism:

X
s ��

s′ ���
��

��
��

� RY

V

f	

��

This allows us to define the desired morphism s̃ : colimEqX −→ RY by providing a

‘suitable’ cocone of the diagram EqX as follows: Every object of EQX , say, e : Z −→
HZ + X, will be turned into an object e of EQY by adding V (the domain of f) as new

variables: e : Z + V −→ H(Z + V ) + Y . In more detail, for every object

e : Z −→ HZ +X of EQX

we use

ē : Z + V −→ H(Z + V ) + Y

to denote the object of EQY with the following components:

ē · inl ≡ Z
e ��HZ +X

HZ+fs′ ��HZ +HV + Y
[Hinl,Hinr]+Y ��H(Z + V ) + Y (7)

ē · inr ≡ V
f ��HV + Y

Hinr+Y ��H(Z + V ) + Y .

We shall show below that the morphisms

Z
inl ��Z + V

ē	 ��RY (e in EQX) (8)

form a cocone of EqX . This establishes the unique

s̃ : RX −→ RY with s̃ · e	 = ē	 · inl (e in EQX) (9)

This morphism s̃ fulfills

εY · s̃ · e	 = (εY · ē	) · inl = ē† · inl. (10)

We finally establish that

ē† · inl = ̂εY · s · e† = ̂εY · s · εX · e	, (11)

which proves, together with (10), that (6) commutes, since both sides are equal when

composed with the injections e	 of the colimit RX. This concludes the proof.

Proof that (8) is a cocone. Suppose that a morphism of EQX is given:

Z
e ��

h

��

HZ +X

Hh+X

��
Z ′

e′
�� HZ ′ +X
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We are going to prove the commutativity of the following square:

Z + V
ē ��

h+V

��

H(Z + V ) + Y

H(h+V )+Y

��
Z ′ + V

ē′
�� H(Z ′ + V ) + Y

(12)

That means that h + V is a morphism from ē to ē′ in EQY , proving ē	 = ē′	 · (h + V ),

which establishes

ē	 · inl = ē′	 · inl · h,

as desired.

We consider, in (12), the components of Z + V separately. The equality of the right-

hand components of (12) is obvious form the definition of ē and ē′. For the left-hand

components, consider the following squares:

Z
e ��

h

��

HZ +X
HZ+fs′ ��

Hh+X

��

HZ +HV + Y
[Hinl,Hinr]+Y �� H(Z + V ) + Y

H(h+V )+Y

��
Z ′

e′
�� HZ ′ +X

HZ ′+fs′
�� HZ ′ +HV + Y

[Hinl,Hinr]+Y
�� H(Z ′ + V ) + Y

The left-hand square commutes by assumption and the right-hand one obviously does.

Hence, the outer square commutes too.

Proof of (11). We shall now show that ē† = [ ε̂Y s · e†, f†], which establishes (11) above. By

Proposition 3.5, we have to show that the square

Z + V
ē ��

[ ε̂Y s e
† ,f†]

��

H(Z + V ) + Y

H[ ε̂Y s e
† ,f†]+Y

��
TY HTY + Y

(13)

commutes.

We consider the components of the coproduct Z + V separately. For the right-hand

component of (13), apply Proposition 3.5 again to obtain

f† ≡ V
f ��HV + Y

Hf†+Y ��HTY + Y = TY

thus, the diagram

V
f ��

f†

��

HV + Y
Hinr+Y ��

Hf†+Y �����
����

����
����

� H(Z + V ) + Y

H[ ŝ e† ,f†]+Y

��
TY HTY + Y

commutes.
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For the left-hand component of (13), consider the following commutative diagram:

Z
e ��

e†

��
(i)

HZ+X
HZ+s′ ��

He†+X

��

HZ+V
HZ+f ��

H( ε̂s e†)+V

����
��
��
��
��
��
��
��
��
��
��
��
��
��

(iv)

HZ+HV+Y
[Hinl,Hinr]+Y ��

[H( ε̂s e†),Hf†]+Y

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� H(Z+V )+Y

H[( ε̂s e†),f†]+Y

��

TX

ε̂s

��
(ii)

HTX+X

H ε̂s+X

��
TY

(iii)

HTY+X
[τ,εs]��

HTY+s′

��
HTY+V

[τ,f†]�����
��
��
��

TY HTY+Y

Square (i) commutes once more by Proposition 3.5. For square (ii), use the definition of

(̂ ) , see Substitution Theorem 1.7: we have

ε̂Y s [τX, ηX] = [τY H( ε̂Y s ), εY s] = [τY , εY s](H( ε̂Y s ) +X).

Square (iii) commutes since

εY · s = εY · f	 · s′ = f† · s′. (14)

The right-hand component of (iv) commutes by Proposition 3.5, and the left-hand one

does trivially. The two remaining triangles obviously commute. Hence the outer square

commutes as desired.

(II) Uniqueness: We are going to prove that for every homomorphism of H-algebras

h : RX −→ RY extending s, the following identity holds:

εY [h, RY ] = εY [ s̃ , RY ]. (15)

Since εY is a monomorphism, it follows that h = s̃ . Observe that the diagram

RX + RY =

HRX +X + RY

HRX+[s,RY ] ��

[h,RY ]

��

HRX+RY=HRX+HRY+Y
[Hinl,Hinr]+Y �� H(RX+RY )+Y

H[h,RY ]+Y

��
RY

ε

��

HRY+Y
[ρ,ηR ]��

Hε+Y

��
TY HTY+Y

(16)

commutes. In fact, the lower square commutes because τY · HεY = εY · ρY (εY is a

homomorphism with εY · ηRY = ηY by Remark 4.14(ii)). For the upper square consider

the three components of HRX + X + RY : the left-hand component commutes because

ρY · Hh = h · ρX (h is a homomorphism by assumption), the middle component does

because h extends s, that is,

s = h · ηRX,
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and the right-hand component commutes trivially. Thus, εY [h, RY ] is a homomorphism

into the final coalgebra TY . This holds for all H-algebra homomorphisms extending s,

and, in particular, for s̃ . By coinduction, we conclude (15).

Corollary 4.17. We obtain a finitary Kleisli triple (R, ηR, (̃ ) ) on A.

Proof. In fact, the axioms (i)–(iii) of Definition 2.4 follow immediately from the

uniqueness of (̃ ) :

(i) s̃ · ηX = s by definition of s̃ .

(ii) η̃X = id because id is a homomorphism extending ηX .

(iii) r̃ s̃ = ˜̃r s because r̃ s̃ is a homomorphism extending r̃ s: from s̃ ηX = s derive

( r̃ s̃ )ηX = r̃ s

Definition 4.18. The finitary monad R defined by the above finitary Kleisli triple is called

a rational monad generated by H .

Notation 4.19. The unit of the rational monad is denoted by

ηR : Id −→ R,

observe that for Y finitely presentable, ηRY are the above morphisms inr	. We further use

µR : RR −→ R

to denote the multiplication, given by

µRY = ˜idRY : RRY −→ RY

for finitely presentable Y .

The morphisms ρY : HRY −→ RY for Y finitely presentable in Notation 4.12 yield a

natural transformation

ρ : HR −→ R.

In fact, A is a free cocompletion of Afp under filtered colimits (Adámek and Rosický

1994), therefore the above natural transformation ρY :HRY −→ RY for Y ∈ Afp extends

uniquely to ρ : HR −→ R. We have

R = HR + Id

with the above injections ρ and ηR . Since coproduct injections are monomorphisms, the

components of the last two natural transformations are monomorphisms. And since H

preserves monomorphisms, the natural transformation

ρ∗ ≡ H
HηR ��HR

ρ ��R

also has monomorphic components. This is analogous to τ∗ : H −→ T in Notation 3.2.

Remark 4.20. The fact that RY is a filtered union of all images of solutions of finitary

flat equations extends from finitely presentable objects Y to all objects. In fact, both of

the formulas

RY =
⋃

im(e†)
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and

RY = colimEqY

extend from finitely presentable objects Y to all objects. Given any object Y in A, we

use, again,

EQY

to denote the category of all coalgebras of H( )+Y carried by finitely presentable objects

X and by

EqY : EQY −→ A
the forgetful functor. This is a filtered diagram and we show that it has colimit

RY = colimEqY .

Express Y = colim
t∈I

Yt as a filtered colimit of finitely presentable objects Yt with colimit

cocone yt : Yt −→ Y , t ∈ I . Then each e : X −→ HX + Y = colim
t∈I

(HX + Yt) factors as

X
e0 �� HX + Yt

HX+yt �� HX + Y

for some t ∈ I . We have e	0 : X −→ RYt as in Notation 4.7(i). Since R is finitary, we have
RY = colim

t∈I
RYt with colimit injections Ryt : RYt −→ RY . We put

e	 ≡ X
e
	
0 ��RYt

Ryt ��RY

This is independent of the above factorisation of e. To verify this, we use the fact that

the diagram (Yt) is filtered: it is sufficient to prove that for every connecting morphism

yt,t′ : Yt −→ Yt′ , if e1 is defined by the commutative triangle

X
e0 ��

e1 ����
���

���
���

��� HX + Yt

HX+yt,t′

��
HX + Yt′

(17)

we have

e	 ≡ X
e
	
1 ��RYt′

Ryt′ ��RY .

In fact, since Ryt′ = Ryt,t′ · Ryt, it is sufficient to prove

e
	
1 = Ryt,t′ · e	0 . (18)

Recall that

Ryt,t′ = s̃

for

s ≡ Yt
yt,t′ ��Yt′

ηR ��RYt′ .

By (9),

Ryt,t′ · e	0 = ē	 · inl (19)
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where ē has, by (7), the following components:

X

e0
��

Yt′

inr
��

HX + Yt

HX+inr·yt,t′
��

(Hinl+Yt′ )·(HX+yt,t′ )

��

HYt′ + Yt′

Hinr+Yt′

����
��
��
��
��
��
��
��
��
��
�

HX +HYt′ + Yt′

[Hinl,Hinr]+Yt′

����
���

���
���

���
���

H(X + Yt′ ) + Yt′

Consequently, the diagram

X
e0 ��

inl

��

HX + Yt
HX+yt,t′ �� HX + Yt′

Hinl+Yt′

��
X + Yt′ ē

�� H(X + Yt′ ) + Yt′

commutes. This proves that inl is a morphism of EQYt′ , thus, ē	 · inl = e
	
1 , which together

with (19) proves (18).

It is not difficult to see that the morphisms e	 form a cocone of EqY . It follows

from Proposition 4.6 that this is a colimit cocone. In fact, given a cocone (ce :X −→
C)e:X−→HX+Y of EqY , we obtain a cocone of EqYt (for each t) by assigning to every

e0 :X −→ HX + Yt the morphism ce, where e = (HX + yt)e0. This yields a unique

ft :RYt −→ C , and we obtain a cocone of (RYt)t, which uniquely factors by way of

f :RY −→ C . Then fe	 = ce and f is unique with this property. Consequently, RY =

colimEqY .

The fact that this implies RY =
⋃

im(e†) is proved exactly as in Proposition 4.6.

Lemma 4.21. For every finitary flat equation morphism e : X −→ HX + Y the diagram

X

e	

��

e �� HX + Y

He	+Y

��
RY HRY + Y

commutes.

Proof. See Corollary 4.13 for finitely presentable objects Y . The extension to arbitrary

objects Y (by way of e	 = Ryt · e	0 above) is routine.

Remark 4.22. R is a submonad of T (that is, a subobject in the category of all monads

and homomorphisms).

Indeed, we use c : T0 −→ T to denote a finitary coreflection of T , see Corol-

lary 2.8. From (5) and (6) above, the morphisms εY form a homomorphisms of finitary
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Kleisli-triples, or, equivalently, a homomorphism of finitary monads. Hence we obtain a

monad homomorphism ε = c · ε0 : R −→ T . It is easy to check that for every finitary flat

equation morphism e : X −→ HX + Y (where Y is any object of A), we have

εY e
	 = e†.

Just use the fact that HX+Y is a filtered colimit of HX+Y ′ for all Y ′ −→ Y in Afp/Y ,

and since X is finitely presentable, e factors through some e′ : X −→ HX +Y ′, Y ′ ∈ Afp .

Thus εY is a monomorphism since Remark 4.20 shows that RY is the union of images of

solutions of finitary flat equation morphisms.

We are going to prove that the rational monad is iterative (see Definition 1.16). The main

part of this is the following solution theorem, dealing with rational equation morphisms,

that is, morphisms

e : X −→ R(X + Y ) (X finitely presentable),

which are guarded, that is, factor through the coproduct injection of R(X + Y ) = HR

(X + Y ) +X + Y :

X
e ��

��

R(X + Y )

HR(X + Y ) + Y

[ρX+Y ,η
R
X+Y ·inr]

��

Theorem 4.23 (Rational Solution Theorem). Every rational equation morphism e : X −→
R(X + Y ) has a unique solution. That is, there exists a unique morphism

e‡ : X −→ RY

such that the triangle

X
e‡

��

e

��

RY

R(X + Y )

˜[e‡ ,ηRY ]

�����������
(20)

commutes.

Proof. (I) Existence: Since e is guarded we have a factorisation

X
e ��

e0 �����
���

���
���

���
� R(X + Y )

HR(X + Y ) + Y

[ρ,ηR ·inr]

��

(21)

From the filtered colimit RY = colim EqY we obtain a filtered colimit

HR(X + Y ) + Y = colimHEqX+Y + Y ,
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since H( ) + Y preserves filtered colimits. It follows that e0, whose domain is finitely

presentable, factors through some colimit arrow Hg	 + Y , that is, there exists an object

g : W −→ HW +X + Y of EQX+Y

and a factorisation

X
e0 ��

w
��  

   
   

   
 HR(X + Y ) + Y

HW + Y

Hg	+Y

��
(22)

This defines an object

h ≡ W +X
[g,inm] �� HW +X + Y

[inl,w,inr] �� HW + Y
Hinl+Y �� H(W +X) + Y

of EQY , since W and X are finitely presentable. (Here, inm denotes the injection into the

middle summand.) We define

e‡ ≡ X
inr �� W +X

h	 �� RY

and prove that (20) commutes. For that, consider the solution h† : W +X −→ TY of h.

Note that since e is guarded for R, the equation morphism

X
e ��

e0 ��!!
!!!

!!!
!!!

! R(X + Y )
ε �� T (X + Y )

HR(X + Y ) + Y
Hε+Y

��

[ρ,ηR ·inr]

��

HT (X + Y ) + Y

[τ,η·inr]

��

(23)

is guarded for T . In fact, the above square commutes, because εX+Y is a homomorphism

with εX+Y · ηRX+Y = ηX+Y , see Remark 4.14(ii). We show that

(εX+Y · e)† = h† · inr, (24)

that is

(εX+Y · e)† = εY · h	 · inr.

This proves that the outer square of the diagram

X
e‡

��

e

��

RY
ε �� TY

R(X + Y )
R[e‡ ,ηR ] ��

ε

��

RRY

µR

��

εR

  �
��

��
��

��

TRY

Tε

  "
""

""
""

""

T (X + Y )
T [εe‡ ,η]

��

T [e‡ ,ηR ]


#######################

TTY

µ

��

(25)
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commutes. Consequently, the upper left-hand square also commutes (which is the desired

equality (20)) because the other inner parts of that diagram clearly commute (recall that

ε is a monad morphism, see Remark 4.22), and ε is a monomorphism.

Proof of (24). We shall show that

h† = [µY T [(εX+Y e)
†, ηY ]g†, (εX+Y e)

†],

from which the required result follows. Thus it is our task to prove that the diagram

W +X
[µY T [(εX+Y e)

† ,ηY ]g† ,(εX+Y e)
†] ��

[T inl,T inr]·(τ∗
W+X+ηY )·h

��

TY

T (W +X + Y )
T [µY T [(εX+Y e)

† ,ηY ]g† ,(εX+Y e)
† ,ηY ]

�� TTY

µY

��

(26)

commutes.

We consider the components of the coproduct W + X separately. For the right-hand

one, we obtain the diagram (27):

X
(εe)† ��

w

��

εe

�����
����

����
����

�

(i)

TY

T (X + Y )
T [(εe)† ,η] ��

(ii)

(iii)

TTY

µ

!!�����������

HW + Y
Hg†+Y ��

H inl+Y

��

HT (X + Y ) + Y
HT [(εe)† ,η]+η ��

[τ,ηinr]

��

HTTY + TY

[τT ,Tη]

��

Hµ+TY

��
(iv)

H(W +X) + Y
H[µT [(εe)† ,η]g† ,(εe)†]+η ��

τ∗+η

��

HTY + TY

[τ∗T ,Tη]

""$
$$

$$
$$

$$
$$

$$
$$

$$
$

T (W +X) + TY
[T [µT [(εe)† ,η]g† ,(εe)†],Tη]

##%%%%%%%%
%%%%%%%%%

%%%%%%%%%
%%%%%%%%

%%%%%%%%%
%%%%%

[T inl,T inr]

��
T (W +X + Y )

T [µT [(εe)† ,η]g† ,(εe)†],η]

�� TTY

µ

��

(27)

It commutes: in fact, square (i) commutes by (22) and (23), since εX+Y g
	 = g†. Square (ii)

is just the definition of the solution (εX+Y e)
†. Square (iii) is easily seen to commute

when the components of HT (X + Y ) + Y are considered: for the left-hand components

commutativity is obvious; for the right-hand ones we have

T [(εX+Y e)
†, ηY ] · ηX+Y · inr = T [(εX+Y e)

†, ηY ] · T inr · ηY = TηY · ηY .

For (iv), recall that µY · τ∗
TY = τY , and then use the fact that µY is an H-algebra homo-

morphism (see Corollary 1.8) in order to see that the left-hand components commute; for

the right-hand ones commutativity is obvious. All the other parts of the above diagram

clearly commute, and thus the whole diagram does.
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W
g†

��

g

��

T (X+Y )
T [(εe)† ,η] �� TTY

µ �� TY

HW+X+Y
Hg†+X+Y ��

[inl,w,inr]

��

HT (X+Y )+X+Y

[τ,η]

��

HT [(εe)† ,η]+[(εe)† ,η]

&&
&&

&&
&&

$$&
&&

&&
&&

&

(∗)

HW+Y
Hg†+Y ��

H inl+Y

��

HT (X+Y )+Y
HT [(εe)† ,η]+η

��

HT (X+Y )+inr

��

HTTY+TY

[τT ,ηT ]

��

Hµ+TY

%%�
��
��
��
��
��
��
��

H(W+X)+Y

τ∗+η

��

HTY+TY

[τ∗T ,Tη]

%%�
��
��
��
��
��
��
��

T (W+X)+TY

[T inl,T inr]

��
T (W+X+Y )

T [µT [(εe)† ,η]g† ,(εe)† ,η]
�� TTY

µ

��

(28)

X
inm ��

inl

&&''''
'''''

'''''
'''''

'''''
'''''

w

��

(εe)†

����
���

���
���

���
���

���
���

���
���

���

e0

''(
((
((
((
((
((
((
((
((
((
((
((

e

((

(εe)†

$$&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

HW+X+Y
Hg†+X+Y �� HT (X+Y )+X+Y

[τ,η] �� T (X+Y )

T [(εe)† ,η]

��

X+Y

inr

��

η

���������������

[(εe)† ,η]

��
HW+Y

Hg†+Y

��

Hg	+Y

&&&

$$&&
&

(iii)

TY
ηT

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
� TTY

µ

��

HR(X+Y )+Y

Hε+Y
)))

))))) [ρ,ηR inr] $$&
&&

&&
&&

&

(ii)

HT (X+Y )+Y

HT (X+Y )+inr

��

(iv)

(i)R(X+Y )

ε

��
HT (X+Y )+X+Y

[τ,η]
�� T (X+Y )

T [εe† ,η]
�� TTY

µ
�� TY

(29)
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Finally, for the left-hand component of (26), we must show that the outward square

of the diagram (28) commutes. Note that the lower part and the right-hand part of this

diagram is the same as in the diagram (27), and therefore they commute. The upper

left-hand square commutes by Proposition 3.5. Of the remaining three parts, we only need

to consider square (∗); the other parts obviously commute. Consider the components of

HW + X + Y separately. The first and the last components obviously commute. The

middle component need not commute per se, but it does when extended by the passage to

TY in the upper right-hand corner of (28), which is sufficient for our purposes. In other

words, we are to prove that the outward square of the diagram (29) commutes (here, inm

denotes the injection into the middle summand).

In fact: (i) commutes by definition of ( )†; (ii) commutes due to (21); (iii) does by (22);

(iv) follows from εX+Y being a homomorphism of H-algebras (see Remark 4.14) and (5).

The remaining inner parts commute trivially.

(II) Uniqueness: From the Solution Theorem 1.11, we know that (εX+Y e)
† is unique, and

it is thus sufficient to verify that whenever e‡ is a solution in the sense of (20), we have

(εX+Y e)
† = εY e

‡ : X −→ TY .

Since εY is a monomorphism by definition, this determines e‡. Thus, we just have to

observe the commutativity of diagram (25).

Remark 4.24. In the above proof we have seen that every rational equation morphism

e : X −→ R(X + Y )

reduces to a finitary flat equation morphism in the following sense: there is a finitely

presentable object W (of ‘additional’ variables) and a finitary flat equation morphism

h : W +X −→ H(W +X) + Y

whose solution h† : W +X −→ TY defines that of e via

e† = h†inr : X −→ TY .

Or, equivalently, the rational solution h‡ : W +X −→ RY of h defines that of e via

e‡ = h‡inr : X −→ RY .

Corollary 4.25. The rational monad is iterative.

Proof. In fact, R is ideal due to Notation 4.19: we have

R = HR + Id

with injections ρ and ηR , and for the natural transformation

µR : RR −→ R

with components µRX = ˜idRX , we consider

HµR : HRR −→ HR,
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and find that the appropriate diagram

HRR
HµR ��

ρR

��

HR

ρ

��
RR

µR
�� R

commutes, since µRX (being of the form (̃ ) ) is a homomorphism of H-algebras for every

finitely presentable X.

Now the Rational Solution Theorem tells us that R is iterative, see Definition 1.16.

Remark 4.26. Solutions for the monads R and T are closely related:

(i) For every guarded equation morphism e : X −→ R(X + Y ) for R, we have seen in

the proof of Theorem 4.23 that εX+Y · e : X −→ T (X + Y ) is also guarded, and the

rational solution e‡ of e is determined by

εY · e‡ = (εX+Y · e)†.

(ii) Conversely, guarded equation morphisms e : X −→ T (X + Y ), which factor through

R(X + Y ),

X
e ��

e0   "
""

""
""

""
" T (X + Y )

R(X + Y )

ε

��

have the property that e0 is guarded for R, and, therefore, the solution of e is

determined by the rational solution of e0:

e† = εY · e0‡.

In fact, since e is guarded,

X
e ��

e′
��  

   
   

   
 T (X + Y )

HT (X + Y ) + Y

[τ,η·inr]

��

we just have to observe that the square

HR(X + Y ) + Y
Hε+Y ��

[ρ,ηR ·inr]

��

HT (X + Y ) + Y

[τ,η·inr]

��
R(X + Y )

ε
�� T (X + Y )

is a pullback. To verify this, observe that both the components of HR(X+Y )+Y yield

pullbacks: the left-hand one is the pullback in Corollary 4.15, for the right-hand one,

use the fact that A is extensive, see Section 2.3. The universal property of pullbacks
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yields, because of

[τX+Y , ηX+Y · inr] · e′ = e = εX+Y · e0,
the existence of f : X −→ HR(X + Y ) + Y with e′ = (HεX+Y + Y ) · f and

e0 = [ρ, ηR · inr] · f

which proves that e0 is guarded with respect to R.

Remark 4.27. Every finitary flat equation morphism e : X −→ HX + Y can be identified

with the corresponding guarded rational equation morphism

X
e ��HX + Y

ρ∗+Y ��RX + Y
[Rinl,ηR ·inr] ��R(X + Y ).

The solution of the latter (in the sense of Theorem 4.23) is simply e	. In fact, the diagram

X
e	 ��

e

��

RY

HX + Y
He	+Y ��

ρ∗+Y

��

HRY + Y

[ρ,η]
!!**********

ρ∗R+Y

��
RY + Y

Re	+Y

��

[Rinl,ηR ·inr]

��

RRY + Y

[RRY ,RηR ] ����
���

���
��

R(X + Y )
R[e	,ηR ]

�� RRY

µR

��

commutes; see Lemma 4.21 for the upper square.

Example 4.28. Let Σ be a signature with Σn finite, for every n, and Σn = � for all n � n0.

Let H = HΣ be a (strongly finitary) polynomial functor in Set corresponding to Σ, see

Section 1.2. Then TY is the Σ-algebra of finite and infinite Σ-labelled trees. We have

constructed RY above by considering all images of solutions of finitary flat equations

e : X −→ HΣX + Y – that is, RY is the subalgebra of all rational trees in TY .

Thus, in the case of strongly finitary polynomial functors, the rational monad is the

monad of rational trees. This was proved in Elgot et al. (1978) to be a free iterative

monad on H .

Recall the notions of ideal and iterative monad from Definition 1.13 and Definition 1.16,

respectively. We show that the rational monad R can be characterised as a free iterative

monad, when ideal monad morphisms are taken as the ‘right’ morphisms.

Definition 4.29. Let S be an ideal monad.

(a) A natural transformation from a functor H to S is called ideal if it factors through

σS : S ′ −→ S . For example, for the rational monad, the above natural transformation

ρ∗ ≡ H
HηR ��HR

ρ ��R

is ideal.
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(b) Given another ideal monad S̄ , a monad morphism ϕ : S −→ S̄ is called ideal if it has

the form

ϕ = ϕ′ + id

for some natural transformation ϕ′ : S ′ −→ S̄ ′.

Theorem 4.30. The rational monad R is a free iterative monad on H . That is, given an

iterative monad S and an ideal transformation λ : H −→ S , there exists a unique ideal

monad morphism λ̄ : R −→ S for which the triangle

H
ρ∗

��

λ 		+
++

++
++

+ R

λ̄

��
S

commutes.

Proof. (I) Existence of λ̄: By Remark 2.9, it is sufficient to give the components

λ̄′
Y : HRY −→ S ′Y

of λ̄′ : HR −→ S ′ (such that λ̄ = λ̄′ + id ) for finitely presentable objects Y and to prove

that for every arrow s : Y −→ RZ (Y , Z finitely presentable) the square

RY
s̃ ��

λ̄=λ̄′+Y

��

RZ

λ̄=λ̄′+Z

��
SY ̂̄λs

�� SZ

(30)

commutes (where ̂̄λZs = µSZ · S(λ̄Z s), as usual).

To define λ̄′
Y , whose domain is

HRY = colimHEqY ,

consider an arbitrary object e : X −→ HX + Y of EQY . Then the following, obviously

guarded, equation morphism

λ ·He ≡ HX
He ��H(HX + Y )

λ′
��S ′(HX + Y )

σ ��S(HX + Y ) (31)

has the unique solution (λY ·He)† : HX −→ SY . Since we have, by Remark 3.6, a

factorisation through σY , say (λ ·He)† = σY · ě, we can define λ̄′
Y by

λ̄′
Y ·He	 = ě (for all e : X −→ HX + Y in EQY ). (32)
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This is well-defined because all ě form a cocone of HEqY . In fact, for every morphism

h : e −→ e′ in EQY , we have a commutative diagram

HX
He ��

Hh

��

H(HX + Y )
λ ��

H(Hh+Y )

��

S(HX + Y )

S (Hh+Y )

��
HX ′

He′
�� H(HX ′ + Y )

λ
�� S(HX ′ + Y )

This implies (λ · e)† = (λ · e′)† · Hh, see Lemma 3.7. Since σY is a monomorphism, we

conclude

ě = ě′ ·Hh,

as required.

In order to prove that (30) commutes, we are to show that for every object e : X −→
HX + Y of EQY , we have

̂̄λZs λ̄Y e	 = λ̄Z s̃ e
	.

As in the proof of Theorem 4.16, factor

s = f	s′ (33)

and define ē : Z + V −→ H(Z + V ) + Y by (7). That is, ē has the following components:

ē · inl ≡ X
e ��HX + Y

HX+fs′ ��HX +HV + Z
[Hinl,Hinr]+Z ��H(X + V ) + Z

and

ē · inr ≡ V
f ��HV + Z

Hinr+Z ��H(X + V ) + Z.

Note that for all e in EQY , we have

λ̄Y e
	 =

[
(λHe)†, ηSY

]
· e. (34)

Indeed, consider the following diagram:

X
e ��

e	

��

HX + Y

He	+Y

��

HX + Y

[(λHe)† ,ηSY ]

��

RY
∼=
i

��

λ̄Y ��,,
,,,

,,,
,,

HRY + Y

[σY λ̄
′
Y ,η

S
Y ]

��
SY SY
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The upper square commutes by the definition of the isomorphism i : RY −→ HRY + Y

(see Remark 4.11), the lower triangle is the definition of λ̄Y on the components of the

coproduct RY = HRY + Y , and the right-hand square commutes, since

σY · λ̄′
Y ·He	 = (λHe)†.

Now consider the following diagram:

HX +HV + Z

[Hinl,Hinr]+Z

&&''''
'''''

'''''
'''''

'

HX + Y

HX+fs′
**------------------

[(λHe)† ,ηSY ]

++.
..

..
..

..
..

..
..

. X
inl ��

e	

��

e�� X + V
ē ��

ē	

��

H(X + V ) + Z

[(λHē)† ,ηSZ ]

))//
//
//
//
//
//
//
//
//

RY
s̃ ��

λ̄Y

��

RZ

λ̄Z

��
SY ̂̄λZ s

�� SZ

(35)

Observe that the upper part commutes by the definition of ē, and the right-hand and

left-hand parts commute by (34) for e and ē, respectively. Of the remaining two inner

squares, the upper one commutes by definition of s̃ , see (9). We shall show below that

the outer shape commutes. Thus, the lower square commutes when precomposed with e	,

for any e in EQY , which establishes the commutativity of (30).

In order to show that the outer shape of (35) commutes, we consider the components

of HX + Y separately. For the right-hand one we obtain the following diagram:

Y
s′ ��

ηSZ

��

s



0
00

00
00

0 V
f ��

f	

��

HV + Z
Hinr+Z ��

[(λHf)† ,ηSZ ]

  "
""

""
""

""
""

""
""

""
""

""
""

H(X + V ) + Z

[(λHē)† ,ηSZ ]

��

RZ
λ̄Z

&&11111
11111

11111
11111

11111
11111

SY ̂̄λZ s
�� SZ

(36)

Observe that all parts of this diagram, except perhaps the right-hand triangle, clearly

commute: we have λ̄Zf
	 = [(λHf)†, ηSZ ] · f by (34) and the other two parts are obvious.

Now notice that inr : f −→ ē is a morphism in EQZ . Therefore the square
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HV
Hf ��

Hinr

��

H(HV + Z)
λ �� S(HV + Z)

S (Hinr+Z)

��
H(X + V )

Hē
�� H(H(X + V ) + Z)

λ
�� S(H(X + V ) + Z)

commutes. Hence

(λHē)† = (λHf)† ·H inr

by Lemma 3.7, which establishes the commutativity of (36).

For the left-hand component of the outer shape of (35) we are to establish the

commutativity of the following diagram:

HX
Hinl ��

(λHe)†

��

H(X + V )

(λHē)†

��
SY ̂̄λZ s

�� SZ

for all e in EQY (37)

In order to prove this, consider the following arrow h : HX +HV −→ H(HX +HV +Z)

defined by

h · inl ≡ HX
He ��H(HX + Y )

H(HX+fs′) ��H(HX +HV + Z)

and

h · inr ≡ HV
Hf ��H(HV + Z)

Hinr ��H(HX +HV + Z).

Note that we have

H([H inl, H inr] + Z) · h = Hē · [H inl, H inr]. (38)

To show the commutativity of (37), we shall prove below that for the solution of the

guarded equation morphism λHX+HV+Z · h, the following two claims hold:

(λh)† = (λHē)† · [H inl, H inr] (39)

and

(λh)† = [̂̄λZs · (λHe)†, (λHf)†]. (40)

Observe that the left-hand components yield (37), which concludes the proof of the

existence of the ideal monad morphism λ̄ : R −→ S .

Proof of (39). Consider the commutative diagram (41). The upper left-hand square is

just (38), the lower square commutes by naturality of λ. The right-hand square is the

definition of (λHē)†. Thus (λHē)† · [H inl, H inr] solves λh, and thus (39) holds.
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Proof of (40). As for (39), we use the definition of the solution (λh)†, but we consider the

HX +HV
[H inl,H inr] ��

h

��

H(X + V )
(λHē)† ��

Hē

��

SZ

H(HX +HV + Z)
H([H inl,H inr]+Z ) ��

λ

��

H(H(X + V ) + Z)

λ

��
S (HX +HV + Z)

S([H inl,H inr]+Z )
�� S (H(X + V ) + Z)

S[(λHē)† ,ηSZ ]

�� SSZ

µSZ

��

(41)

components of the coproduct HX+HV separately. For the right-hand component of (40),

consider the commutative diagram (42):

HV
(λHf)† ��

Hf

��

SZ

H(HV + Z)

λ

�����
����

����
���

H inr

��
H(HX +HV + Z)

λ

��

S (HV + Z)

S[(λHf)† ,ηSZ ]

���

�����
��S inr,,2222

2222
2222

22

S (HX +HV + Z)
S[ ̂̄λZ s (λHe)† ,(λHf)† ,ηSZ ]

�� SSZ

µSZ

��

(42)

For the left-hand component of (40), we analyse the diagram (43). All inner parts of this

diagram except, perhaps, the lower one obviously commute. For the lower part, remove

S and consider the components of HX + Y . For the left-hand one, nothing needs to be

shown, the right-hand one commutes since by (33) and (34) we have

̂̄λZs · ηSY = λ̄Z · s = λ̄Z · f	 · s′ =
[
(λHf)†, ηSZ

]
· f · s′.

Therefore (43) commutes, concluding the proof of (40).

(II) Equality λ̄ · ρ∗ = λ. It suffices to check that λ̄Y · ρ∗
Y = λY for objects Y in Afp , see

Remark 2.2(iii). Notice that for e = inr : Y −→ HY + Y we have (λHY+Y H inr)† = λY .

Indeed, the diagram (44) commutes. That means we can choose λ′
Y : HY −→ S ′Y as our

ě (see (32)). But now we have

λ̄′
Y Hη

R
Y = λ̄′

Y H inr	 = λ′
Y .



Free iterative theories: a coalgebraic view 301

HX
(λHe)† ��

He

��

SY
S(λ̄Z s) �� SSZ

µSZ �� SZ

H(HX + Y )

λ

��33
333

333
333

33

H(HX+fs′)

��
H(HX +HV + Z)

λ

��

S (HX + Y )
S[(λHe)† ,ηSY ] ��

S(HX+fs′)

--44
44
44
44
44
44
44
44
44

SSY
SS(λ̄Z s) ��

µSY

��

S( ̂̄λs )

  �
��

��
��

��
��

��
��

��
��

��
SSSZ

SµSZ

++.
..

..
..

..
..

..
.

µSSZ

��

S (HX +HV + Z)
S[ ̂̄λs ·(λHe)† ,(λHf)† ,ηSZ ]

�� SSZ

µSZ

��

(43)

HY
λY ��

λY

$$&
&&

&&
&&

&&
&&

H inr

��

SY

H(HY + Y )

λ

��

SY

)))))))))))

)))))))))))

SηSY

$$&
&&

&&
&&

&&
&&

S inr

))))
))
))
))
))

S (HY + Y )
S[λY ,η

S
Y ]

�� SSY

µSY

��

(44)

Extending by σY , we obtain the desired equation. In fact, the diagram

H
HηR

��

λ′

����
���

���
���

��

λ
!!

ρ∗

��
HR ρ

��

λ̄′

��

R

λ̄

��
S ′ σ �� S

commutes.

(III) Uniqueness of λ̄. Suppose that ν = ν ′ + id is another ideal monad morphism with

ν · ρ∗ = λ. We have to show that ν ′
Y satisfies the defining equation of λ̄′

Y , that is,

ν ′
Y ·He	 = ě : HX −→ S ′Y

for all objects Y of Afp and e of EQY . Since the coproduct injection σY : S ′Y −→ SY is

monomorphic, it suffices to show that

σY · ν ′
Y ·He	 = σY · ě = (λHe)†. (45)
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We use the definition of the solution (λHe)† to show that this is indeed the case. All

parts of the diagram (46) commute:

HX
He	 ��

He

��

HRY
ν′
Y ��

ρY

��5
55

55
55

55
55

55
5 S ′Y

σY �� SY

HRY

id

��6666666666666666666

HηRRY

����
��

��
��

��
��

��
��

��
� RY

νY

..7777777777777

H(HX + Y )
HηR ��

λ

��

H[ρY He
	,ηRY ]

!!********************

ρ∗

����
���

���
���

���
���

���
HR(HX + Y )

HR[ρY He
	,ηRY ] ��

ρ

��

HRRY
ρR ��

ρR

��

HµRY

��

RRY

RνY

��

µRY

��

R(HX + Y )
R[ρY He

	,ηRY ] ��

ν

//����
����

����
��

RRY
RνY �� RSY

νSY

��8
88

88
88

8

S (HX + Y )
S[σY ν

′
Y He

	,ηSY ]=S[νY ρY He
	,ηSY ]

�� SSY

µSY

��

(46)

For the upper left-hand triangle, recall from Corollary 4.13 that [ρY , η
R
Y ]·(He	+Y )·e = e	,

for the lower part use naturality of ν and νY η
R
Y = ηSY , for the rest commutativity is obvious.

This completes the proof of (45).

Remark 4.31. Recall that Elgot defined iterative theories by the (seemingly weaker)

condition that all ideal equation morphisms, that is, all e : X −→ S(X + Y ) that factor

through σX+Y ,

X
e ��

  

S(X + Y )

S ′(X + Y )

σX+Y

��

have unique solutions. This, however, does not influence the above result. That is, the

rational monad is also a free iterative monad in the sense of Elgot. This follows from

the above proof: the only guarded equation we used for the iterative monad S was the

equation morphism λ ·He, see (31), and that is, indeed, ideal.

Remark 4.32. Our definition of ideal monad (as a monad S of the form S = S ′ + Id )

rests on our assumption that coproduct injections are monomorphic in A. Without this

assumption, we would have to define an ideal monad by means of a functor S ′ : A −→ A
and natural transformations µ′ : S ′S −→ S ′ such that the functor S = S ′ + Id together

with the natural transformations inr : Id −→ S and µ ≡ SS = S ′S + S
[µ′ ,S ] ��S ′ + Id = S is
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a monad. In that sense it is important to note that in the above theorem we actually

proved the following:

For every natural transformation λ′ :H −→ S ′, there exists a unique natural trans-

formation λ̄′ :HR −→ S ′ such that λ̄′ + id is an ideal monad homomorphism and the

triangle

H
HηR ��

λ′
���

��
��

��
� HR

λ̄′

��
S ′

commutes.

In fact, both the uniqueness, and the naturality of λ̄′
X : HRX −→ S ′X follow from the

uniqueness and naturality of λ̄X : RX −→ SX (again through our assumptions that the

coproduct injections ρX and σX are monomorphisms).

5. Rational monad – finitary case

Assumptions 5.1. Throughout this section A denotes a strongly LFP category and H a

finitary endofunctor preserving monomorphisms.

We are going to prove that, once again, the rule

RY =
⋃

im(e†)

defines a free iterative monad on H , called the rational monad of H .

Remark 5.2. We know from Corollary 2.16 that H is a directed colimit of strongly finitary

functors preserving monomorphisms:

H = colim
i∈I

Hi (I a directed poset).

We use

αi,j : Hi −→ Hj (i � j)

to denote the connecting morphisms and

βi : Hi −→ H (i ∈ I)

to denote the colimit cocone.

Let

ρ∗
i : Hi −→ Ri (i ∈ I)

be the rational monad of Hi as constructed in Section 4. For each i � j we have an ideal

natural transformation

Hi

αi,j ��Hj

ρ∗
j ��Rj
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for which there exists, by Theorem 4.30, a unique extension to an ideal monad homo-

morphism ᾱi,j : Ri −→ Rj:

Hi

αi,j ��

ρ∗
i

��

Hj

ρ∗
j

��
Ri ᾱi,j

�� Rj

The unicity makes it clear that we obtain a directed diagram of iterative monads (Ri | i ∈ I)

(with connecting morphisms ᾱi,j), and we put

R = colim
i∈I

Ri.

That is, we define an endofunctor R of A as a colimit (object-wise) of the endofunctors

Ri, that is, RY = colim
i∈I

RiY for all Y in A. Next we prove that a colimit of a filtered

diagram of iterative monads is an iterative monad (Proposition 5.5). An easy consequence

is that the above monad R is actually a free iterative monad on H . Finally, we prove that

RY = colim EqY .

Proposition 5.3 (Aczel et al. 2002). Ideal monad homomorphisms λ : S −→ S̄ between

iterative monads preserve solutions. That is, if e : X −→ S(X + Y ) is guarded for S and

has the solution e† : X −→ SY , then λX+Y · e is guarded for S̄ and has the solution λY · e†

with respect to S̄ .

Corollary 5.4. For all i � j in I and any finitary flat equation f : X −→ HiX + Y , put

g ≡ X
f ��HiX + Y

αi,j+Y ��HjX + Y .

Then the solution of f with respect to Ri denoted by f	i : X −→ RiY (see Remark 4.27),

is related to the solution gj of g with respect to Rj by

X
f
	
i

0099
99
99
99 g

	
j

���
��

��
��

�

RiY ᾱi,j

�� RjY

Proof. Apply Proposition 5.3 to λ = ᾱi,j .

Proposition 5.5. For every directed collection of iterative monads Si (i ∈ I , I a directed

poset) and ideal monad morphisms λi,j : Si −→ Sj (i � j in I), there is a unique structure

of an iterative monad on the functor

S = colim
i∈I

Si

turning the colimit morphisms into ideal monad homomorphisms.

Remark. The above colimit is, of course, formed objectwise: we define SX by SX =

colim
i∈I

SiX for all objects X in A, and analogously for morphisms.
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Proof. (I) We are given ideal monads (Si, ηi, µi) with appropriate σi : S ′
i −→ Si and

µ′
i : S

′
i Si −→ S ′

i for i ∈ I and we form a colimit

(λi : Si −→ S | i ∈ I)

in the functor category [A,A]. It is proved in Section 4 of Kelly and Power (1993)

that there is a unique structure (S, η, µ) of a monad on the functor S such that all the

transformations λi are monad homomorphisms, forming a colimit cocone in the category

of all finitary monads on A.

(II) (S, η, µ) is an ideal monad. In fact, we have a directed diagram of all S ′
i , i ∈ I and all

λ′
i,j : S ′

i −→ S ′
j , i � j, such that

Si = S ′
i + Id

and

λi,j = λ′
i,j + id

for all i � j in I . (To show that (λ′
i,j) form a directed diagram, use the fact that (λi,j) do

and that all σi are monomorphisms, being coproduct injections of Si = S ′
i + Id .) Put

S ′ = colim
i∈I

S ′
i

with the colimit cocone denoted by λ′
i : S

′
i −→ S ′, i ∈ I . Define σ : S ′ −→ S as the unique

natural transformation such that diagrams

S ′ σ �� S

S ′
i

λ′
i

��

σi
�� Si

λi

��

commute for every i ∈ I . (This is, once more, forced on us by the requirement that λi is

an ideal monad homomorphism.)

Since the diagonal functor I −→ I × I is cofinal, the composite S ′S is a colimit of the

diagram of S ′
i Si, i ∈ I , with connecting morphisms

S ′
i Si

S ′
i λi,j ��S ′

i Sj
λ′
i,j Sj ��S ′

jSj for i � j

and colimit cocone

S ′
i Si

S ′
i λi ��S ′

i S
λ′
iS ��S ′S for i ∈ I .

Then µ′ : S ′S −→ S ′ is defined by commutativity of the squares

S ′S
µ′

�� S ′

S ′
i S

λ′
iS

��

S ′
i Si

S ′
i λi

��

µ′
i

�� S ′
i

λ′
i

��

for all i ∈ I . The verification that (S, η, µ) is an ideal monad is quite mechanical.
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(III) (S, η, µ) is iterative. In fact, let

X
e ��

e′
����

���
���

���
S(X + Y )

S ′(X + Y ) + Y

[σ,η·inr]

��

be a guarded equation morphism. Since X is a finitely presentable object, e′ factors

through one of the colimit morphisms of the filtered colimit

S ′(X + Y ) + Y = colim
i∈I

S ′
i (X + Y ) + Y

with colimit cocone formed by (λ′
i)X+Y + Y , i ∈ I . That is, we have i ∈ I and f′ such that

the diagram

X
e ��

f

��

f′

115
55

55
55

55
55

55
55

55
S(X + Y )

Si(X + Y )

λi

��													
S ′(X + Y ) + Y

[σ,ηinr]

��

S ′
i (X + Y ) + Y

[σi,ηiinr]

��

λ′
i+Y

��													

(47)

commutes. This defines a guarded equation morphism f : X −→ Si(X +Y ) for Si. We use

f† : X −→ SiY to denote the unique solution with respect to Si. Then the composite

X
f†

��SiY
λi ��SY

is a solution of e with respect to S . In fact, the diagram (48) obviously commutes. It

remains to show that solutions are unique for S . In fact, let

h : X −→ SY

be a solution of e. We prove h = λi ·f†. Observe first that the solution λi ·f† is independent

of the above factorisation e′ = ((λ′
i)X+Y + Y ) · f′. In fact, choose any other factorisation,

X
f†

��

f

��

e

22

SiY
λi �� SY

Si(X + Y )
Si[f

† ,ηi] ��

λi

��

SiSiY

µi

��

λiS

��8
88

88
88

88

SSiY

Sλi

��8
88

88
88

88

S (X + Y )
S[λif

† ,η]
��

S[f† ,ηi]



::::::::::::::::::::::
SSY

µ

��

(48)
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through j ∈ I:

e′ = ((λ′
j)X+Y + Y ) · g′ for some g′ : X −→ S ′

j(X + Y ) + Y .

Since I is directed, we can assume the existence of some (λ′
i,j)X+Y : S ′

i (X+Y ) −→ S ′
j(X+Y )

such that the diagram

S ′
i (X + Y ) + Y

λ′
i+Y

��;;
;;;

;;;
;;;

;;

λ′
i,j+Y

��

X

f′
��***********

g′
����

���
���

���
S ′(X + Y ) + Y

S ′
j(X + Y ) + Y

λ′
j+Y

��














(49)

commutes.

Put g = [(σj)X+Y , (ηj)X+Y · inr] · g′, analogously to (47). Notice that the triangle

Si(X + Y )

λi,j

��

X

f !!******

g ����
���

�

Sj(X + Y )

commutes. By Proposition 5.3 applied to λ = λi,j , the triangle

SiY

λi,j

��

X

f†
3399999999

g† ��















SjY

commutes, where, g† : X −→ SjY denotes the unique solution with respect to Sj . This

proves

(λj)Y · g† = (λj)Y · (λi,j)Y f
† = (λi)Y · f†, (50)

as desired.

We are ready to prove that solutions for S are unique. Let

h : X −→ SY
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be a solution, that is, let the diagram

X
h ��

f

��

SY

Si(X + Y )

λi

��
S(X + Y )

S [h,η]
�� SSY

µ

��

(51)

commute. We can factor h through one of the colimit maps of the filtered colimit defining

SY ; without loss of generality we can assume that it is (λi)Y for the given i ∈ I (recall the

independence of (λi)Y · f† of the given factorisation of e). We obtain the diagram (52):

X
h ��

h̄

��;;
;;;

;;;
;;;

;;;
;;

f

��

SY

SiY

λi

44222222222222222222

Si(X + Y )

Si[h̄,ηi] ��;;
;;;

;;;
;;;

;;

(∗)

λi

��

SiSiY

µi

��

λiSi

��8
88

88
88

88

SSiY

Sλi

��8
88

88
88

88

S (X + Y )
S[h,η]

��

S[h̄,ηi]



::::::::::::::::::::::
SSY

µ

��

(52)

The proof would be finished if we knew that (∗) in that diagram commutes: then h̄ = f†

implies h = λi · f†, as required. However, we do not claim that commutativity. All we

claim is that all the other inner parts of (52) commute (trivially) and the outer shape does

by (51), thus,

(λi)Y merges the two sides of (∗).

This implies, since the domain X of (∗) is finitely presentable and (λi)Y is a colimit

morphism of the filtered colimit defining SY , that some connecting morphism (λi,j)Y for

i � j in I also merges the two sides of (∗). Put

g′ ≡ X
f′

��S ′
i (X + Y ) + Y

λ′
i,j+Y ��S ′

j(X + Y ) + Y

and

g ≡ X
g′

��S ′
j(X + Y ) + Y

[σj ,ηj inr] ��Sj(X + Y )
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We claim that g, which obviously is a guarded equation morphism for Sj , has the solution

g† = (λi,j)Y · h̄ : X −→ SjY . (53)

To prove this, we observe that the diagram (54) commutes:

X
h̄ ��

f

��

g

22

SiY
λi,j �� SjY

Si(X + Y )
Si[h̄,ηi] ��

λi,j

��

SiSiY

µi

��

λi,j Si

��8
88

88
88

88

SjSiY

Sjλi,j

���
��

��
��

��

Sj(X + Y )
Sj [λi,j h̄,ηj ]

��

Sj [h̄,ηi]



::::::::::::::::::::::
SjSjY

µj

��

(54)

all the inner parts commute trivially except the upper left-hand square – and, by our

choice of j, that square commutes when composed with (λi,j)Y . This proves (53). Therefore,

we have, by (50),

(λi)Y · f† = (λj)Y · g† = (λj)Y · (λi,j)Y h̄ = (λi)Y h̄ = h,

which concludes the proof.

Definition 5.6. For every finitary functor H , expressed as a filtered colimit of strongly

finitary functors Hi we define the rational monad R of H as the colimit of the corresponding

diagram of the rational monads Ri of Hi,

R = colim
i

Ri, with injections β̄i : Ri −→ R

(see Remark 5.2).

We have yet to show that R is well-defined, that is, independent of the given

representation of H as H = colimHi. This follows from the following proposition.

Proposition 5.7. The rational monad R of H is a free iterative monad on H . That is:

(a) R is an iterative monad;

(b) the natural transformation ρ∗ = colim
i∈I

ρ∗
i : H −→ R is ideal;

and
(c) given an iterative monad S and an ideal natural transformation λ : H −→ S , there

exists a unique ideal monad homomorphism λ̄ : R −→ S with λ = λ̄ · ρ∗.

Proof. For (a) see Proposition 5.5. Since each ρ∗
i : Hi −→ Ri is an ideal transformation,

that is, ρ∗
i = ρi ·HηRi , it follows that

colim
i∈I

ρ∗
i =

(
colim
i∈I

ρi

)
·H
(

colim
i∈I

ηRi
)

is also ideal. It remains to prove (c).
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For each i ∈ I we have an ideal transformation

Hi

βi �� H
λ �� S,

which, by Theorem 4.30, yields a unique ideal monad homomorphism λ̄i : Ri −→ S such

that the square

Hi

ρ∗
i ��

βi

��

Ri

λ̄i

��
H

λ
�� S

(55)

commutes. The unicity makes it clear that λ̄i, i ∈ I , is a cocone of the diagram (Ri | i ∈ I).

Thus, we have a unique ideal monad homomorphism λ̄ : R −→ S with

λ̄ · β̄i = λ̄i for i ∈ I . (56)

Then, from ρ∗ · βi = β̄i · ρ∗
i (recall ρ∗ = colim ρ∗

i ), we obtain

(λ̄ · ρ∗) · βi = λ · β̄i · ρ∗
i

= λ̄i · ρ∗
i by (56)

= λ · βi by (55)

for all i ∈ I , which proves

λ̄ · ρ∗ = λ.

The unicity of λ̄ is obvious: given an ideal homomorphism λ̄ with λ̄ · ρ∗ = λ, we have

λ̄ · β̄i : Ri −→ S is an ideal homomorphism with

λ̄ · β̄i · ρ∗
i = λ̄ · ρ∗ · βi = λ · βi,

which (since Ri is free on Hi) determines λ̄ · β̄i for i ∈ I , and this determines λ̄.

Recall that guarded equation morphisms e : X −→ R(X+Y ) with X finitely presentable

are called rational.

Corollary 5.8. (Rational Solution Theorem) Every rational equation morphism e : X −→
R(X + Y ) has a unique solution. That is, there exists a unique morphism

e‡ : X −→ RY

such that the triangle

X
e‡

��

e

��

RY

R(X + Y )

̂[e‡ ,ηRY ]

�����������

commutes (where for s = [e‡, ηRY ] we denote ŝ = µRY · Rs, as always).

In fact, if Y is finitely presentable, this follows immediately from Proposition 5.7(a). If Y

is arbitrary, we express it as a filtered colimit of finitely presentable objects Y = colim
i∈I

Yi,
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with a colimit cocone yi : Yi −→ Y . Since R is finitary, we obtain R(X+Y ) = colim
i∈I

R(X+

Yi). By the finite presentability of X, e factors through one of the colimit morphisms

R(X + yi) through a guarded equation morphism ei : X −→ R(X + Yi). It is a routine

verification that the existence and uniqueness of the solution of ei implies the existence

and uniqueness of the solution of e.

Remark 5.9. The rational monad R fulfills

R = HR + Id

with coproduct injections

ρ : HR −→ R

(turning each object RY into an H-algebra) given by

ρ = colim
i

ρi : colim
i

HiRi −→ colim
i

Ri

and

η : Id −→ R

(the unit of the monad).

In fact, filtered colimits commute with finite coproducts, so all this follows from

Ri = HiRi + Id with coproduct injections ρi and ηi.

Remark 5.10. We are going to establish the formulas RY =
⋃

im(e†) and RY =

colim EqY for all objects Y of A (cf. 4.2. and 4.6.). It is sufficient to prove the second

one for all finitely presentable objects Y , the extension to all objects is exactly as in

Remark 4.20.

For Y in Afp , the diagram Eq(i)
Y of all finitary flat equations e : X −→ HiX + Y (X

finitely presentable) has a colimit

RiY = colim Eq(i)
Y

with colimit cocone e	i : X −→ RiY , see Section 4.

Consider an arbitrary finitary flat equation morphism e : X −→ HX + Y for H . Since

X is finitely presentable and HX + Y is a directed colimit of HiX + Y , i ∈ I , we have a

factorisation as follows:

X
e ��

f   ��
���

���
�� HX + Y

HiX + Y

βi+Y

��

for some i ∈ I . Here f is a finitary flat equation morphism for Hi, and we use f	i : X −→
RiY to denote the corresponding colimit map of RiY = colimEq(i)

Y . Define e	 by

X
e	 ��

f
	
i ���

��
��

��
� RY

RiY

β̄i

��
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This is well-defined (that is, independent of the factorisation) and forms a colimit of the

diagram EqY , as we prove now.

Proposition 5.11. For every finitely presentable object Y we have

RY = colimEqY

with the above colimit cocone e	 : X −→ RY (e in EQY ).

Proof. (I) Independence of the factorisation: Since I is a directed poset, all we have to

prove is that given i � j in I , and, using g : X −→ HjX + Y to denote the composite of

f and (αi,j)X + Y ,

X
e ��

g
  �

��
��

��
��

f

���
��

��
��

��
��

��
��

� HX + Y

HjX + Y

βj

��

HiX + Y

αi,j+Y

��

we have

β̄i · f	i = β̄j · g	j .
Since the diagram

X
g ��

f ���
��

��
��

��
� HjX + Y

ρ∗
j+Y �� RjX + Y

[Rj inl,ηRj inr] �� Rj(X + Y )

HiX + Y
ρ∗
i +Y

��

αi,j+Y

��

RiX + Y
[Riinl,ηRi inr]

��

ᾱi,j+Y

��

Ri(X + Y )

ᾱi,j

��

commutes, it follows from Corollary 5.4 that the solutions f	i : X −→ RiY (with respect

to Ri) and g	j : X −→ RjY (with respect to Rj) also form a commutative triangle:

X
g
	
j ��

f
	
i ��













 RjY

RiY

ᾱi,j

��

Combined with the fact that β̄i = β̄j · ᾱi,j (because βi = βj · αi,j), this yields the desired

equality β̄i · f	i = β̄j · g	j .

(II) The morphisms e	 form a cocone of EqY : That is, given a morphism

X
e ��

h

��

HX + Y

Hh+Y

��
X ′

e′
�� HX ′ + Y
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in EQY , we have e	 = (e′)	 · h holds. Since X and X ′ are finitely presentable, there exists

i ∈ I such that e factors as e = ((βi)X +Y ) · f and e′ as e′ = ((βi)X ′ +Y ) · f′. Next, observe

that

HX + Y = colim
i∈I

HiX + Y

is a filtered colimit with colimit cocone (βi)X + Y . The parallel pair f′ · h, (Hih+ Y ) · f :

X −→ HiX
′ + Y gets merged by the colimit morphism (βi)X ′ + Y:

HX + Y

Hh+Y

��

X
f

��

h

��

e

**---------------------
HiX + Y

Hih+Y

��

βi+Y

!!�����������

X ′ f′
��

e′
55<<<

<<<<
<<<<

<<<<
<<<<

<< HiX
′ + Y

βi+Y

��  
   

   
  

HX ′ + Y

Since the domain X of that parallel pair is finitely presentable, it follows that some

connecting morphism (αi,j)X ′ + Y of the above filtered diagram also merges that parallel

pair. That is, in the diagram

X
f ��

h

��

HiX + Y
αi,j+Y ��

Hih+Y

��

HjX + Y

Hjh+Y

��
X ′

f′
�� HiX

′ + Y
αi,j+Y

�� HjX
′ + Y

the outward square commutes. Consequently, we have a morphism h in the filtered

diagram defining RjY , therefore,

(((αi,j)X + Y ) · f)	j = (((αi,j)X ′ + Y
)

· f′)	j · h.
This proves that the desired triangle

X
h ��

((αi,j+Y )f)
	
j

��
��

��
�

		�
��

��
��

e	

""

X ′

((αi,j+Y )f′)	j

��
��
��
�

����
��
��
�

(e′)	

))

RjY

β̄j

��
RY

commutes, since e	 and (e′)	 are by (I) independent of the above factorisation.
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(III) Universal property. Let a cocone e@ : X −→ C (for e in EQY ) of the diagram EqY be

given. For each i ∈ I , we obtain a cocone of D(i)
Y (the diagram of all finitary flat equation

morphisms of Hi with respect to Y ) as follows: to every f : X −→ HiX + Y , we assign

(((βi)X + Y ) · f)@ : X −→ C.

This is indeed a cocone, since for every morphism

X
f ��

h

��

HiX + Y

Hih+Y

��
X ′

f′
�� HiX

′ + Y

in EQ(i)
Y , we have a morphism

X
f ��

h

��

HiX + Y
βi+Y ��

Hih+Y

��

HX + Y

Hh+Y

��
X ′

f′
�� HiX

′ + Y
βi+Y

�� HX ′ + Y

in EQY , thus, (((βi)X + Y ) · f)@ = (((βi)X ′ + Y ) · f′)@ · h. Therefore, we get a unique

ci : RiY −→ C

with

ci · f	i = (((βi)X + Y ) · f)@ for all f in EQ(i)
Y .

The uniqueness of ci, for each i ∈ I , makes it obvious that these morphisms form a cocone

of the diagram (RiY | i ∈ I). Thus, there is a unique

c : RY −→ C

with

c · (β̄i)Y = ci for all i ∈ I .

This morphism fulfills

c · e	 = e@ for each e in EQY .

In fact, we can factor e via f : X −→ HiX + Y as above, and then

c · e	 = c · (β̄i)Y · f	i by the definition of e	

= ci · f	i by the definition of c

= (((βi)X + Y ) · f)@ by the definition of ci
= e@.

To prove that c is unique, we only have to observe that given a morphism c : RY −→ C

with c · e	 = e@ for each e in EQY , it follows that c · (β̄i)Y = ci for each i ∈ I (which

determines c). In fact, RiY is a colimit of Eq(i)
Y with colimit morphisms f	i , and from
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c · e	 = e@, we conclude, for each f : X −→ HiX + Y in EQ(i)
Y , that

c · (β̄i)Y · f	i = c · (((βi)X + Y ) · f)	

= (((βi)X + Y ) · f)@

= ci · f	i

Remark 5.12. Recall that since H is iteratable, it generates the monad T of Corollary 1.8.

Together with

τ∗ ≡ H
Hη ��HT

τ ��T ,

this is a free completely iterative monad on H . We use

ε : R −→ T

to denote the unique ideal monad homomorphism with

H
ρ∗

))//
//
//
/

τ∗

		+
++

++
++

+

R ε
�� T

commutative, see Proposition 5.7. By Proposition 5.3, ε preserves solutions, thus, it satisfies

(due to Remark 4.27)

εY · e	 = e† for all e : X −→ HX + Y in EQY ,

for all objects Y of A. Since RY is the union of all images of finitary flat equation morph-

isms (see Remark 5.10), it follows that εY is a monomorphism (viz., the monomorphism

representing that union). This proves the following corollary.

Corollary 5.13. R is a submonad of the monad T via ε.

Theorem 5.14 (Rational Substitution Theorem). For every morphism

s : X −→ RY ,

there exists a unique extension to a homomorphism

s̃ : RX −→ RY

of H-algebras (that is, a unique homomorphism with s = s̃ · ηRY ).

Proof. Existence is clear: s̃ = µY ·Rs. Uniqueness is proved precisely as in Theorem 4.16.

6. The rational monad of a set functor

We are going to define a rational monad of every finitary functor H of Set. In the last

section, this has been done whenever H preserves monomorphisms.
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Now all monomorphisms m : X −→ Y in Set with X �= � are split – choose x0 ∈ X

and define e : Y −→ X by

e(y) =

{
x, if m(x) = y

x0, otherwise.

Then em= id . Thus, every functor preserves these monomorphisms. The only trouble-

makers are, thus, the empty functions

ψX : � −→ X (X �= �).

Not all finitary functors preserve monomorphisms. For example, put HX = 1 (terminal

object) for X �= � and H� = 1 + 1. This defines H uniquely, and Hψ1 : 1 + 1 −→ 1 is, of

course, no monomorphism. Luckily, iterative monads in Set do preserve monomorphisms.

Proposition 6.1. Every iterative monad in Set preserves monomorphisms.

Proof. Let S be an iterative monad. Observe that S� = S ′� (since S = S ′ + Id ).

If S ′� = �, then SψX : � −→ SX is a monomorphism and the proof is concluded.

Suppose S ′� �= �, choose u′ : 1 −→ S ′� and put u = σ� · u′ : 1 −→ S�. Then the

composite

e ≡ 1
u ��S�

Sψ1 ��S1

is a guarded equation morphism for the empty set Y = � of parameters. And u is a

solution of e, that is, the diagram

1
u ��

u

��

S�

S�

========

========

Sη�




Sψ1

��
S1

Su
�� SS�

µ�

��

(where u = [u, η�] : 1 + � −→ S�) commutes. In fact, we have u · ψ1 = η� : � −→
S� because Set(�, S�) is a singleton set; the rest is clear. This proves that Sψ1 is a

monomorphism: given u, v : 1 −→ S� with Sψ1 · u = Sψ1 · v = e, then both u and v are

solutions of e, and thus, u = v. Consequently, SψX is a monomorphism for every X.

Remark 6.2. For every endofunctor H of Set, the equivalence relation on H� given by

u ∼ v iff HψX(u) = HψX(v)

where X is a fixed non-empty set, is independent of the choice of X.

In brief,

HψX(u) = HψX(v) iff Hψ1(u) = Hψ1(v).
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In fact, since X �= �, we have functions f : 1 −→ X and g : X −→ 1, and the triangles

H�
HψX ��

Hψ1

��

HX

Hg��==
==
==
==

H1

H�
HψX ��

Hψ1

��

HX

H1

Hf

66========

commute (because � is the initial object).

Definition 6.3. For every endofunctor H of Set, we define a quotient

γ : H −→ H+

of H as follows.

For all non-empty sets X, we put H+X = HX and γX = id ; for the empty set, let

γ� : H� −→ H�/∼ = H+�

be the canonical function of the equivalence ∼ of Remark 6.2.

For all functions f : X −→ Y with X �= �, put H+f = Hf, and for the empty function

put H+id� = idH+� and

H+ψX : [u] �→ HψX(u) for all u ∈ H�

if X is non-empty.

The above definition is a small modification of a procedure used by V. Trnková (Trnková

1971).

We now prove that H+ is a reflection of H in the category of all endofunctors of Set

preserving monomorphisms.

Lemma 6.4. For every endofunctor H of Set, the functor H+ preserves monomorphisms,

and γ : H −→ H+ has the following universal property:

For every natural transformation δ : H −→ K , where K preserves monomorphisms,

there exists a unique natural transformation δ+ : H+ −→ K with δ = δ+γ.

Proof. (I) H+ preserves monomorphisms (equivalently, it maps ψ1 to a monomorph-

ism), since [u] �= [v] holds iff Hψ1(u) �= Hψ1(v), for all u, v ∈ H�.

(II) Let δ : H −→ K be given. The equation δ = δ+γ forces us to define

δ+
X = δX : HX −→ KX for all X �= �.

It remains to discuss δ+
� : H�/ ∼ −→ K�. All we have to prove is that for u, v ∈ H�,

we have

u ∼ v implies δ�(u) = δ�(v). (57)
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Then δ+
� is uniquely determined by δ� = δ+

� · γ� (viz., δ+
�([u]) = δ�(u)), and the naturality

of δ+ is obvious. To show (57), use naturality of δ on ψ1:

H�
δ� ��

Hψ1

��

K�

Kψ1

��
H1

δ1

�� K1

From u ∼ v we conclude, since Hψ1(u) = Hψ1(v), that Kψ1(δ�(u)) = Kψ1(δ�(v)). Since

Kψ1 is a monomorphism, it follows that δ�(u) = δ�(v).

Definition 6.5. For every finitary endofunctor H the rational monad of H is defined to be

the rational monad ρ∗ : H+ −→ R of the above reflection γ : H −→ H+.

Corollary 6.6. The rational monad of H , together with the natural transformation

H
γ ��H+

ρ∗
��R

is a free iterative monad on H .

Proof. In fact, since ρ∗ is an ideal natural transformation, so is ρ∗γ. Let S be an iterative

monad and λ : H −→ S be an ideal transformation, λ = σλ′. Since the subfunction S ′ of S

preserves monomorphisms (see Proposition 6.1), the natural transformation λ′ : H −→ S ′

extends uniquely to (λ′)+ : H+ −→ S ′, and we obtain an ideal natural transformation

λ+ ≡ H+
(λ′)+ ��S ′ σ ��S.

By Proposition 5.7, this yields a unique ideal monad homomorphism λ+ : R −→ S

extending λ+, that is, such that

H
γ ��

λ
��33

333
333

333
333

33 H+
ρ∗

��

λ+

		













 R

λ+

��
S

commutes.

7. Conclusion and future directions

We have constructed a free iterative monad on every monos-preserving, finitary endofunc-

tor H of a ‘set-like’ category. In particular, every finitary endofunctor of Set generates a

free iterative monad (or free iterative Lawvere theory). The method of our construction

was coalgebraic, making heavy use of the fact that final coalgebras TX of the functors

H( ) +X form a free completely iterative monad on H .

The proof is surprisingly technical, and one question it naturally raises is whether

a simpler proof can be found. When H is a polynomial functor, the existence of a

free iterative theory was established by C. C. Elgot (Elgot 1975) and the fact that this
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is the theory of rational trees was proved later in Elgot et al. (1978). Their method is

fundamentally different from ours, and their proof was also quite involved.

The rational monad as presented here is based on solutions of finitary flat equations.

This can be extended to solutions of finitary equations in much the same style as

mentioned, for polynomial functors, in the Introduction (see Section 1.1), we have proved

this is Adámek et al. (2002).

In the work of Bloom and Ésik (Bloom and Ésik 1993), equational properties of

solutions are described and revealed to have a general pattern in various fields. See also

a recent restatement of some of these results in Simpson and Plotkin (2000). It would be

interesting to investigate these properties categorically. L. Moss (Moss 2001) has already

taken first steps in that direction.
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Aczel, P., Adámek, J. and Velebil, J. (2001) A coalgebraic view of infinite trees and iteration.

Electronic Notes in Theoretical Computer Science 44 (1).
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FROM ITERATIVE ALGEBRAS TO ITERATIVE THEORIES

JIŘÍ ADÁMEK, STEFAN MILIUS, AND JIŘÍ VELEBIL

Abstract. Iterative theories introduced by Calvin Elgot formalize potentially infinite computations as
unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description
of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely
complicated. In our paper we show that by starting with “iterative algebras”, i. e., algebras admitting a
unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of
free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic
one. And our result is, nevertheless, much more general: we describe a free iterative theory on any finitary
endofunctor of every locally presentable category

�
. This allows us, e. g., to consider iterative algebras over

every equationally specified class
�

of finitary algebras.

Reportedly, a blow from the welterweight boxer
Norman Selby, also known as Kid McCoy, left one
victim proclaiming, “It’s the real McCoy!”

[TPT]

1. Introduction

Iterative theories have been introduced by Calvin C. Elgot [E] as a model of computation given by a
sequence of instantaneous descriptions of an abstract machine. He and his co-authors then proved that for
every signature Σ a free iterative theory on Σ exists [BE] and that it consists of all rational Σ-trees [EBT].
Recall that a Σ-tree (i. e., a tree, possibly infinite, labelled by operation symbols in Σ so that every node
with n children is labelled by an n-ary symbol) is rational if it has up to isomorphism only finitely many
subtrees, see [G].

In the present paper we introduce iterative algebras rather than iterative theories, and we show that the
theory formed by all free iterative algebras is Elgot’s free iterative theory. In the classical case of Σ-algebras,
iterativity has been introduced by Evelyn Nelson [N] as follows: given a Σ-algebra A, let us consider an
arbitrary system of recursive equations

xi ≈ ti, i = 1, . . . , n , (1.1)

where X = {x1, x2, . . . , xn} is a finite set of variables and t1, t2, . . . , tn are terms over X +A, none of which
is a single variable xi. The algebra A is called iterative provided that for every such system of equations
there exists a unique solution. That is, there exists a unique n-tuple x1

†, x2
†, . . . , xn

† of elements of A such
that each of the formal equations in (1.1) becomes an equality after the substitution xi

†/xi:

xi
† = ti(x1

†/x1, x2
†/x2, . . . , xn

†/xn) , i = 1, . . . , n.

Example: let Σ consist of a single binary operation symbol, ∗, then the algebra A of all (finite and infinite)
binary trees is iterative. For example, the system

x1 ≈ x2 ∗ t
x2 ≈ (x1 ∗ s) ∗ t (1.2)

Date: October 21, 2004.
The first and the third author acknowledge the support of the Grant Agency of the Czech Republic under the Grant

No. 201/02/0148.
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where s and t are trees in A has the unique solution

x1
† =

t

t

s

t

t

s

t

�����

�����

�����

�����

�����

�����

???????????????????????????????????

������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%

x2
† =

t

s

t

t

s

t

t

�����

�����

�����

�����

�����

�����

???????????????????????????????????

������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%������

%%%%%%

(1.3)

Every system (1.1) above can be modified to a flat system, i.e., one where each right-hand side is either
a flat term

ti = σ(y1, . . . , yk) , for σ ∈ Σk and y1, . . . , yk ∈ X ,

or an element of A
ti ∈ A.

For example, the above system (1.2) has the following modification to a flat system:

x1 ≈ x2 ∗ x3 x3 ≈ t x5 ≈ s
x2 ≈ x4 ∗ x3 x4 ≈ x1 ∗ x5

Therefore, an algebra is iterative iff every flat equation system has a unique solution.
Now Σ-algebras are a special case of algebras for an endofunctor H : A −→ A (which are pairs consisting

of an object A of A and a morphism α : HA −→ A): here A is the category of sets and H = HΣ is the
polynomial functor given on objects by

HΣX = Σ0 + Σ1 ×X + Σ2 ×X2 + · · ·
For a Σ-algebra (A,α) observe that a flat equation system has its right-hand sides in HΣX +A, thus, it can
be represented by a morphism

e : X −→ HΣX +A, e(xi) = ti.

A solution of e is then a morphism

e† : X −→ A, e†(xi) = xi
† ,

with the property that the following diagram

X
e† //

e

��

A

HΣX +A
HΣe

†+A
// HΣA+A

[α,A]

OO

(1.4)

commutes. This leads to the following definition concerning H-algebras for any endofunctor H of Set:

Definition 1.1. An H-algebra (A,α) is called iterative provided that for every flat equation morphism
e : X −→ HX + A, where X is a finite set, there exists a unique solution, i. e., a unique morphism
e† : X −→ A such that the square

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[α,A]

OO

commutes.

“Classical” algebras are seldom iterative. But there are enough interesting iterative algebras. For example,
the Σ-algebra

TΣ

of all (finite and infinite) Σ-trees is iterative. And so is its subalgebra

RΣ
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of all rational Σ-trees. In fact, the full subcategory Algit Σ of Alg Σ formed by all iterative Σ-algebras is
rich enough: a limit or a filtered colimit of iterative algebras is always iterative, thus Algit Σ is reflective
in Alg Σ. From this it follows that every set generates a free iterative algebra, i. e., the forgetful functor
Algit Σ −→ Set is a right-adjoint. This defines a monad RΣ on Set. We prove that

(i) RΣ is a free iterative monad on HΣ,

and

(ii) RΣ assigns to every set X the algebra RΣX of all rational Σ-trees on X , i. e., rational trees where
leaves are labelled by constant symbols from Σ or elements of X .

In this way a new proof of the result of Elgot et al. describing a free iterative monad (or theory) is achieved.
In our proof we work with an arbitrary endofunctor H of the category of sets which is finitary, i. e.,

preserves filtered colimits. The main technical result is coalgebraic: in order to describe a free iterative
algebra on a set Y , we form the diagram EqY of all coalgebras e : X −→ HX + Y of the endofunctor
H(−) + Y on finite sets X . We prove that a colimit of that diagram

RY = colim EqY

carries naturally the structure of an algebra, and that RY is a free iterative H-algebra on Y . From that
we derive that the monad R(−) is a free iterative monad on H . In our proof the fact that H is a fini-
tary endofunctor of Set plays no rôle: the same result holds for finitary endofunctors of all locally finitely
presentable categories. Thus, if we start e. g. with an equational class A of finitary algebras then, again,
for every finitary endofunctor H the free iterative algebras RY are constructed as colimits of coalgebras of
H(−) + Y on finitely presentable objects of A, and they form a free iterative theory on H .

Related Work. In the classical setting, i. e., for polynomial endofunctors of Set, iterative algebras were
introduced by Evelyn Nelson [N] to obtain a short proof of Elgot’s free iterative theories. Our paper can be
seen as a categorical generalization of that paper with distinctive coalgebraic “flavour”. Also Jerzy Tiuryn
introduced a concept of iterative algebra in [T] with the same aim as ours: to relate iterative theories of
Elgot to properties of algebras. But the approach of [T] is different from ours; e.g., the trivial, one-element,
algebra is not iterative in the sense of Tiuryn, thus, his iterative algebras are not closed under limits.

The description of the rational monad as a colimit is also presented in [GLM].
The present paper is a dramatic improvement of our previous description of the rational monad in [AMV1],

[AMV2] where we assumed that the endofunctor preserves monomorphisms and the underlying category
satisfies three rather technical conditions, and the proof was much more involved. The current approach
includes all equationally defined algebraic categories as base categories (whereas in [AMV2] we still needed
strong side conditions which only hold in very few algebraic categories). We believe that with this paper we
have the “real McCoy”. Simultaneously to the present paper the paper [Mi] devoted to completely iterative
algebras evolved.

2. Iterative Algebras

Notation 2.1. Throughout the paper all categories are assumed to have finite coproducts. We denote by
inl and inr the coproduct injections of A + B. For an endofunctor H , let can : HA + HB −→ H(A + B)
denote the canonical morphism can = [H inl , H inr ].

In order to define the concept of a flat equation morphism as in the introduction (a morphism e : X −→
HX +A in Set where X is finite) in a general category, we need the appropriate generalization of finiteness.
Recall that a functor is called finitary provided that it preserves filtered colimits. A set is finite if and only
if its hom-functor is finitary. This has inspired Gabriel and Ulmer [GU] to the following

Definition 2.2. An object of A a category A is finitely presentable if its hom-functor A(A,−) : A −→ Set
is finitary.

A category A is called locally finitely presentable provided that it has colimits and a (small) set of finitely
presentable objects whose closure under filtered colimits is all of A.

Examples 2.3.

(1) A poset is finitely presentable in Pos, the category of posets and order-preserving functions, if and
only if it is finite. Pos is a locally finitely presentable category.

(2) The category CPO of complete partial orders and continuous functions is not locally finitely pre-
sentable: it has no nontrivial finitely presentable objects.
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(3) Every variety of finitary algebras is locally finitely presentable. The categorical concept of finitely
presentable object coincides with the algebraic one (of having finitely many generators and finitely
many presenting equations), see [AR].

(4) Let H be a finitary endofunctor of a locally finitely presentable category A. Then the category Alg H
of H-algebras and homomorphisms is also locally finitely presentable, see [AR].

Definition 2.4. Given an endofunctor H : A −→ A, by a finitary flat equation morphism (later just:
equation morphism) in an object A we mean a morphism e : X −→ HX + A of A, where X is a finitely
presentable object of A.

Suppose that A is an underlying object of an H-algebra α : HA −→ A. Then by a solution of e in the
algebra A is meant a morphism e† : X −→ A in A such that the square

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[α,A]

OO

(2.1)

commutes.
An H-algebra is called iterative provided that every finitary flat equation morphism has a unique solution.

Example 2.5. The algebra TΣY of all Σ-trees on Y (i. e., trees with leaves labelled by constant symbols in
Σ0 or by elements of Y , and inner nodes with n children labelled in Σn) is iterative. And so is the subalgebra
RΣY of all rational trees on Y .

Example 2.6. Groups, lattices etc. considered as Σ-algebras are seldom iterative. For example, if a group
is iterative, then its unique element is the unit element 1, since the recursive equations x ≈ x · y, y ≈ 1 have
a unique solution. If a lattice is iterative, then it has a unique element: consider x ≈ x ∨ x.

Example 2.7. The algebra of addition on the set

Ñ = { 1, 2, 3, . . .} ∪ {∞}
is iterative (and “almost classical”). (Observe that 0 is not included. This is forced by the uniqueness of
solutions of x ≈ x+ x.)

To prove the iterativity of Ñ denote by h : TΣÑ −→ Ñ the homomorphism which to every finite tree

assigns the result of computing the corresponding term in Ñ and to every infinite tree assigns ∞. Observe

that the canonical embedding η : Ñ −→ TΣÑ satisfies h · η = id . Let

e : X −→ X ×X + Ñ

be an equation morphism. The derived equation morphism

e ≡ X
e //X ×X + Ñ

X×X+η
//X ×X + TΣÑ

has a unique solution e† : X −→ TΣÑ in the tree algebra. This yields a solution e† in Ñ as follows:

e† ≡ X
e† //TΣÑ

h //Ñ .

To prove that solutions in Ñ are unique, let e‡ : X −→ Ñ be a solution of e. For every x ∈ X with
e†(x) finite we have e‡(x) as the computation of e†(x), i. e., e‡(x) = e†(x) (easy proof by induction on the
cardinality of the set of nodes of e†(x)). And for every x with e†(x) infinite we prove e‡(x) =∞ (= e†(x)).
This follows from the next Lemma since e†(x) has either infinitely many leaves or a complete binary subtree.

Lemma.

(1) Suppose that the tree e†(x) has (at least) k leaves labelled by r1, . . . , rk ∈ Ñ, then

e†(x) ≥ r1 + · · ·+ rk .

(2) Suppose that the tree e†(x) has a node whose subtree is a complete binary tree (no leaves), then
e†(x) =∞.
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Proof. (a) is proved by induction on the maximum depth d of the k leaves: The case d = 0, i. e., where
e†(x) is a single root labelled by r1, is clear: e†(x) = r1. In the induction step let d > 0. Then certainly
e(x) ∈ X ×X say, e(x) = (y1, y2), and each of the k leaves is a leaf of e†(yi), i = 1 or 2. Since the maximum
depth in e†(yi) is one less than that in e†(x), we can use the induction hypothesis to conclude

e†(y1) + e†(y2) ≥ r1 + · · ·+ rk .

And from e(x) = (y1, y2) we obtain, due to e† = [α, id ] · (HΣe
† + id ) · e,

e†(x) = e†(y1) + e†(y2) ≥ r1 + · · ·+ rk .

(b) is proved by induction on the depth of the given node j. The case d = 0 means that e†(x) is a complete

binary tree, thus e†(x) is an idempotent of Ñ — the unique idempotent is ∞. In the induction step we have
e(x) = (y, z) and the node j lies in e†(y) or e†(z) where it has smaller depth than in e†(x), thus e†(y) =∞
or e†(z) =∞. Consequently,

e†(x) = e†(y) + e†(z) =∞ .

�
Example 2.8. The algebra of addition of extended real numbers of the interval

I = (0,∞]

is iterative.
The proof that equation morphisms have solutions is completely analogous to (2) above. The uniqueness

is proved as follows: we first establish the above Lemma. Next we use (unlike in (2)!) the finiteness of the
set X : since X is finite, the tree e†(x) is rational. If it has a subtree that is a complete binary tree, then
e†(x) =∞. Otherwise, every subtree of e†(x) contains a leaf, and the rationality of e†(x) then implies that
infinitely many leaves of e†(x) carry the same label, say, r ∈ I . The Lemma, applied to k of these leaves,
implies e†(x) ≥ k · r, for any k = 1, 2, 3, . . . — thus, e†(x) =∞.

Remark 2.9. Uniqueness of solutions is sometimes subtle. In Example 2.7 above we need not assume that
X is a finite set, but Example 2.8 would be false without this assumption: consider the system

x0 ≈ x1 +
1

2

x1 ≈ x2 +
1

4

x2 ≈ x3 +
1

8
...

One solution is x†n =∞ (n ∈ N), another is x†n = 2−n (n ∈ N).

Example 2.10. Unary algebras in Set.
Let us consider the endofunctor

HA = Σ×A
corresponding to unary Σ-algebras: every algebra α : Σ× A −→ A is given by unary operations

sA = α(s,−) : A −→ A for s ∈ Σ.

Such an algebra is iterative if and only if the operation

sA1 · sA2 · · · · · sAn : A −→ A

has a unique fixed point for every nonempty word s1s2 · · · sn over Σ.
In fact, the above condition is necessary because the solution of the following system

e : {x0, . . . , xn−1} −→ Σ× {x0, . . . , xn−1}+A

where
e(xi) = (si, xi+1) for i < n− 1, and e(xn−1) = (sn, x0)

is precisely a fixed point, a, of sA1 · · · · · sAn . More precisely, the corresponding map e† : {x0, . . . , xn−1} −→ A
with

e†(xi) = sAi+1 · · · · · sAn (a) (i = 0, . . . , n− 1)

solves e.
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To prove that the above condition is sufficient, consider a finitary equation morphism

e : X −→ Σ×X .

Let us call a variable x0 ∈ X cyclic if the values of e always stay in the first summand, i.e., we have

e(xi) = (si+1, xi+1) i = 0, 1, 2, . . .

for an infinite sequence (sn, xn) ∈ Σ×X . Since X is finite, there exists p < q with

xp = xq .

Every solution

e† : X −→ A

assigns to xi elements ai = e†(xi) such that

ai = α(si+1, ai+1)

in other words

ai = sAi+1(ai+1)

Therefore ap = aq implies that ap is a fixed point of sAp+1 · · · · · sAq , and this fixed point determines the value

a0 = sA1 · · · · · sAp (ap) .

Consequently, if the fixed point is unique, e†(x0) is uniquely determined.
The non-cyclic variables x0 present no problem: here we have, for some k ≥ 0,

e(xi) = (si+1, xi+1) i = 0, . . . , k − 1

e(xk) = a ∈ A
which implies

e†(x0) = sA1 · · · · · sAk (a) .

Remark 2.11. In particular, for Id : Set −→ Set, an algebra α : A −→ A is iterative if and only if α has a
unique fixed point and none of αn, n ≥ 2, has a different fixed point.

Example 2.12. Ordered unary algebras.
Here we consider, for a set Σ with discrete ordering, the endofunctor

HA = Σ×A
on the category Pos of partially ordered sets and order-preserving functions. An ordered unary Σ-algebra is
iterative if and only if the operation sA1 · · · · · sAn has a unique fixed point for every nonempty word s1 · · · sn
over Σ.

The argument is as before, we just have to verify that the function

e†(x0) =





sA1 · · · · · sAp (ap), x0 cyclic

sA1 · · · · · sAp (a), else

is order-preserving (whenever e : X −→ Σ×X +A is), which is easy.

Example 2.13. Unary algebras in Un.
Here the base category Un is that of unary algebras on one operation σA : A −→ A and homomorphisms.

We consider H-algebras for the identity endofunctor Id Un. That is, algebras

α : (A, σA) −→ (A, σA) ,

where α is another unary operation on A, and since α is a homomorphism, it commutes with σA:

α · σA = σA · α .
Finitely presentable objects of Un are precisely the unary algebras given by finitely many generators and
finitely many equations; for example, free algebras on n generators for n ∈ N. We prove that an algebra is
iterative if and only if

σkAα
n : A −→ A has a unique fixed point for all n ≥ 1 and k ≥ 0. (∗)

The necessity of (∗) follows from solutions of the equation morphisms

e : X −→ X +A
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where X is a free unary algebra on n generators, x1, . . . , xn, and e is determined by

e(xi) = xi+1 for i < n, e(xn) = σkX (x1)

In fact, a solution e† : X −→ A is determined by elements ai = e†(xi), i = 1, . . . , n satisfying

ai = α(ai+1) for i < n, an = σkA(a1)

Thus, a1 is a fixed point of σkAα
n, and conversely, every fixed point corresponds to a solution of e.

The sufficiency of (∗): given an equation morphism

e : X −→ X +A with X generated by y1, . . . , yr

we can describe a solution analogously to in Example 2.10 above. Given a “non-cyclic” variable x0 ∈ X , i.e.,
one with

e(xi) = xi+1 i = 0, . . . , k − 1

e(xk) = a ∈ A
we necessarily have e†(xk) = a, e†(xk−1) = α(a) etc., thus here

e†(x0) = αk(a)

For a “cyclic” variable x0 ∈ X we have an infinite sequence x0, x1, x2, . . . in X with e(xi) = xi+1. A solution
e† assigns to xi an element ai ∈ A with

ai = α(ai+1) = α2(ai+2) = . . .

On the other hand, we can express each xi via the generators y1, . . . , yr in the form

xi = σ
c(i)
X (yd(i)) c(i) ≥ 0, d(i) ∈ { 1, . . . , r }.

This implies ai = σ
c(i)
A (bd(i)) where b1, . . . , br are the elements e†(y1), . . . , e†(yr). We can certainly choose

p < q such that

d(p) = d(q) and c(p) ≤ c(q).
Then the equality ap = αq−p(aq) yields

σ
c(p)
A (bd(p)) = αq−pσc(q)A (bd(p))

Put n = q − p and k = c(q)− c(p) to conclude that

ap = σ
c(p)
A (bd(p)) is a fixed point of αnσkA.

Consequently, if a∗ denotes the unique fixed point of αnσkA, we conclude a1 = αp(ap) = αp(a∗). Thus, we
have to define

e†(x0) = αp(a∗)

In summary, the unique solution of e is defined as follows:

e†(x0) =





αk(a), if x0 is not cyclic

αp(a∗), if x0 is cyclic.

Remark 2.14. We denote by

Algit H

the category of all iterative algebras and all homomorphisms. The following lemma shows that this choice
of morphisms is “right”.

Lemma 2.15. (Homomorphisms = solutions-preserving morphisms.) Let h : A −→ B be an H-
algebra homomorphism between iterative algebras. For every equation morphism e : X −→ HX + A the
solution of e in A yields a solution of the equation morphism

h • e ≡ X e // HX +A
HX+h

// HX + B

in B via the commutative triangle

X
e†

~~~~~~~~~
(h • e)†

  @@@@@@@@

A
h

// B

(2.2)
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Conversely, any morphism h so that this triangle commutes for every equation morphism is an algebra
homomorphism.

Proof. The following commutative diagram shows that h · e† solves h • e:

X
e† //

e

��

A
h // B

HX +A
He†+A

//

HX+h

��

HA+A
Hh+h

&&MMMMMMMMMM

[α,A]

OO

HX +B
H(he†)+B

// HB +B

[β,B]

OO

The upper left-hand part commutes since e† is a solution of e, the right-hand part commutes since h is an
H-algebra homomorphism, and the lower part is obvious. Thus, by the uniqueness of solutions we know that
the triangle (2.2) commutes.

For the converse, let Afp be a set of representative finitely presentable objects of A, and let Afp/A be
the comma-category of all arrows q : X −→ A with X in Afp . Since A is locally finitely presentable, A is a
filtered colimit of the canonical diagram DA : Afp/A −→ A given by (q : X −→ A) 7−→ X .

Now Afp is a generator of A, thus, in order to prove the lemma it is sufficient to prove that for every
morphism p : Z −→ HA with Z in Afp we have

h · α · p = β ·Hh · p. (2.3)

Since H is finitary, it preserves the above colimit DA. This implies, since A(Z,−) preserves filtered
colimits, that p has a factorization

Z
p

//

s
''OOOOOOOOOOOOO HA

HX

Hq

OO

for some q : X −→ A in Afp/A and some s. For the following equation morphism

e ≡ Z +X
s+X

// HX +X
Hinr +q

// H(Z +X) +A

we have a commutative square

Z +X
e† //

s+X

��

GF
@Ae

//

A

HX +X

Hinr +q

��

H(Z +X) +A
He†+A

// HA+A

[α,A]

OO

Consequently, e† · inr = q, and this implies e† · inl = α ·H(e† · inr ) ·s = α ·p. By (2.2), we have h ·e† = (h • e)†
and therefore

(h • e)† = [h · α · p, h · q]. (2.4)
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On the other hand, consider the following diagram

Z +X
(h • e)†

//

s+X

��

p+hq

++VVVVVVVVVVVVVVVVVVVVVVGF

@A
h • e

//

B

HX +X

Hinr +q

��

Hq+hq
// HA+B

Hh+B

��
::::::::::::::::::

H(Z +X) +A

H(Z+X)+h

��

H[αp,q]+h

33hhhhhhhhhhhhhhhhhhh

H(Z +X) +B
H(h • e)†+B

//

H[αp,q]+B

88qqqqqqqqqqqqqqqqqqqqqqqqqqq
HB +B

[β,B]

OO

It commutes: the outward square commutes since (h • e)† is a solution, for the lower triangle use equa-
tion (2.4), and the remaining triangles are trivial. Thus, the upper right-hand part commutes:

(h • e)† = [β ·Hh · p, h · q]. (2.5)

Now the left-hand components of (2.4) and (2.5) establish the desired equality (2.3). �

Proposition 2.16. Iterative algebras are closed under limits and filtered colimits in Alg H.

Proof. (1) Let (A,α) be a limit, in Alg H , of iterative algebras with a limit cone hi : (A,α) −→ (Ai, αi),
i ∈ I . It then easily follows that A = limAi in A with the limit cone (hi)i∈I . For every equation morphism
e : X −→ HX + A the uniqueness of its solution in A follows from Lemma 2.15: given e† : X −→ A, then
each hie

† is the unique solution of ei = (HX + hi) · e in Ai, thus, hie
† is unique, and since (hi)i∈I is a limit

cone in A, we conclude that e† is unique. To prove the existence, let ei
† : X −→ Ai denote the solution of

ei in Ai. This is a cone of the given diagram, i.e., for every connecting homomorphism

f : (Ai, αi) −→ (Aj , αj)

we have

fei
† = ej

†.

This, again, follows from Lemma 2.15 and fhi = hj (which implies (HX + f) · ei = ej). Thus, there exists
a unique morphism e† : X −→ A with

ei
† = hie

† (i ∈ I).

To prove that e† solves e, it is sufficient to verify that hie
† = hi · [α,A] · (He† + A) · e for all i ∈ I . In fact,

the outer square of the following diagram

X
ei
†

//

e

��

e†
&&NNNNNNNNNNNNN

(i)

Ai

A

hi

88ppppppppppppp

HX +A
He†+A

//

HX+hi

��

HA+A

[α,A]

OO

Hhi+hi

&&NNNNNNNNNN

HX +Ai
Hei

†+Ai

// HAi +Ai

[αi,Ai]

OO

commutes, and so do the upper triangle, the right-hand and lower parts. Thus, part (i) commutes when
extended by hi as desired.

(2) Let (A,α) be a filtered colimit, in Alg H , of iterative algebras with a colimit cocone fi : (Ai, αi) −→ (A,α),
i ∈ I . Since H is finitary, filtered colimits of H-algebras are formed on the level of A. Given an equation



10 JIŘÍ ADÁMEK, STEFAN MILIUS, AND JIŘÍ VELEBIL

morphism e : X −→ HX + A = colim(HX + Ai), since X is finitely presentable, e factors through one of
the colimit morphisms HX + fi:

X
e //

ei
((QQQQQQQQQQQQQQ HX +A

HX +Ai

HX+fi

OO

If ei
† : X −→ Ai is the solution of ei in Ai, then fiei

† : X −→ A is a solution of e in A by Lemma 2.15.
Conversely, for every solution e† : X −→ A of e in A we prove e† = fiei

†. Factorize e† through one of the
colimit morphisms:

X
e† //

p
&&NNNNNNNNNNNNN A

Aj

fj

OO

Since the given diagram is filtered, we can suppose that the choice of j ∈ I is such that a connecting
homomorphism h : (Ai, αi) −→ (Aj , αj) of our diagram exists. Then the morphism ej = (HX + h)ei :
X −→ HX +Aj has the solution ej

† = p. In fact, all parts of the following diagram

X
p

//

ei

��

GF

@A
e

//

(i)

Aj
fj

// A
ED��GF e†

HX +Ai

HX+h

��

HX +Aj
Hp+Aj

//

HX+fj

��

HAj +Aj

[αj ,Aj ]

OO

Hfj+fj

&&MMMMMMMMMMM

HX +A
He†+A

// HA+A

[α,A]

OO

except (i) commute. Therefore (i) commutes when extended by fj . By filteredness we can therefore suppose
that (i) commutes (otherwise choose a connecting morphism g : (Aj , αj) −→ (Ak, αk) equating the sides
of (i) and work with k in lieu of j). But it follows from Lemma 2.15 that ej

† = hei
†, therefore p = hei

†.
This proves

e† = fjp = fjhei
† = fiei

†,

as desired. �
Corollary 2.17. The category Algit H is a reflective subcategory of Alg H.

Proof. In fact, Alg H is locally finitely presentable, see Example 2.3(4). Thus, by the Reflection Theorem
of [AR], every full subcategory closed under limits and filtered colimits is reflective. �
Corollary 2.18. Every object of A generates a free iterative H-algebra.

In other words, the natural forgetful functor U : Algit H −→ A has a left adjoint.

Definition 2.19. The finitary monad on A formed by free iterative H-algebras is called the rational monad
of H and is denoted by R = (R, η, µ).

Thus, R is the monad of the above adjunction

Algit H
U

//⊥ A
Roo

More detailed, for every object Z of A we denote by RZ a free iterative H-algebra on Z with the universal
arrow

ηZ : Z −→ RZ ,

and the algebra structure
ρZ : HRZ −→ RZ .
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Then µZ : RRZ −→ RZ is the unique homomorphism of H-algebras with µZ · ηRZ = id .
Before turning to concrete examples of free iterative algebras, we will show that it is sufficient to describe

the initial one:

Proposition 2.20. For any object Y of A the following are equivalent:

(1) RY is an initial iterative algebra of H(−) + Y ,
(2) RY is a free iterative H-algebra on Y .

In fact, this was proved for completely iterative algebras in [Mi]; the proof for iterative algebras is the
same.

Example 2.21. The rational monad of Id.
(a) For the identity functor on Set it follows from Example 2.10 that RZ is obtained from the free unary

algebra N× Z by adding a single element, say, a0:

RZ = N× Z + 1

with
ηZ : Z −→ N× Z + 1 z 7−→ (0, z)

and
ρZ : N× Z + 1 −→ N× Z + 1 (n, z) 7−→ (n+ 1, z), a0 7−→ a0.

(b) Analogously for the rational monad of Id on Pos we have

R(Z,≤) = N× (Z,≤) + 1 with N discretely ordered.

This follows from Example 2.12.
(c) The rational monad of Id : Un −→ Un, see Example 2.13, is obtained as follows: given an object

(Z, σZ) of Un, we first freely “add” a unary operation α which commutes with σZ by forming the algebra
Z × N with the operations σ given by (z, n) 7−→ (σZ(z), n) and α given by (z, n) 7−→ (z, n + 1). Then we
add a single element, a0, say, which is the joint fixed point of both operations. Thus,

R(Z, σZ) = (Z × N+ 1, σR(Z,σZ ))

where

σR(Z,σZ ) :





(z, n) 7−→ (σZ(z), n)

a0 7−→ a0 where 1 = {a0},
and with η(Z,σZ ) : z 7−→ (z, 0) and ρ(Z,σZ) : (z, n) 7−→ (z, n+ 1), a0 7−→ a0.

Example 2.22. The rational monad of HΣ : Set −→ Set.
Recall from Example 2.5 that for every set Z the algebra RΣZ of all rational Σ-trees over Z, i.e., Σ-trees

over Z which have only finitely many subtrees (up to isomorphism), is iterative. As proved in [N], RΣZ is a
free iterative Σ-algebra on Z.

Corollary 2.23. The rational monad RΣ of the polynomial endofunctor HΣ of Set is given by the formation
of the Σ-algebras RΣ(Z) of all rational Σ-trees over Z.

More precisely, the rational trees over Z (see Introduction) form an endofunctor Z 7−→ RΣ(Z) of Set which
is the underlying endofunctor of the monad RΣ. This follows from Proposition 2.20 and Example 2.22.

Example 2.24. The rational monad of Pfin : Set −→ Set, the finite power-set functor was described in [A2]:
it assigns to a set X the algebra of all rational strongly extensional finitely-branching trees (where “strongly
extensional” means that every pair of distinct siblings define subtrees which are not bisimilar).

Remark 2.25. A special case of a recursive equation morphism is that where no parameters appear, i. e.,
simply coalgebras e : X −→ HX with X finitely presentable. They appear in various contexts, e. g., in
non-wellfounded set theory [BM] or, dually, in the theory of transitive sets [O]. Let us explain here why
solutions of these special equation morphisms are not sufficient for our purposes. Let us (just in the present
remark) call an algebra weakly iterative if every equation morphism e : X −→ HX , X finitely presentable,
has a unique solution e† : X −→ A (i. e., e† = α ·He† · e). For example in case HΣ : Set −→ Set represents
a binary operation, HΣX = X × X , the free iterative algebra RΣ{ a } on one generator has the property
that every equation e : X −→ X ×X has the solution e† : x 7−→ t0, the constant function to the complete
binary tree t0. Consequently, every subalgebra of RΣ{ a } containing t0 and all finite trees is weakly iterative,
although RΣ{ a } has no proper iterative subalgebra containing finite trees.
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3. A Coalgebraic Construction

The aim of this section is to describe an initial iterative H-algebra as a colimit of a simple diagram Eq in
the given base category A. We assume throughout this section that

(a) A is a locally finitely presentable category, see Definition 2.2,

and

(b) H is a finitary endofunctor of A.

We choose a set Afp of representatives of finitely presentable objects of A w.r.t. isomorphism.
Recall that (a) and (b) allow a simple description of the initial H-algebra as a colimit of the ω-chain

0
t // H0

Ht // HH0
HHt // . . .

where t is the unique morphism from 0, an initial object of A. More precisely, if I = colim
n<ω

Hn0 is this colimit,

then the chain above defines a canonical morphism i : I −→ HI — and one proves that i is invertible, yielding
an initial H-algebra structure on I , see [A1].

Analogously, the initial iterative algebra will be proved to be a colimit of the diagram

Eq : EQ −→ A

whose objects are all H-coalgebras carried by finitely presentable objects of A:

e : X −→ HX with X in Afp ,

with the usual coalgebra homomorphisms as morphisms, and with Eq the obvious forgetful functor e 7−→ X .
A colimit

R0 = colim Eq

of this diagram (with colimit morphisms e] : X −→ R0 for all e : X −→ HX in EQ) yields, again, a canonical
morphism

i : R0 −→ HR0

Namely, i is the unique morphism such that every e] becomes a coalgebra homomorphism, i.e., the squares

X
e //

e]

��

HX

He]

��

R0
i

// HR0

(3.1)

commute. (In fact, the forgetful functor Coalg H −→ A creates colimits.) The aim of the present section is
to prove the following

Theorem 3.1. R0 is the initial iterative H-algebra. More precisely, the morphism i is an isomorphism and
i−1 : HR0 −→ R0 is an initial iterative H-algebra.

We establish some auxilliary facts first.

Remark 3.2. The diagram Eq is filtered. In fact, the category of all coalgebras is cocomplete, with colimits
formed at the level of A. Since Afp is well-known to be closed under finite colimits, it follows that the category
EQ is closed under finite colimits in the category of all H-coalgebras — thus, EQ is finitely cocomplete, hence,
filtered.

Consequently, H preserves the colimit of Eq:

HR0 = colimH · Eq

with the colimit cocone He].

Lemma 3.3. i : R0 −→ HR0 is an isomorphism.

Proof. (a) We define a morphism

j : HR0 −→ R0

We use the fact that in a locally finitely presentable category the given object HR0 is a colimit of the diagram
of all arrows p : P −→ HR0 where P is in Afp . More precisely, let Afp/HR0 denote the comma-category (of
all these arrows p), then the forgetful functor DHR0 : Afp/HR0 −→ A has, in A, the colimit cocone formed
by all p : P −→ HR0. Thus, in order to define j we need to define morphisms jp : P −→ R0 forming a
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cocone of the diagram DHR0 . We know that HR0 is a filtered colimit of H · Eq and that A(P,−) preserves
this colimit, since P is in Afp . Therefore, p factors through one of the colimit morphisms

P
p

//

p′
''OOOOOOOOOOOOO HR0

HW

Hg]

OO

(3.2)

for some g : W −→ HW in EQ. We form a new object

ep′ ≡ P +W
[p′,g]

// HW
Hinr // H(P +W )

of EQ and define j to be the unique morphism such that the following square

P
inl //

p

��

P +W

ep′
]

��

HR0 j
// R0

(3.3)

commutes for every p in Afp/HR0. To prove that j is well-defined we need to show that

(i) ep′
] · inl is independent of the choice of factorization (3.2),

and

(ii) the morphisms ep′
] · inl form a cocone of Afp/HR0.

For (i), consider another factorization

P
p

//

q′
''OOOOOOOOOOOOO HR0

HV

Hf]

OO

for f : V −→ HV in EQ. Using the fact that the diagram HEq is filtered, we conclude that, without loss of
generality, this new factorization can be assumed to posses a coalgebra homomorphism h : W −→ V from
the first one with q′ = Hh · p′:

W
g

//

h

��

HW

Hh

��

P

p′hhQQQQQQ

q′
vvmmmmmm

V
f

// HV

This yields a coalgebra homomorphism P + h from ep′ to eq′ :

P +W
[p′,g]

//

P+h

��

HW
Hinr //

Hh

��

H(P +W )

H(P+h)

��

P + V
[q′,f ]

// HV
Hinr

// H(P + V )

which proves

ep′
] = eq′

] · (P + h) .

Consequently,

ep′
] · inl = eq′

] · (P + h) · inl = eq′
] · inl

as requested.
To prove (ii), consider a morphism r in Afp/HR0:

Q
r //

q
!!CCCCCCCC P

p
}}{{{{{{{{

HR0
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We have defined jp = ep′
] · inl for the factorization (3.2) and, due to (i) above, we can use the factorization

q = Hg] · (p′ · r)

for the definition of jq = ep′r
] · inl . It is our task to prove

ep′
] · inl · r = ep′r

] · inl . (3.4)

Observe that r +W is a coalgebra homomorphism from ep′r to ep′ :

Q+W
[p′r,g]

//

r+W

��

HW
Hinr // H(Q+W )

H(r+W )

��

P +W
[p′,g]

// HW
Hinr

// H(P +W )

Thus ep′r
] = ep′

] · (r +W ) which proves (3.4).

(b) The proof of ij = id . It is our task to prove that ijp = p for every p : P −→ HR0 in Afp/HR0. Observe
that inr : W −→ P +W is a coalgebra homomorphism from g : W −→ HW to ep′ : P +W −→ H(P +W ),
thus,

g] = ep′
] · inr .

The desired equality ijp = p follows from (3.2) and the fact that the following diagram

P
p′

//

p

��

inl

$$IIIIIIIIII HW

Hinr

yyrrrrrrrrrr

BC Hg
]

oo

P +W
ep′

//

ep′
]

��

H(P +W )

Hep′
]

��

HR0 j
// R0 i

// HR0

commutes.

(c) The proof of ji = id . It is our task to prove that jie] = e] for every e : X −→ HX in EQ. In order to
do so, apply (3.3) to p = He] · e : X −→ HR0 with p′ = e and g = e to obtain

j ·He] · e = ep′
] · inl (3.5)

for ep′ ≡ X +X
[e,e]

//HX
Hinr //H(X +X). It is easily checked that the codiagonal ∇ : X +X −→ X is a

coalgebra homomorphism from ep′ to e, thus,

e] · ∇ = ep′
].

Now use i · e] = He] · e, see (3.1), and (3.5) to conclude

j · (i · e]) = j ·He] · e = ep′
] · inl = e] · ∇ · inl = e].

�

Remark 3.4. The coalgebra homomorphisms of (3.1) are unique: given an object e : X −→ HX of EQ and
a coalgebra homomorphism into R0

X
e //

f

��

HX

Hf

��

R0 i
// HR0
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then f = e]. In fact, since X is finitely presentable, the morphism f : X −→ colim Eq factors through the
colimit morphism g] for some g : V −→ HV : f = g]f ′. In the following diagram

X
e //

f ′

��

GF
@Af

//

HX

Hf ′

��

ED
BC Hf

oo

V
g

//

g]

��

HV

Hg]

��

R0 i
// HR0

the outward square commutes, and so do all inner parts except possibly for the upper square. This implies
that Hg] merges the two sides of that square. Now Hg] is a colimit morphism of HR0 = H colim Eq =
colimHEq (recall that Eq is a filtered diagram; thus H preserves its colimit). Since X is finitely presentable,
A(X,−) preserves the colimit of HEq — thus, if Hg] merges two morphisms, then one of the connecting
maps Hp, where p is a morphism in EQ, i. e., the following square

V
g

//

p

��

HV

Hp

��

W
h

// HW

commutes, also merges those morphisms. That is, we have

Hp · (Hf ′ · e) = Hp · (g · f ′),

from which we conclude that pf ′ is a morphism of EQ from e to h since

H(p · f ′) · e = Hp · g · f ′ = h · (p · f ′) .

Thus, e] = h] · (pf ′). Now p being a morphism of EQ implies g] = h] · p, and consequently

f = g]f ′ = h]pf ′ = e].

Lemma 3.5. The H-algebra i−1 : HR0 −→ R0 is iterative.

Proof. (1) Existence of solutions. For every equation morphism

e : X −→ HX +R0 = colim(HX + Eq)

there exists, since X is finitely presentable, a factorization through the colimit morphism HX+f ] (for some
f : V −→ HV in EQ):

X
e //

e0
((QQQQQQQQQQQQQQ HX +R0

HX + V

HX+f]

OO

(3.6)

Recall from 2.1 that can : HX +HV −→ H(X + V ) denotes the canonical morphism. Define a new object,
e, of EQ as follows:

e ≡ X + V
[e0,inr ]

// HX + V
HX+f

// HX +HV
can // H(X + V ) . (3.7)

Observe that

f ] = e] · inr (3.8)

because inr : V −→ X + V is a coalgebra morphism (in EQ) from f to e. We define a solution of e by

e† ≡ X
inl //X + V

e] //R0 . (3.9)



16 JIŘÍ ADÁMEK, STEFAN MILIUS, AND JIŘÍ VELEBIL

In fact, in the following diagram

X
e† //

e0

��

GF

@A
e

//

R0

HX + V
HX+f

//

HX+f]

��

HX +HV
[He†,Hf]]

//

HX+Hf] ''OOOOOOOOOOOO HR0

i−1

77ooooooooooooo

HX +HR0

[He†,HR0]

OO

(i)

HX +R0
He†+R0

//

HX+i
33ggggggggggggggggggggg

HR0 +R0

[i−1,R0]

OO

(3.10)

all inner parts commute: see (3.6) for the left-hand part, (3.1) for part (i), whereas the right-hand part
commutes trivially (analyze the two components separately) and so does the middle triangle. It remains to
verify the upper part: here we use (3.1) and (3.7) to conclude that the following diagram

X
inl //

e0

��

X + V
e] //

e

��

[e0,V ]

wwoooooooooooo
R0

ED��GF e†

HX + V

HX+f

��

H(X + V )

He]

��

HX +HV
[He†,Hf]]

//

can
77ooooooooooo

(ii)

HR0

BC i−1

OO

commutes. In fact, the left-hand component of (ii) commutes by definition of e† and the right-hand one does
by (3.8). Thus, (3.10) commutes, proving that e† is a solution of e.

(2) Uniqueness. Suppose that e† : X −→ R0 is a solution of e. Then in (3.10) the outward square commutes.
Since all the inner parts except the upper one commute, this proves that the upper part commutes, too.
Consequently,

i · e† = [He†, Hf ]] · (HX + f) · e0 = H [e†, f ]] · e · inl .

This equality implies that in the following square

X + V
e //

[e†,f]]

��

H(X + V )

H[e†,f]]

��

R0 i
// HR0

the left-hand components commute. Since e·inr = H inr ·f , the right-hand ones commute by (3.1). Therefore,
the square commutes, which, by Remark 3.4, proves

e] = [e†, f ]] .

Thus, the given solution is the previous one: e† = e] · inl . �

Proof of Theorem 3.1. Let α : HA −→ A be an iterative H-algebra. We prove first that there is at most
one H-algebra homomorphism from R0. Let

HR0
i−1

//

Hh

��

R0

h

��

HA α
// A
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be a homomorphism. For every object e : X −→ HX of EQ the following diagram

X
e] //

e

��

R0
h //

i

��

A

HX
He]

//

inl

��

HR0
Hh // HA

α

BB���������������

HX +A
H(he])+A

// HA+ A

[α,A]

OO

(3.11)

commutes, see (3.1), which proves that he] is a solution of inl e in A.
This determines h uniquely, since the e]’s form a colimit cocone of R0 = colim Eq.
Conversely, let us define a morphism h : R0 −→ A by the above rule

he] = (inl e)† for all e : X −→ HX in EQ

where (−)
†

is the unique solution in A. This is well-defined since the morphisms (inl e)
†

form a cocone of
the diagram Eq: in fact, let

X
e //

p

��

HX

Hp

��

Y
f

// HY

be a morphism of EQ. We prove that (inl f)
†
p is a solution of inl e by considering the corresponding diagram:

X
p

//

e

��

Y
(inl f)†

//

f

��

A

HX
Hp

//

inl

��

HY

inl

��

HX +A
Hp+A

// HY +A
H(inl f)†+A

// HA+A

[α,A]

OO

This proves

(inl e)
†

= (inl f)
†
p .

The morphism h above is a homomorphism of algebras because the diagram (3.11) commutes: the outward
square commutes by definition of h, the upper left-hand square by (3.1), and the lower part is obvious. This
shows that the upper right-hand part commutes when precomposed with e], e in EQ. Since the e]’s form a
colimit cocone, it follows that h is a homomorphism. �

Corollary 3.6. A free iterative H-algebra RZ is a colimit

RZ = colim EqZ

of the diagram

EqZ : EQZ −→ A

where EQZ consists of all equation morphisms e : X −→ HX+Z, X ∈ Afp , and all coalgebra homomorphisms
w.r.t. H(−) + Z, and EqZ sends e to X.

In fact, this is a consequence of Proposition 2.20 and Theorem 3.1.

Remark 3.7. We denote, again, the colimit morphisms of EqZ by

e] : X −→ RZ

for all e : X −→ HX + Z in EQZ . The appropriate isomorphism is denoted by

iZ : RZ −→ HRZ + Z
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It is characterized by the fact that the two coproduct injections of HRZ +Z are (in the notation of Defini-
tion 2.19)

inl = iZρZ and inr = iZηZ

In other words, iZ = [ρZ , ηZ ]−1.

4. An Alternative Definition of Iterativity

In the Introduction we considered non-flat systems (1.1) of recursive equations for Σ-algebras. And we
argued that, due to the possibility of flattening such a system, we will just have to consider the flat equation
morphism e : X −→ HΣX + A. We are going to make that statement precise by showing that in iterative
algebras (in general, not only in Set) much more general systems of recursive equations than the flat ones are
uniquely solvable. This implies that, for polynomial endofunctors of Set, our definition of iterative algebras
coincides with that presented by Evelyn Nelson [N]. And as we explain in the next section, this also implies
that the rational monad is iterative in the sense of Calvin Elgot [E].

Let us first remark that the condition stated for (1.1) in the Introduction, that no right-hand side be a
single variable, is substantial: the equation x ≈ x has a unique solution only in the trivial terminal algebras.
Systems satisfying the above condition are called guarded.

We first consider guarded systems where the right-hand sides live in the free H-algebra (i. e., they are
finite trees in case H = HΣ). Such systems are called finitary.

Remark 4.1. Since H is finitary, free H-algebras exist, see [A1]. We denote for every object X in A a free
algebra by ϕ0

X : HFX −→ FX with universal arrow η0
X : X −→ FX . This defines a monad F = (F, η0, µ0)

where the component µ0
X is the unique homomorphism µ0

X : FFX −→ FX with µ0
X · η0

FX = id . It is
easy to see that analogously to Proposition 2.20, FX is an initial algebra of H(−) +X ; thus, by Lambek’s
Lemma [L]

FX = HFX +X . (4.1)

More precisely, the morphism

jX = [ϕ0
X , η

0
X ] : HFX +X −→ FX

is an isomorphism. For every H-algebra α : HA −→ A we have the unique homomorphism

α̂ : FA −→ A with α̂ · ηA = id

(which, in case of HΣ, is the computation of (finite) terms over A in the Σ-algebra A). This allows us to
define solutions of finitary equations morphisms in A as follows:

Definition 4.2.

(1) By a finitary equation morphism in an object A is meant a morphism

e : X −→ F (X +A), X finitely presentable.

(2) We call e guarded provided that it factors through the summand HF (X +A) +A of F (X + A) =
HF (X +A) +X +A (see (4.1) above):

X
e //

&&

F (X +A)

HF (X +A) +A

[ϕ0,η0·inr ]

OO

(3) Suppose that A is an underlying object of an H-algebra α : HA −→ A. Then by a solution of e in
the algebra A is meant a morphism e† : X −→ A in A such that the square

X

e

��

e† // A

F (X +A)
F [e†,A]

// FA

�

α

OO

(4.2)

commutes.
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Remark 4.3. The square (4.2) in Definition 4.2 means, for polynomial functors, that the assignment e†

of variables x ∈ X to elements of A has the following property: form the “substitution” mapping [e†, A] :
X +A −→ A (which interprets the variables as e† does, and leaves elements of A unchanged). Extend it to
the unique homomorphism

α̂ · F [e†, A] : F (X +A) −→ A

of the free algebra. Then the (formal) equations x ≈ e(x) become actual identities in A after the substitution
x 7−→ e†(x) is performed for all x ∈ X , and the right-hand sides are computed in A. This is precisely the
definition of solution of (1.1) in the Introduction.

Theorem 4.4. An H-algebra A is iterative if and only if every guarded finitary equation morphism in A
has a unique solution.

The proof of Theorem 4.4 follows from the next result, generalizing “finitary” to “rational”.

Definition 4.5. By a rational equation morphism in an object A we mean a morphism

e : X −→ R(X +A), X finitely presentable ,

and e is called guarded if it factors through the summand HR(X +A) +A of R(X+A) = HR(X+A)+X+A
(see Remark 3.7):

X
e //

&&

R(X +A)

HR(X +A) +A

[ρ,η·inr ]

OO

Suppose that A is an underlying object of an iterative H-algebra α : HA −→ A. We denote (analogously
to α̂ above) by

α̃ : RA −→ A

the unique homomorphism of H-algebras with α̃ · ηA = id . Then by a solution of e in the iterative algebra
A is meant a morphism e† : X −→ A in A such that the square

X

e

��

e† // A

R(X +A)
R[e†,A]

// RA

�

α

OO

commutes.

Theorem 4.6. If A is an iterative H-algebra, then every guarded rational equation morphism e in A has a
unique solution.

Proof. Let α : HA −→ A be an iterative algebra. Given a guarded rational equation morphism

X
e //

e0
((

R(X +A)

HR(X +A) +A

[ρX+A,ηX+A·inr ]

OO

we will prove that e has a unique solution e†.

(1) Existence. Recall from Corollary 3.6 that R(X + A) = colim EqX+A with colimit cocone g] : W −→
R(X +A) for all g : W −→ HW +X +A in EQX+A. Since this colimit is filtered and H is finitary, we have
a filtered colimit

HR(X +A) +A = colimHEqX+A +A

with the colimit cocone formed by all Hg] +A. Since X is a finitely presentable object, the morphism

e0 : X −→ colimHEqX+A +A

factors through the colimit cocone:

X
e0 //

w
((RRRRRRRRRRRRRRRR HR(X +A) +A

HW +A

Hg]+A

OO
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for some object g : W −→ HW +X +A of EQX+A and some morphism w.
We define a finitary flat equation morphism as follows:

〈e〉 ≡W +X
[g,inm ]

// HW +X +A
[inl ,w,inr ]

// HW +A
Hinl +A

// H(W +X) +A (4.3)

where inm : X −→ HW + X + A is the middle coproduct injection. We obtain a unique solution 〈e〉† :
W +X −→ A and prove that the following morphism

e† ≡ X inr // W +X
〈e〉†

// A (4.4)

is a solution of e.
Indeed, consider the following diagram:

X
e† //

e

��

e0

��
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

w

##GGGGGGGGGGGGGGGGGGGGGG
inr

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY A

W +X

〈e〉†
33ffffffffffffffffffffffffffffff

〈e〉
��

HW +A
Hinl +A

//

Hg]+A

��

H(W +X) +A
H〈e〉†+A

// HA+A

[α,A]

@@������������������

HR(X +A) +A
HR[e†,A]+A

//

[ρ,η·inr ]

uullllllllllllll

(i)

HRA+A

H
�

α+A

OO

[ρ,η]

&&MMMMMMMMMMMM

R(X +A)
R[e†,A]

// RA

�

α

OO

(4.5)

All of its parts, except the square (i), clearly commute. The right-hand component of (i) is obvious. To
prove the commutativity of the left-hand component of (i), we remove H and show that the equation

〈e〉† · inl = α̃ ·R[e†, A] · g] (4.6)

holds. To this end observe first that α̃ ·R[e†, A] : R(X +A) −→ A is an H-algebra homomorphism between
iterative algebras extending [e†, A]. An inspection of the proof of Theorem 3.1 and Proposition 2.20 reveals
that precomposing this homomorphism with the colimit injection g] : W −→ R(X + A) yields the unique
solution of the following equation morphism

g ≡W g
// HW +X +A

HW+[e†,A]
// HW +A

in the iterative algebra A.

Thus, to establish (4.6) it suffices to show that 〈e〉† · inl is a solution of g. In fact, the outward square of
the following diagram

W
inl //

g

��

GF

@A
g

//

W +X
〈e〉†

//

〈e〉

��

A

HW +X +A
[inl ,w,inr ]

((PPPPPPPPPPPP

HW+[e† ,A]

��

HW +A
Hinl +A

((PPPPPPPPPPPP

nnnnnnnnnnnn

nnnnnnnnnnnn

HW +A
Hinl +A

// H(W +X) +A
H〈e〉†+A

// HA+A

[α,A]

OO

commutes. To prove this, observe that by (4.3) all parts except, perhaps, for the left-hand inner triangle,
clearly commute. For that triangle consider the components of the coproduct separately. The left-hand
and right-hand components are obviously commutative. We do not claim this for the middle component.
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But this component commutes when extended to A in the upper right-hand corner. In fact, this yields the
following square

X
e† //

w

��

inr
))SSSSSSSSSSSSSSSS A

W +X

〈e〉
��

〈e〉†

55llllllllllllllll

HW +A
Hinl +A

// H(W +X) +A
H〈e〉†+A

// HA+A

[α,A]

OO

which commutes: see the upper part of Diagram (4.5).

(2) Uniqueness. Let h be any solution of e, i.e., a morphism such that the following square

X
h //

e

��

A

R(X +A)
R[h,A]

// RA

�

α

OO

commutes. We shall show that

x ≡W +X
[

�

α·R[h,A]·g],h]
//A

is a solution of 〈e〉 in A, therefore

h = 〈e〉† · inl = e†

which completes the proof. Thus, it is our task to show that the following square

W +X

〈e〉
��

x // A

H(W +X) +A
Hx+A

// HA+A

[α,A]

OO

commutes.
We consider the components of the coproduct W +X separately. For the right-hand component we obtain

the following commutative diagram

X
h //

e

��

inr

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

w

!!DDDDDDDDDDDDDDDDDDDD

e0

��
77777777777777777777777777 A

W +X

x

33ggggggggggggggggggggggggg

〈e〉
��

HW +A
Hinl +A

//

Hg]+A

��

H(W +X) +A
Hx+A

//

(i)

HA+A

[α,A]

BB����������������

HR(X +A) +A
HR[h,A]+A

//

[ρ,η·inr ]

vvmmmmmmmmmmmm
HRA+A

[ρ,η]

$$JJJJJJJJJJ

H
�

α+A

OO

R(X +A)
R[h,A]

// RA

�

α

OO

(4.7)

Since the outward square commutes, and all the inner parts but (i) clearly do, so must the right-hand

component of part (i). (Notice that this diagram is precisely (4.5) with h for e† and x for 〈e〉†.)
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For the left-hand component consider the following diagram:

W
g]

//

g

��

GF

@A
〈e〉·inl

//

R(X +A)
R[h,A]

// RA
�

α // A
ED��GF x·inl

HW +X +A
Hg]+X+A

))TTTTTTTTTTTTTTT

[inl ,w,inr ]

��

HR(X +A) +X +A

[ρ,η]

OO

HR[h,A]+[h,A]

RRR

))RRRR

HW +A
(i)

Hinl +A

��
H(

�

α·R[h,A]·g])+A
--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ HRA+A

[ρ,η]

OO

H
�

α+A

&&MMMMMMMMMMM

H(W +X) +A
Hx+A

// HA+A

[α,A]

OO

All of its parts commute, except possibly the middle component of (i), which commutes when extended by
[α,A] to A in the upper right corner. In fact, this is easy to see by inspection of the upper three inner parts
the of Diagram (4.7). �

The rational solution theorem we have proved in our previous work [AMV1, AMV2] is now an easy
consequence of Theorem 4.6

Corollary 4.7. Every rational guarded equation morphism e : X −→ R(X + Y ) has a unique solution in
the algebra RY , i. e., there exists a unique e‡ : X −→ RY such that the square

X
e‡ //

e

��

RY

R(X + Y )
R[e‡,η]

// RRY

µ

OO

commutes.

Proof. Given a guarded rational equation morphism e : X −→ R(X + Y ) form the equation morphism

e ≡ X
e //R(X + Y )

R(X+ηY )
//R(X +RY ) .

This is a guarded equation morphism in the free iterative algebra RY . The result now follows from Theo-
rem 4.6 applied to RY and to e. In fact, there is a 1-1-correspondence between solutions of e and solutions
of e:

X
s //

e

��

GF
@Ae

//

RY

R(X + Y )

R(X+ηY )

��

R[s,ηY ]

((RRRRRRRRRRRRRR

R(X +RY )
R[s,RY ]

// RRY

µY

OO

Observe first that ρ̃Y = µY : RRY −→ RY . Now since s is a solution of e, the upper inner part commutes,
and equivalently, the outward square commutes, which is to say that s is a solution of e. Since e has a unique
solution, so does e. �

Proof of Theorem 4.4. (a) Sufficiency: let A be an iterative algebra. Denote by

γ : F −→ R
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the natural transformation formed by the unique homomorphisms γX : FX −→ RX of H-algebras with
γX · η0

X = ηX . Observe that the following square

FX
γX // RX

HFX +X

[ϕX ,η
0
X ]

OO

HγX+X
// HRX +X

[ρX ,ηX ]

OO

(4.8)

commutes.
Given a guarded finitary equation morphism e : X −→ F (X + A), we prove that a unique solution e†

exists. To this end form the rational equation morphism

e ≡ X
e //F (X +A)

γX+A
//R(X +A)

and observe that it is guarded (use (4.8)). The unique solution e† solves e. In fact, in the following diagram

X

e

��

e† // A

F (X +A)

γX+A

��

F [e†,A]
// FA

�

α

==zzzzzzzzz

γA
!!CCCCCCCCC

R(X +A)
R[e†,A]

// RA

�

α

OO

the outward square commutes (by definition of e†), and the lower one does by the naturality of γ. The right-
hand triangle commutes because both paths are homomorphisms extending idA. Consequently, the upper
square commutes, too. As for the uniqueness of solutions, suppose that in the above diagram e† : X −→ A
denotes a solution of e. Then all inner parts of the diagram commute, thus, so does the outward square,
whence e† is the unique solution of e (see Theorem 4.6).

(b) Necessity: if α : HA −→ A is an H-algebra such that every finitary equation morphism e has a unique
solution, then A is iterative. In fact, given a flat equation morphism e : X −→ HX + A, denote by e the
following finitary equation morphism

e ≡ X
e //HX +A

Hη0
X+η0

A //HFX + FA
ϕX+FA

//FX + FA
can //F (X +A)

It is easy to see that e is guarded. We obtain a unique solution e† : X −→ A, and we prove that this solves
e uniquely (in the sense of Definition 2.4). In other words, in the following diagram

X

e

��

e† //GF

@A
e

//

A

HX +A
He†+A

//

Hη0
X+η0

A

��

HA+A

[α,A]

77ooooooooooooo

Hη0
A+η0

A

��

HFX + FA

ϕX+FA

��

HFe†+FA
// HFA+ FA

[ϕA,A]

��
??????????????????

FX + FA
[Fe†,FA]

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX

can

��

F (X +A)
F [e†,A]

// FA

�

α

OO

the upper square commutes. In fact, the outward square commutes by definition of e†, the right-hand one
commutes because α̂ · η0

A = id and (since α̂ is a homomorphism)

α̂ · ϕA ·Hη0
A = α ·Hα̂ ·Hη0

A = α .
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Since the remaining inner parts commute (by naturality of η and ϕ), the commutativity of the upper square
follows.

To prove that e has a unique solution, suppose that in the above diagram e† : X −→ A denotes a solution
of e. Then all inner parts of the diagram commute, thus, the outward square does. This shows that e† is
the unique solution of e. �

5. Free Iterative Monads

Assumptions 5.1. Throughout this section H denotes a finitary endofunctor of a locally finitely presentable
category A.

We are going to prove that the rational monad R, introduced in Section 2, is iterative in the sense of
Calvin Elgot, and that it can be characterized as a free iterative monad on H .

5.2. Iterative Monads. This is a concept that Elgot has introduced in [E] for the base category A = Set.
He used the language of algebraic theories rather than monads, but we have proved in [AAMV] that the
following concepts are equivalent to those of Elgot. For a monad S = (S, η, µ) over Set we can form the
complements of ηX [X ] in SX , say,

σX : S′X −→ SX

for all objects X . The monad S is called ideal provided σ : S ′ −→ S is a subfunctor of S, and the monad
multiplication has a domain-codomain restriction µ′ : S′S −→ S′. For general base categories in lieu of
requiring a subfunctor S ′, we impose certain properties on µ′ very similar to the monad laws for µ and η.
The corresponding concept is as follows:

Definition 5.3. By an ideal monad is understood a sixtuple

S = (S, η, µ, S′, σ, µ′)

consisting of a monad (S, η, µ) and natural transformations σ : S ′ −→ S and µ′ : S′S −→ S′ such that

(1) S = S′ + Id with coproduct injections σ and η, and
(2) The following three diagrams

S′
S′η

//

CCCCCCCC

CCCCCCCC S′S

µ′

��

S′

S′SS
µ′S

//

Sµ

��

S′S

µ′

��

S′S
µ′

// S′

S′S
µ′

//

σS

��

S′

σ

��

SS µ
// S

(5.1)

commute.

Remark 5.4. Notice that the left-hand and middle diagrams in (5.1) express that the pair (S ′, µ′) is a
right S-module, and the right-hand diagram states that σ is morphism of S-modules from (S ′, µ′) to (S, µ).
The notion of a module appears for a monoidal category and a monoid in that category under the name
action in [M],VII.4. We chose the name module to remind of the classical example of abelian groups; in
this category, a monoid is precisely a ring R and an R-module is precisely a module of the ring R. Here we
work in the monoidal category of endofunctors on A with composition as the tensor product and the identity
functor as the tensor unit.

Examples 5.5.

(1) The rational monad is ideal. Recall from Remark 3.7 that R = HR + Id . Here we consider the
natural transformation

ρ : HR −→ R

expressing the H-algebra structure ρZ : HRZ −→ RZ of each RZ, see Definition 2.19. The “restric-
tion” of µ here is simply

µ′ = Hµ : HRR −→ HR .

In fact, we know from Remark 3.7 that RZ = HRZ + Z with the coproduct injections ρZ and ηZ .
Next, (HR,Hµ) is an R-module: the first two diagram of (5.1) follow easily from the monad laws
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for µ and η; furthermore, the third square

HRR
Hµ

//

Hρ

��

HR

ρ

��

RR µ
// R

commutes because each µZ is a homomorphism of H-algebras, see Definition 2.19.
(2) The free-algebra monad F of Section 4 is ideal. Here analogously, we use F = HF + Id , see (4.1).
(3) Classical algebraic theories (groups, lattices, etc.) are usually not ideal.

Definition 5.6. Let S = (S, η, µ, S ′, σ, µ′) be an ideal monad on A.

(1) By a finitary equation morphism is meant a morphism

e : X −→ S(X + Y )

in A where X is a finitely presentable object (“of variables”) and Y is any object (“of parameters”).
(2) By a solution of e is meant a morphism

e† : X −→ SY

for which the square

X
e† //

e

��

SY

S(X + Y )
S[e†,ηY ]

// SSY

µY

OO

commutes.
(3) The equation morphism e is called guarded if it factors through the summand S ′(X + Y ) + Y of

S(X + Y ) = S′(X + Y ) +X + Y :

X
e //

((

S(X + Y )

S′(X + Y ) + Y

[σX+Y ,ηX+Y inr ]

OO

(4) The ideal monad S is called iterative provided that every guarded finitary equation morphism has a
unique solution.

Example 5.7. The rational monad of every finitary endofunctor is iterative, see Corollary 4.7.

Remark 5.8. Next we define morphisms of ideal monads. Whenever our base category A has the (very
common) property that coproduct injections are monomorphic, then in an ideal monad S = (S, η, µ, S ′, σ, µ′)
we automatically get a subfunctor S ′ ↪−→S and the module laws of (S ′, µ′) follow automatically from the

monad laws of S. This makes the definitions of morphisms easy and canonical: let T = (T, ηT , µT , T ′, τ, µ′T )
be another ideal monad. An ideal monad morphism is a monad morphism

m : (S, η, µ) −→ (T, ηT , µT )

which has a restriction m′ to the given subfunctors:

S′
m′ //

σ

��

T ′

τ

��

S m
// S′

However, we do not want to impose any side conditions on A. The prize is that ideal monad morphisms are
defined as pairs (m,m′):
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Definition 5.9.

(1) An ideal monad morphism from an ideal monad (S, η, µ, S ′, σ, µ′) to another one (T, ηT , µT , T ′, τ, µ′T )
is a pair (m,m′) that consists of a monad morphism m : (S, η, µ) −→ (T, ηT , µT ) and a natural
transformation m′ : S′ −→ T ′ such that the diagrams

S′S

µ′

��

m′∗m // T ′T

µ′T

��

S′
m′

// T ′

and

S′

σ

��

m′ // T ′

τ

��

S m
// T

(5.2)

commute.
(2) Given a functor H , a natural transformation λ : H −→ S is called ideal provided that it factors

through σ : S′ −→ S: λ = σ · λ′ for some transformation λ′ : H −→ S′.

Remark 5.10. The left-hand square in Diagram (5.2) expresses that m′ : S′ −→ T ′ is a module morphism
with change of base m. The right-hand one together with the preservation of the unit m · η = ηT expresses
that m = m′ + Id . In fact, every ideal monad morphism is determined by its second component m′.

Example 5.11. For the rational monad R, the natural transformation

κ ≡ H
Hη

// HR
ρ

// R

is ideal.

Remark 5.12.

(1) We are going to prove that, for every finitary endofunctor H , the rational monad R is a free iterative
monad on H . Since ideal monad morphisms are pairs, the freeness is expressed by a pair of equations.
Notice, however, that under the assumption that coproduct injections in the base category A are
monomorphic, see Remark 5.8, the freeness of R means what one expects: for every iterative monad
S and every ideal natural transformation λ : H −→ S there exists a unique ideal monad morphism
λ : R −→ S such that λ ·κ = λ. The formulation below refrains from the assumption that coproduct
injections are monomorphic.

(2) Parts of the following proof are identical to the corresponding parts of Theorem 5.14 of [Mi]; we
already mentioned that that paper was written parallel to ours. We decided to present a complete
proof, without referencing to [Mi], for the convenience of the reader.

Theorem 5.13. (Rational Monad as a Free Iterative Monad.) For every iterative monad S and every

ideal natural transformation λ : H −→ S there exists a unique ideal monad morphism (λ, λ
′
):R −→ S such

that the diagrams

H
Hη

//

λ′ !!CCCCCCCC HR

λ
′

��

S′

and

H
κ //

λ
  @@@@@@@@ R

λ

��

S

(5.3)

commute.

Remark. Let us form the category Fin(A,A) of all finitary endofunctors and natural transformations. For
the category

FIM(A)

of all finitary iterative monads (i.e., iterative monads (S, η, µ, S ′, σ, µ′) with S and S′ finitary) and ideal
monad morphisms we have a forgetful functor

U : FIM(A) −→ Fin(A,A), S 7−→ S ′

The above theorem states that U has a left adjoint, viz, the functor H 7−→ R.

Proof. (1) For every object Z consider SZ as an H-algebra

HSZ
λSZ // SSZ

µZ // SZ .
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It is iterative. In fact, every equation morphism e : X −→ HX+SZ, X in Afp , yields the following equation
morphism w.r.t. S:

e ≡ X e // HX + SZ
λX+SZ

// SX + SZ
can // S(X + Z) .

To verify that e is guarded, use the restriction λ′ : H −→ S′ of λ:

X
e // HX + SZ

λX+SZ
//

λ′X+SZ &&NNNNNNNNNNNN SX + SZ
can // S(X + Z)

S′X + SZ
S′X+[σZ ,ηZ ]−1

//

σZ+SZ

OO

S′X + S′Z + Z
S′X+[σZ ,ηZ ]

oo
can+Z

// S′(X + Z) + Z

[σX+Z ,ηX+Z inr ]

OO

To prove the commutativity of the square, consider the three components of S ′X +S′Z +Z separately, and
use naturality of σ and η.

We prove that a morphism e† : X −→ SZ is a solution of e in the H-algebra SZ if and only if it is a
solution of e w.r.t. the iterative monad S.

(1a) Let e† be a solution of e in the algebra SZ, i.e., let

X
e† //

e

��

SZ

SSZ + SZ

[µZ ,SZ]

OO

HX + SZ
He†+SZ

// HSZ + SZ

λSZ+SZ

OO
(5.4)

commute. We are to show that the following diagram

X
e† //

e

��

SZ

HX + SZ
He†+SZ

//

λZ+SZ

��

HSZ + SZ
λSZ+SZ

// SSZ + SZ

[µZ ,SZ]
88rrrrrrrrrr

[SSZ,SηZ ]

��
:::::::::::::::::

SX + SZ
Se†+SZ

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

can

��

S(X + Z)
S[e†,ηZ ]

// SSZ

µZ

OO

(5.5)

has the outward square commutative. The upper part is (5.4), the one directly below it is the
naturality of λ. The lower part commutes obviously, and the right-hand one does due to µZ ·SηZ = id .

(1b) Let the outward square of (5.5) commute. Since the remaining three inner parts commute, so does
the upper one, which is (5.4).

(2) Existence of an ideal monad morphism λ such that (5.3) commute. Denote by

λZ : RZ −→ SZ

the unique homomorphism of H-algebras with

λZ · ηZ = ηSZ .

We first observe that λ is a natural transformation. Given a morphism h : Z −→ Z ′, then Sh is a homo-
morphism of H-algebras from SZ to SZ ′:

HSZ
λSZ //

HSh

��

SSZ
µZ //

SSh

��

SZ

Sh

��

HSZ ′
λSZ′

// SSZ ′ µZ′
// SZ ′

(5.6)
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Thus, we have two parallel H-algebra homomorphisms from RZ to SZ ′:

Sh · λZ and λZ′ · Rh .

They agree when precomposed with ηZ :

RZ
λZ //

Rh

��

SZ

Sh

��

Z
h��

ηZ

ffMMMMMMM ηSZ

88qqqqqqq

Z ′
ηZ′

xxqqqqqq ηS
Z′

&&LLLLLL

RZ ′
λZ′

// SZ ′

By the universal property of ηZ , and since SZ ′ is an iterative H-algebra, this proves that the above naturality
square commutes.

Let us prove that λ is a monad morphism. Since λη = ηS by definition, it remains to prove the commu-
tativity of the following diagram

RRZ
λRZ //

µZ

��

SRZ
SλZ // SSZ

µSZ
��

RZ
λZ

// SZ

(5.7)

By (5.6), applied to h = λZ , we see that SλZ is a homomorphism of H-algebras. By the universal property
of ηRZ it is sufficient to prove that (5.7) commutes when precomposed with ηRZ :

RRZ
λRZ //

µZ

��

SRZ
SλZ // SSZ

µSZ

��

RZ
λZ //

ηRZ

ccGGGGGGGG

ηSRZ

;;wwwwwwww

wwwwwwww

wwwwwwww SZ
ηSSZ

;;xxxxxxxx

FFFFFFFF

FFFFFFFF

RZ
λZ

// SZ

The equation

λ = λ · κ = λ · ρ ·Hη

follows from the commutativity of the following diagram

HZ
HηZ //

λZ

��

HRZ
ρZ //

λRZ

zzuuuuuuuuu
HλZ

$$IIIIIIIII RZ

λZ

��

SRZ
SλZ

$$IIIIIIIII (i) HSZ
λSZ

zzuuuuuuuuu
(ii)

SZ

SηZ
;;wwwwwwwww

SηSZ

// SSZ
µSZ

// SZ

(5.8)

where (i) is naturality of λ and (ii) is clear since λ is a homomorphism. Now use that µSZ · SηSZ = id .

Thus, we have found a monad morphism λ : R −→ S with λ · κ = λ. It remains to verify that λ is part of
an ideal monad morphism. Put

λ
′ ≡ HR

Hλ // HS
λ′S // S′S

µ′
// S′ . (5.9)
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To see that the pair (λ, λ
′
) is an ideal monad morphism we have to verify the commutativity of the dia-

grams (5.2) for this pair. For the left-hand diagram of (5.2) consider the following diagram

HRR
λ
′∗λ //

Hµ

��

Hλ∗λ $$IIIIIIIII S′S

µ′

��

HSS
λ′SS //

Hµ

��

S′SS

S′µ
��

µ′S

;;wwwwwwww

HR
Hλ

// HS
λ′S

// S′S
µ′

// S′

The upper part clearly commutes by the definiton (5.9) of λ
′

and by the naturality of parallel composition.
The other parts of the diagram are clear by invoking — from left to right — that λ is a monad morphism,
the naturality of λ′ and the module laws of S′. To verify the right-hand square of (5.2) consider the diagram

HRZ

ρZ

��

HλZ // HSZ
λ′SZ //

λSZ $$IIIIIIIII S′SZ

σSZ

��

µ′Z // S′Z

σZ

��

ED��GF λ
′

SSZ

µZ
##HHHHHHHHH

RZ
λZ

// SZ

Finally, let us check the left-hand triangle of (5.3), i. e., we show that λ
′ ·Hη = λ′. To see this, consider

the diagram

H
Hη

//

λ′

��

HηS
''OOOOOOOOOOOOO HR

Hλ
��

HS

λ′S
��

S′
S′ηS

//

id
''OOOOOOOOOOOOO S′S

µ′

��

S′

It commutes: for the upper triangle use that λ is a monad morphism, the middle part is naturality, and the
lower triangle is the unit law of the S-module S ′.

(3) Uniqueness of λ. Suppose that (m,m′) is an ideal monad morphism from R to S such that the Dia-

grams (5.3) commute with (m,m′) in lieu of (λ, λ
′
). We are going to show that for any object Z, mZ is

an H-algebra homomorphism extending ηSZ , and then invoke the freeness of RZ as an iterative H-algebra,

which implies that m = λ, and then leads to the conclusion that m′ = λ
′
.

Firstly, notice that for any object Z we have

ρZ = µZ · κRZ . (5.10)

Indeed, the diagram

HRZ

HηRZ

��

κRZ

((RRRRRRRRRRRRRGF
@Aid

//

HRRZ
ρRZ //

HµZ

��

RRZ

µZ

��

HRZ ρZ
// RZ
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commutes. Consequently, the following diagram

HRZ
κRZ //

HmZ

��

RRZ
µZ //

(m∗m)Z

��

RZ

mZ

��

ED ��GF ρZ

HSZ
λSZ

// SSZ
µSZ

// SZ

commutes: the upper part is (5.10), the right-hand square commutes since m is a monad morphism, and the
left-hand one does since m · κ = λ and by naturality.

Thus mZ : RZ −→ SZ is an H-algebra homomorphism between iterative H-algebras such that mZ ·ηZ =
ηSZ . This implies that m = λ and from this it follows that

m′ = µ′ · λ′S ·Hm = µ′ · λ′S ·Hλ
where the first equation holds due to the following diagram

HR
Hm //

HηR

��

λ′R

##HHHHHHHHHGF
@Aid

//

HS

λ′S
��

HRR
m′R

//

Hµ

��

S′R
S′m

// S′S

µ′

��

HR
m′

// S′

The lower square commutes since m′ is a module homomorphism with change of base m, the left-hand part
by the unit law of the monad R, the upper triangle by (5.3) and the upper right-hand part by naturality.
This completes the proof. �

Remark 5.14. For polynomial endofunctors on Set, the freeness of R specializes to second order substitution,
see [C], i. e., substitution of rational trees for operation symbols.

For example, consider a signature Σ with a binary operation symbol b, and a unary one u, and another
signature Γ with two binary operation symbols + and ∗ and a constant symbol 1. The assignment

b(x, y) 7−→

∗

1 +

x y

����
////

����
//// u(x) 7−→

+

x x
����

////
(5.11)

of operation symbols in Σ to rational trees over Γ gives rise to a natural transformation λ : HΣ −→ RΓ. The
induced monad morphism λ : RΣ −→ RΓ replaces, for any set of variables X , the operation symbols in trees
of RΣX according to λ. Example:

λ({h, k }) :

b

u k

h

����
////

7−→

∗

1 +

+

h h

k

����
////

����

����
////

////

The requirement that λ be an ideal transformation means that no operation symbol of Σ is replaced by a
single variable, i. e., that λ is a so-called non-erasing substitution.

Remark 5.15. We have defined a rational monad for every finitary endofunctor of a locally finitely pre-
sentable category. One may ask what happens if we “raise the index of presentability” to an uncountable
regular cardinal λ. That is, what is the “λ-rational” monad of a λ-accessible endofunctor H (i.e., one,
preserving λ-filtered colimits)?
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It is easy to see that the main results above remain true if we systematically replace “finitely presentable”
by “λ-presentable” and “finitary” by “λ-accessible”. An H-algebra A might be called λ-iterative if every
equation morphism e : X −→ HX +A with X λ-presentable has a unique solution e† : X −→ A.

Then, for a λ-accessible endofunctor H : A −→ A, one can prove the following

(1) The category of all λ-iterative H-algebras is reflective in Alg H .
(2) The resulting λ-accessible monad Rλ on A is a free λ-iterative monad on H . Again, λ-iterative means

unique solvability of equationsX −→ Rλ(X+Z) withX λ-presentable. Moreover,RλZ = colim EqλZ ,

where EqλZ is the obvious modification of the diagram EqZ from Corollary 3.6.

However, in case of uncountable λ such a monad R coincides with the completely iterative monad T of H
which has been described in [AAMV, Mi]. This monad T is given object-wise by final coalgebras of the
endofunctor H(−) + Z : A −→ A. To show that T ∼= Rλ, it therefore suffices to prove the following:

Proposition. For uncountable λ, the object RλZ is a final coalgebra of H(−) + Z. More precisely, the
isomorphism iZ : RλZ −→ HRλZ + Z is a final coalgebra of H(−) + Z.

Proof. We use the fact proven in [AP] that the category EQλ
Z is a dense full subcategory of the locally

λ-presentable category of all coalgebras of H(−) + Z. Here we use uncountability of λ. Thus, it suffices to
prove that for every

e : X −→ HX + Z

in EQλ
Z there exists a unique homomorphism into iZ : RλZ −→ HRλZ + Z. Since the colimit injection

e] : X −→ RλZ is such a homomorphism, it remains to verify uniqueness. This is done analogously to
Remark 3.4. �

6. Conclusions and Future Work

We proved that all finitary endofunctors H generate a free iterative monad R. All we needed in our proof
was the assumptions that the base category is locally finitely presentable. This is the “real McCoy” that we
tried to achieve in two preceeding papers [AMV1] and [AMV2]: there we obtained the same result only in
the base category Set, and the proof was much more complicated. The reason was that when writing those
papers we did not follow the footsteps of Evelyn Nelson and Jerzy Tiuryn who realized already more than
twenty years ago that iterative algebras are more basic than Elgot’s iterative theories.

The results of the present paper are analogous to results on completely iterative algebras and completely
iterative theories. The latter were introduced in [EBT] in analogy to iterative theories by dropping the
finiteness restriction on the objects of variables: one studies equation morphisms with arbitrary objects
X of variables, and requests unique solutions of these more general equations. Stefan Milius [Mi] defines
completely iterative algebras for a functor H on a category A with binary coproducts and he relates them to
completely iterative monads: H has free completely iterative algebras TX if and only if H generates a free
completely iterative monad T if and only if H has “enough final coalgebras”, i. e., every functor H(−) +X
has a final coalgebra TX .

A natural question to ask, then, is whether there is a monad in between the free iterative monad R and
the free completely iterative one T : how about considering, for an accessible functor and some uncountable
cardinal λ, all equation morphisms with a λ-presentable object X of variables. We showed that the answer
is negative: one gets the same monad, namely T , see Remark 5.15.

The main technical result of our paper is a description of an initial iterative algebra as a colimit of
all H-coalgebras carried by finitely presentable objects. From this result we derived that the algebraic
theory formed by all free iterative H-algebras is iterative in the sense of Calvin Elgot. In fact, that theory
can be characterized as a free iterative theory on H . The freeness of the rational monad can be used to
formulate clearly the “second-order substitution” described for rational Σ-trees by Bruno Courcelle [C], see
Remark 5.14.

Our result can be applied to arbitrary base categories which are locally finitely presentable. For example,
to the category of all finitary endofunctors of Set. In the future we intend to use this in an attempt to
describe the monad of algebraic trees, see Courcelle [C], categorically.
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1 Institute of Theoretical Computer Science, Technical University, Braunschweig, Germany
{adamek,milius}@iti.cs.tu-bs.de

2 Faculty of Electrical Engineering, Technical University, Prague, Czech Republic
velebil@math.feld.cvut.cz

If you are not part of the solution,
you are part of the problem.

Eldridge Cleaver, speech in San Francisco, 1968

Abstract. Denotational semantics can be based on algebras with additional structure (or-
der, metric, etc.) which makes it possible to interpret recursive specifications. It was the
idea of Calvin Elgot not to use additional structure and to base denotational semantics on
iterative theories, i. e., theories in which abstract recursive specifications are required to have
unique solutions. Later Bloom and Ésik studied iteration theories and iteration algebras in
which a specified solution has to obey certain axioms. In this paper we propose so-called
Elgot algebras. An Elgot algebra is an algebra with a specified solution for every system of
flat recursive equations. That specification satisfies two simple and well motivated axioms:
functoriality (stating that solutions are stable under renaming of recursion variables) and
compositionality (stating how to perform simultaneous recursion). These two axioms stem
canonically from Elgot’s iterative theories: We prove that the category of Elgot algebras is
the Eilenberg–Moore category of the monad given by a free iterative theory.

1 Introduction

This paper whose extended abstract was presented at the conference MFPS XXI, see [AMV3],
studies Elgot algebras, a new notion of algebra useful for application in the semantics of recursive
computations. In programming, functions are often specified by a recursive applicative program
scheme such as

ϕ(x) ≈ F (x, ϕ(Gx))
ψ(x) ≈ F (ϕ(Gx), GGx)

(1.1)

where F and G are given functions and ϕ and ψ are recursively defined in terms of the given
ones by (1.1). We are interested in the semantics of such schemes. Actually, one has to distinguish
between uninterpreted and interpreted semantics. In the uninterpreted semantics the givens are
not functions but merely function symbols from a signature Σ. In the present paper we prepare a
basis for the interpreted semantics in which a program scheme comes together with a suitable Σ-
algebra A, which gives an interpretation to all the given function symbols. The actual application
of Elgot algebras to semantics will be dealt with in [MM]. By “suitable algebra” we mean, of
course, one in which recursive program schemes can be given a semantics. For example, for the
recursive program scheme (1.1) we are only interested in those Σ-algebras A, where Σ = {F,G },
in which the program scheme (1.1) has a solution, i. e., we can canonically obtain new operations
ϕA and ψA on A so that the formal equations (1.1) become valid identities. The question we
address is:

What Σ-algebras are suitable for semantics? (1.2)

Several answers have been proposed in the literature. One well-known approach is to work with
complete posets (CPO) in lieu of sets, see e.g. [GTWW]. Here algebras have an additional CPO

? The first and the third author acknowledge the support of the Grant Agency of the Czech Republic
under the Grant No. 201/02/0148.
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structure making all operations continuous. Another approach works with complete metric spaces,
see e.g. [ARu]. Here we have an additional complete metric making all operations contracting.
In both of these approaches one imposes extra structure on the algebra in a way that makes it
possible to obtain the semantics of a recursive computation as a join (or limit, respectively) of
finite approximations.

It was the idea of Calvin Elgot to try and work in a purely algebraic setting avoiding extra
structure like order or metric. In [El] he introduced iterative theories which are algebraic theories
in which certain systems of recursive equations have unique solutions. Later Evelyn Nelson [N]
and Jerzy Tiuryn [T] studied iterative algebras, which are algebras for a signature Σ with unique
solutions of recursive equations. While avoiding extra structure, these are still not the unifying
concept one would hope for, since they do not subsume continuous algebras—least fixed points
are typically not unique.

However, analyzing all the above types of algebras we find an interesting common feature which
make continuous, metrizable and iterative algebras fit for use in semantics of recursive program
schemes: these algebras allow for an interpretation of infinite Σ-trees. Let us make this more
precise. For a given signature Σ consider the algebra

TΣX

of all (finite and infinite) Σ-trees over X , i. e., rooted ordered trees where inner nodes with n
children are labelled by n-ary operation symbols from Σ, and leaves are labelled by constants
or elements from X . The algebra TΣX is the free continuous Σ-algebra on X and also the free
metrizable Σ-algebra on X . Consequently, for any continuous or metrizable algebra A we obtain
a canonical map TΣA −→ A which provides for any Σ-tree over A its result of computation in A.
It is then easy to give semantics to recursive program schemes in A. For example, for (1.1) one
can simply take the tree unfolding which yields the infinite trees

ϕ†(x) =

F

x F

Gx F

GGx

����
////

����
////

����

ψ†(x) =

F

F GGx

Gx F

GGx

����
////

����
////

����

and then for any argument x ∈ A compute these infinite trees in A.
Actually, we do not need to be able to compute all infinite trees: all recursive program schemes

unfold to algebraic trees, see [C] (we mention these in the Summary shortly). Another important
subclass are rational trees, which are obtained as all solutions of guarded finitary recursive equa-
tions. They were characterized in [G] as those Σ-trees having up to isomorphism finitely many
subtrees only. We denote by

RΣX

the subalgebra of all rational trees in TΣX . With this in mind, we can restate problem (1.2) more
formally:

What Σ-algebras have a suitable computation of all trees?
Or all rational trees?

(1.3)

This means, one further step more formally: what is the largest category of Σ-algebras in which
TΣX , or RΣX , respectively, act as free algebras on X? The answer in case of TΣX is: complete
Elgot algebras. These are Σ-algebras A with an additional operation “dagger” assigning to every
system e of recursive equations in A a solution e†. Two (surprisingly simple) axioms are put on

(−)
†

which stem from the internal structure of TΣX : the functor TΣ given by X 7−→ TΣX is
part of a monad in Set, and this is the free completely iterative theory on Σ, as proved in [EBT].
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We will prove that the monadic algebras of this monad (i. e., the Eilenberg–Moore category of
TΣ) is precisely the category of complete Elgot algebras. Basic examples: continuous algebras or
metrizable algebras are Elgot algebras. Analogously, the largest category of Σ-algebras in which
each RΣX acts as a free algebra are Elgot algebras. They are defined precisely as the complete
Elgot algebras, except that the systems e of recursive equations considered there are required to
be finite. For example, every iterative algebra is an Elgot algebra.

Related Work: Solutions of recursive equations are a fundamental part of a number of models of
computation, e. g., iterative theories of C. Elgot [El], iteration theories of S. Bloom and Z. Ésik [BÉ],
traced monoidal categories of A. Joyal, R. Street and D. Verity [JSV], fixed-point theories for
domains, see S. Eilenberg [Ei] or G. Plotkin [P], etc. In some of these models the assignment of a
solution e† to a given type of recursive equation e is unique (e. g., in iterative theories every ideal
system has a unique solution, or in domains given by a complete metric space there are unique
solutions of fixed-point equations, see [ARu]). The operation e 7−→ e† then satisfies a number
of equational properties. In other models, e. g., in iteration theories or in the traced cartesian
categories, see [Ha], a specific choice of a solution e† is assumed, and certain properties (inspired
by the models with unique solutions) are formulated as axioms.

The approach of the present paper is more elementary in asking for solutions e 7−→ e† in
a concrete algebra A. Here we work with flat equations e in A, i. e., morphisms of the form
e : X −→ HX+A, but flatness is just a technical restriction: in future research we will prove that
more general non-flat equations obtain solutions “automatically”. The fact that we work with a
fixed algebra A (and let only X and e vary) is partly responsible for the simplicity of our axioms
in comparison to the work on theories (where A varies as well), see e. g. [BÉ] or [SP1]. Iterative
algebras of Evelyn Nelson [N] and Jerzy Tiuryn [T], where solutions e† are required to be unique,
are a similar approach. And iteration algebras of Zoltan Ésik [É] are another one. Unfortunately,
the number of axioms (seven) and their complexity make the question of the relationship of that
notion to Elgot algebras a nontrivial one. We intend to study this question in the future.

We work with two variations: Elgot algebras, related to RΣX , where the function (−)
†

assigns
a solution only to finitary flat recursive systems, and complete Elgot algebras, related to TΣX ,
where the function (−)

†
assigns solutions to all flat recursive systems. This is related to our

previous research [AAMV,M,AMV1,AMV2] in which we proved that every finitary endofunctor H
generates a free iterative monad R, and a free completely iterative monad T . In the present paper
we then study the Eilenberg–Moore categories of the monads R and T . Here H is an endofunctor
of a category satisfying some rather mild conditions (not only Set): this generality does not make
the proofs any more complex, and later we use other categories than Set (see Summary).

2 Iterative Algebras and CIAs

Assumption 2.1. Throughout the paperH denotes an endofunctor of a category A having binary
coproducts. We denote by inl : A −→ A+B and inr : B −→ A+B the corresponding injections. At
some stage we assume that A is locally finitely presentable and that H is finitary, i. e., preserves
filtered colimits, but we then make these assumptions explicitly.

Recall that an object X is called finitely presentable iff the hom-functor A(X,−) : A −→ Set
is finitary. (In Set, these are precisely the finite sets. In equational classes of algebras these are
precisely the finitely presentable algebras in the usual sense.) Recall further that a category A

is called locally finitely presentable if it has colimits and a small collection of finitely presentable
objects whose closure under filtered colimits is all of A, see [AR].

Definition 2.2. Let α : HA −→ A be an H-algebra. By a flat equation morphism in A we
understand a morphism e : X −→ HX + A in A. We call e finitary provided that X is finitely
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presentable. A solution of e is a morphism e† : X −→ A such that the square

X

e

��

e† // A

HX +A
He†+A

// HA+A

[α,A]

OO

(2.1)

commutes.

If every finitary flat equation morphism has a unique solution, then A is said to be an iterative
algebra. And A is called a completely iterative algebra (CIA) if every flat equation morphism has
a unique solution.

Remark 2.3. Iterative algebras of polynomial endofunctors of Set were introduced and studied by
Evelyn Nelson [N]. She proved that the algebras RΣX of rational Σ-trees on X form free iterative
algebras, and that the theory obtained from them is a free iterative theory of Calvin Elgot [El].
We have recently studied iterative algebras in a much more general setting; working with a finitary
endofunctor of a locally finitely presentable category. Completely iterative algebras were studied
by Stefan Milius in [M].

Example 2.4. Consider algebras in Set with one binary operation ∗, i. e., the functor is HX =
X ×X . A flat equation morphism e in an algebra A assigns to every variable x either a flat term
y ∗ z (y and z are variables) or an element of A. A solution e† : X −→ A assigns to x ∈ X either
the same element as e, in case e(x) ∈ A, or the result of e†(y) ∗ e†(z), in case e(x) = y ∗ z. For
example, the following recursive equation

x ≈ x ∗ x ,

represented by the obvious morphism e : {x } −→ {x } × {x }+A, has as solution e† an element
a = e†(x) which is idempotent. Consequently, every iterative algebra has a unique idempotent. If
A is even completely iterative, then it has, for each sequence a0, a1, a2, . . . of elements, a unique
interpretation of a0∗(a1∗(a2 · · ·))), i. e., a unique sequence b0, b1, b2, . . . with b0 = a0∗b1, b1 = a1∗b2,
etc. In fact, we consider here the equations

xn ≈ an ∗ xn+1 (n ∈ N) .

Iterative algebras have unique solutions of many non-flat equations because we can flatten
them. For example the following recursive equations

x1 ≈ (x2 ∗ a) ∗ b x2 ≈ x1 ∗ b

are not flat. But they can be easily flattened to obtain a system

x1 ≈ z1 ∗ z2 x2 ≈ x1 ∗ z2

z1 ≈ x2 ∗ z3 z2 ≈ b
z3 ≈ a

represented by a morphism e : X −→ X ×X +A, where X = {x1, x2, z1, z2, z3 }. Its solution is a
map e† : X −→ A yielding a pair of elements s = e†(x1) and t = e†(x2) satisfying s = (t ∗ a) ∗ b
and t = s ∗ a.

Example 2.5. Iterative Σ-algebras. For every finitary signature Σ = (Σn)n∈N we can identify
Σ-algebras with algebras of the polynomial endofunctor HΣ of Set defined on objects X by

HΣX = Σ0 +Σ1 ×X +Σ2 ×X ×X + . . .
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A Σ-term which has the form σ(x1, . . . , xk) for some σ ∈ Σk and for variables x1, . . . , xk from X
is called flat. Then a flat equation morphism e : X −→ HΣX + A in an algebra A represents a
system

x ≈ tx
of recursive equations, one for every variable x ∈ X , where each tx is either a flat term in X , or
an element of A. A solution e† assigns to every variable x with tx = a, a ∈ A, the element a, and
if tx = σ(x1, . . . , xk) then e†(x) = σA(e†(x1), . . . , e†(xk)).

Observe that every iterative Σ-algebra A has, for every σ ∈ Σk, a unique idempotent (i.e., a
unique element a ∈ A with σ(a, . . . , a) = a). In fact, consider the flat equation x ≈ σ(x, . . . , x).
More generally, every Σ-polynomial has a unique idempotent in A. For example, for a polynomial
of depth 2, σ(τ1, . . . , τk), where σ ∈ Σk and τ1, . . . , τk ∈ Σn consider the recursive equations

x0 ≈ σ(x1, x2, . . . , xk)

xi ≈ τi(x0, x0, . . . , x0) (i = 1, . . . , k) .

An example of an iterative Σ-algebra is the algebra TΣ of all (finite and infinite) Σ-trees. Also
the subalgebra RΣ of TΣ of all rational Σ-trees is iterative, see [N].

Example 2.6. In particular, for unary algebras (H = Id), an algebra α : A −→ A is iterative iff
αk has a unique fixed point (k ≥ 1), see [AMV2]. And A is a CIA iff, moreover, there exists no
infinite sequence (an)n∈N in A with αan+1 = an, see [M].

Remark 2.7. In [AMV2] we have proved that for every finitary functor H of a locally finitely
presentable category A a free iterative algebra RY exists on every object Y . Furthermore, we have
given a canonical construction of RY as a colimit of all coalgebras X −→ HX + Y carried by
finitely presentable objects, in other words, for every object Y of A, RY is a colimit of all finitary
flat equations in Y . For example, for a polynomial functor HΣ of Set the free iterative algebra
on a set Y is the algebra RΣY of all rational Σ-trees over Y . In general, we call the monad R of
free iterative algebras the rational monad generated by H . We have proved in [AMV2] that the
rational monad R is a free iterative monad on H .

Example 2.8. Completely metrizable algebras. Complete metric spaces are well-known to be a
suitable basis for semantics. The first categorical treatment of complete metric spaces for semantics
is due to P. America and J. Rutten [ARu]. Let

CMS

denote the category of all complete metric spaces (i.e., such that every Cauchy sequence has a limit)
with metrics in the interval [0, 1]. The morphisms are nonexpanding maps f : (X, dX) −→ (Y, dY ),
i. e., the inequality dY (f(x), f(x′)) ≤ dX(x, x′) holds for all x, x′ in X .

Given complete metric spaces X and Y , the hom-set CMS(X,Y ) carries the pointwise metric
dX,Y defined as follows:

dX,Y (f, g) = sup
x∈X

dY (f(x), g(x))

America and Rutten call a functor H : CMS −→ CMS contracting if there exists a constant ε < 1
such that for arbitrary morphisms f, g : X −→ Y we have

dHX,HY (Hf,Hg) ≤ ε · dX,Y (f, g).

Lemma 2.9. If H : CMS −→ CMS is a contracting functor, then every nonempty H-algebra is a
CIA.

Proof. Let α : HA −→ A be a nonempty H-algebra. Choose an element a of A. For every equation
morphism e : X −→ HX +A define a sequence e†n in CMS(X,A) as follows:
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1. e†0 = consta, the constant function of value a.

2. Given e†n then e†n+1 is defined as follows (compare (2.1)):

X
e†n+1

//

e

��

A

HX +A
He†n+A

// HA+A

[α,A]

OO

(2.2)

We prove that (e†n) is a Cauchy sequence in CMS(X,A). In fact, put

z = d(e0
†, e1

†),

then we prove by induction that
d(e†n, e

†
n+1) ≤ z · εn.

For the induction step from the above inequality derive d(He†n+1, He
†
n) ≤ z ·εn+1 and then use the

definition of e†n and e†n+1, see (2.2). Consequently, the sequence (e†n) is Cauchy: for every number
δ > 0 choose k with z · εk < δ · (1− ε). Then for all n the inequalities

d(ek
†, ek+n

†) ≤
n−1∑

i=0

d(e†k+i, e
†
k+i+1) ≤ z ·

n−1∑

i=0

εk+i < z · εk ·
∞∑

i=0

εi =
z · εk
1− ε < δ

take place. Consequently, a limit
e† = lim

n→∞
e†n

exists in CMS(X,A). Due to the contractivity of H , it follows that He† = lim
n→∞

He†n in

CMS(HX,HA) and thus the equality He†+ idA = lim
n→∞

(He†n+ idA) holds in CMS(HX+A,HA+

A). Thus, e† is a solution of e:

[α,A] · (He† +A) · e = lim
n→∞

[α,A] · (He†n +A) · e

= lim
n→∞

e†n+1

= e†.

Let e∗ : X −→ A be another solution of e. Put b = d(e†, e∗). Then d(He†, He∗) ≤ ε · b which
implies d(He† + idA, He

∗ + idA) ≤ ε · b, consequently,

b = d(e†, e∗) = d([α,A] · (He† +A) · e, [α,A] · (He∗ +A) · e) ≤ ε · b.

Since ε < 1, this implies b = 0. Thus, e† is the unique solution.

Remark 2.10. Many set functors H have a lifting to contracting endofunctors H ′ of CMS. That
is, for the forgetful functor U : CMS −→ Set the following square

CMS
H′ //

U

��

CMS

U

��

Set
H

// Set

commutes. For example, if HX = Xn, define

H ′(X, d) = (Xn,
1

2
· d′)
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(where d′ is the maximum metric) which is a contracting functor with ε = 1
2 . Since coproducts of

1
2 -contracting liftings are 1

2 -contracting liftings of coproducts, we conclude that every polynomial
endofunctor has a contracting lifting to CMS.

Let us call an H-algebra α : HA −→ A completely metrizable if there exists a complete metric,
d, on A such that α is a nonexpanding map from H ′(A, d) to (A, d).

Corollary 2.11. Every completely metrizable algebra A is a CIA.

In fact, to every equation morphism e : X −→ HX+A assign the unique solution of e : (X, d0) −→
H ′(X, d0) + (A, d), where d0 is the discrete metric (d0(x, x′) = 1 iff x 6= x′).

Remark 2.12. Stefan Milius [M] proved that for any endofunctor H of A a final coalgebra TY
of H(−) + Y is a free CIA on Y , and conversely. Furthermore, assuming that the free CIAs
exist, it follows that the monad T of free CIAs is a free completely iterative monad on H . This
generalizes and extends the classical result of [EBT] since for a polynomial functor HΣ of Set the
free completely iterative algebra on a set Y is the algebra TΣY of all Σ-trees over Y .

Remark 2.13. We are going to prove two properties of iterative algebras and CIA’s: the functo-
riality and compositionality for solutions. We will use two “operations” on equation morphisms.
One, •, is just change of parameter names: given a flat equation morphism e : X −→ HX + Y
and a morphism h : Y −→ Z we obtain the following equation morphism

h • e ≡ X e // HX + Y
HX+h

// HX + Z .

The other operation combines two flat equation morphisms

e : X −→ HX + Y and f : Y −→ HY +A

into the single flat equation morphism f e : X + Y −→ H(X + Y ) + A in a canonical way: put
can = [H inl, H inr] : HX +HY −→ H(X + Y ) and define

f e ≡ X+Y
[e,inr]

//HX+Y
HX+f

//HX+HY +A
can+A

//H(X+Y )+A, (2.3)

2.14. Functoriality. This states that solutions are invariant under renaming of variables, pro-
vided, of course, that the right-hand sides of equations are renamed accordingly. Formally, observe
that every flat equation morphism is a coalgebra of the endofunctorH(−)+A. Given two such coal-
gebras e and f , a renaming of the variables (or morphism of equations) is a morphism h : X −→ Y
which forms a coalgebra homomorphism:

X
e //

h

��

HX +A

Hh+A

��

Y
f

// HY +A

(2.4)

Definition 2.15. Let A be an algebra with a choice e 7−→ e† of solutions, for all flat equation
morphisms e in A. We say that the choice is functorial provided that

e† = f † · h (2.5)

holds for all equation morphisms h : e −→ f . In other words: (−)
†

is a functor from the category
of all flat equation morphisms in the algebra A into the comma-category of the object A.

Lemma 2.16. In every CIA the assignment (−)
†

is functorial.
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Proof. For each morphism h of equations the diagram

X
h

//

e

��

Y
f†

//

f

��

A
ED��GF f†·h

HX +A
Hh+A

// HY +A
Hf†+A

// HA+ A

[α,A]

OO

BCOO@A
H(f†·h)+A

commutes. Thus, f † · h is a solution of e. Uniqueness of solutions now implies the desired result.

Remark. The same holds for every iterative algebra, except that there we restrict X and Y in
Definition 2.15 to finitely presentable objects.

2.17. Compositionality. This tells us how to perform simultaneous recursion: given an equation
morphism f in A with a variable object Y , we can combine it with any equation morphism e
in Y with a variable object X to obtain the equation morphism f e in A of Remark 2.13. The
compositionality decrees that the left-hand component of (f e)

†
is just the solution of f † • e, i. e.,

in lieu of solving f and e simultaneously we first solve f , plug in the solution in e and solve the
resulting equation morphism.

Definition 2.18. Let A be an algebra with a choice e 7−→ e† of solutions, for all flat equation
morphisms e in A. We say that the choice is compositional if for each pair e : X −→ HX + Y
and f : Y −→ HY +A of flat equation morphisms the equation below holds.

(f † • e)† = (f e)† · inl (2.6)

Remark 2.19. Notice that the coproduct injection inr : Y −→ X + Y is a morphism of equa-
tions from f to f e. Functoriality then implies that f † = (f e)

† · inr. Thus, in the presence of
functoriality, the compositionality is equivalent to

(f e)† = [(f † • e)†, f †] . (2.7)

Lemma 2.20. In every CIA the assignment (−)
†

is compositional.

Proof. Denote by

r = (f † • e)† : X −→ A

the solution of f † • e. It is sufficient to prove that

(f e)
†

= [r, f †] : X + Y −→ A .

That is, by the uniqueness of solutions, that the following square

X + Y
[r,f†]

//

[e,inr]

��

GF

@A
f e

//

A

HX + Y

HX+f

��

HX +HY +A

can+A

��

[Hr,Hf†]+A

))TTTTTTTTTTTTTTTT

H(X + Y ) +A
H[r,f†]+A

// HA+A

[α,A]

OO

(2.8)
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commutes. This is clear for the right-hand components (with domain Y ):

[α,A] · ([Hr,Hf †] +A) · inr · f = [α,A] · (Hf † +A) · f = f †

because f † solves f . For the left-hand components (with domain X) use the commutativity of the

square defining r = (f † • e)†:

X
r //

e

��

A

HX + Y

HX+f†

��

HX +A
Hr+A

// HA+A

[α,A]

OO

(2.9)

We now only need to show that the passages from HX+Y to A in the above squares (2.8) and (2.9)
are equal. The left-hand components are, in both cases, α ·Hr : HX −→ A. For the right-hand
components use f † = [α,A] · (Hf † +A) · f .

Remark 2.21. The same holds for every iterative algebra, except that here we restrict X and Y
in Definition 2.18 to finitely presentable objects.

Remark 2.22. As mentioned in the Introduction, our two axioms, functoriality and composition-
ality, are not new as ideas of axiomatizing recursion—we believe however, that their concrete form
is new, and their motivation strengthened by the results below.

Functoriality corresponds precisely to the “functorial dagger implication” of S. Bloom and
Z. Ésik [BÉ], 5.3.3, which states that for every object p of an iterative theory the formation f 7−→ f †

of solutions for ideal morphisms f : m −→ m+ p is a functor. And the compositionality resembles
the “left pairing identity” of [BÉ], 5.3.1, which for f : n −→ n+m+ p and g : m −→ n+m+ p
states that

[f, g]
†

= [f † · [h†, idp], h†] ,
where

h ≡ m
g

// n+m+ p
[f†,idm+p]

// m+ p .

This identity corresponds also to the Bekić-Scott identity, see e. g. [Mo], 2.1.

3 Elgot Algebras

Definition 3.1. Let H be an endofunctor of a category with finite coproducts. An Elgot algebra
is an H-algebra α : HA −→ A together with a function (−)

†
which to every finitary flat equation

morphism
e : X −→ HX +A (X finitely presentable)

assigns a solution e† : X −→ A in such a way that the functoriality (2.5) and the compositional-
ity (2.6) are satisfied.

By a complete Elgot algebra we analogously understand an H-algebra together with a function
(−)
†

assigning to every flat equation e a solution e† so that functoriality and compositionality are
satisfied.

Example 3.2. Every join semilattice A is an Elgot algebra. More precisely: consider the polynomial
endofunctor HX = X×X of Set (expressing one binary operation). Then for every join semilattice
A there is a “canonical” structure of an Elgot algebra on A obtained as follows: the algebra RA
of all rational binary trees on A has an interpretation on A given by the function α : RA −→ A
forming, for every rational binary tree t the join of all the (finitely many!) labels of leaves of t in
A. Now given a finitary flat equation morphism e : X −→ X ×X + A, it has a unique solution
e† : X −→ RA in the free iterative algebra RA, and composed with α this yields a structure
e 7−→ α · e† of an Elgot algebra on A. See Example 4.9 for a proof.



10 Adámek, Milius, Velebil

Remark 3.3. In contrast, no nontrivial join semilattice is iterative. In fact, in an iterative join
semilattice there must be a unique solution of the formal equation x ≈ x ∨ x.

Example 3.4. Continuous algebras on cpos are complete Elgot algebras. Let us work here in the
category

CPO

of all ω-complete posets, i.e., posets having joins of increasing ω-chains; morphisms are the con-
tinuous functions, i.e., functions preserving joins of ω-chains. A functor H : CPO −→ CPO is
called locally continuous provided that for arbitrary CPOs, X and Y , the derived function from
CPO(X,Y ) to CPO(HX,HY ) is continuous (i.e., H(

⊔
fn) =

⊔
Hfn holds for all increasing ω-

sequences fn : X −→ Y ). For example, every polynomial endofunctor X 7−→ ∐
nΣn×Xn of CPO

(where Σn are cpos) is locally continuous.
Observe that the category CPO has coproducts: they are the disjoint unions with elements of

different summands incompatible.

Proposition 3.5. Let H : CPO −→ CPO be a locally continuous functor and let α : HA −→ A be
an H-algebra with a least element ⊥ ∈ A. Then (A,α, (−)†) is a complete Elgot algebra w.r.t. the
assignment of the least solution e† to every flat equation morphism e.

Remark. Notice that the least solution of e : X −→ HX + A refers to the elementwise order of
the hom-set CPO(X,A). We can actually prove a concrete formula for e† as a join of the ω-chain

e† =
⊔

n∈ω
e†n

of “approximations”: e†0 is the constant function to ⊥, the least element of A, and given e†n, then

e†n+1 is defined by the commutativity of (2.2).

Proof. (1) Since e†0 is the least element of CPO(X,A), we have e†0 v e†1. Since H , being locally
continuous, is locally order-preserving, it follows by easy induction that the chain (e†n) is increasing
in CPO(X,A). Consequently, the join e† =

⊔
e†n exists. The commutative diagrams (2.2) yield the

diagram (2.1) showing that e† is in fact a solution of e.

(2) e† is the smallest solution. In fact, given a solution

X
e∗ //

e

��

A

HX +A
He∗+A

// HA+A

[α,A]

OO

we prove e†n v e∗ by induction on n, then e† v e∗. The case n = 0 is clear. Given e†n v e∗, then
He†n v He∗ (due to the local continuity of H) which implies

e†n+1 = [α,A] · (He†n +A) · e v [α,A] · (He∗ +A) · e = e∗ .

(3) The assignment e 7−→ e† is functorial. In fact, let

X
e //

h

��

HX +A

Hh+A

��

Y
f

// HY +A

be a coalgebra homomorphism. It is easy to see by induction that

e†n = f †n · h (for all n ≥ 0) ,
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thus, e† = f † · h.

(4) We prove the compositionality. Let

e : X −→ HX + Y and f : Y −→ HY +A

be given. We shall show that the equality

(f e)† · inl = (f † • e)†

holds. It suffices to prove, by induction on n, that the following two inequalities

(f e)†n · inl v (f † • e)† (3.1)

(f † • e)†n v (f e)
† · inl (3.2)

hold. Observe first that inr : (Y, f) −→ (X + Y, f e) is a coalgebra homomorphism. Thus, the

equation (f e)
† · inr = f † holds by functoriality. For the induction step for (3.1) consider the

following diagram

X
(f†•e)†

//

e

��

inl

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A

X +A

f e

��

(f e)†n+1

44jjjjjjjjjjjjjjjjjjj

v

HX + Y

HX+f†

��

HX+f

((PPPPPPPPPPPP
= =

HX +HY +A
can+A

//

[H(f†•e)†,Hf†]+A

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT H(X + Y ) +A

H(f e)†n+A

%%KKKKKKKKKKKKKKKKKKKKK
w

HX +A
H(f†•e)†+A

// HA+A

[α,A]

OO

In order to prove the desired inequality in the upper triangle, we use the fact that the outward
square commutes by definition of (−)

†
. The three middle parts clearly behave as indicated (for

the triangle use the induction hypothesis (3.1) and (f e)
†
n · inr v (f e)

† · inr = f †), And the
lowest part commutes when extended by [α,A]: In fact, for the left-hand component with domain
HX this is trivial; for the right-hand component with domain Y use f † = [α,A] · (Hf † + A) · f ,
see (2.1).
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For the induction step for (3.2) consider the following diagram

X
(f†•e)†n+1

//

e

��

inl

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX A

X +A

f e

��

(f e)†
44jjjjjjjjjjjjjjjjjjj

w

HX + Y

HX+f†

��

HX+f

((PPPPPPPPPPPP
= =

HX +HY +A
can+A

//

[H(f†•e)†n,Hf†]+A

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT H(X + Y ) +A

H(f e)†+A

%%KKKKKKKKKKKKKKKKKKKKK
v

HX +A
H(f†•e)†n+A

// HA+A

[α,A]

OO

The outer square commutes by definition of (f † • e)†n+1. The three middle parts behave as
indicated (for the inequality use the induction hypothesis), and the lowest part commutes when
extended by [α,A] as before. Thus, we obtain the desired inequality in the upper triangle.

Remark 3.6. Many set functors H have a lifting to locally continuous endofunctors H ′ of CPO.
That is, for the forgetful functor U : CPO −→ Set the following square

CPO
H′ //

U

��

CPO

U

��

Set
H

// Set

commutes. For example, every polynomial functor HΣ has such a lifting. Let us call an H-algebra
α : HA −→ A, CPO-enrichable if there exists a CPO-ordering v with a least element on the set
A such that α is a continuous function from H ′(A,v) to (A,v).

Corollary 3.7. Every CPO-enrichable H-algebra A in Set is a complete Elgot algebra.

In fact, to every equation morphism e : X −→ HX +A assign the least solution of e : (X,≤) −→
H ′(X,≤) + (A,v) where ≤ is the discrete ordering of X (x ≤ y iff x = y).

Example 3.8. Unary algebras. Let H = Id as an endofunctor of Set. Given an H-algebra α : A −→
A , if α has no fixed point, then A carries no structure of an Elgot algebra: consider the equation
x ≈ α(x).

Conversely, every fixed point a0 of α yields a flat cpo structure with a least element a0 on A,
i. e., x ≤ y iff x = y or x = a0. Thus, A is a complete Elgot algebra since it is CPO-enrichable.
Notice that for every flat equation morphism e : X −→ X + A the least solutions e† operates as
follows: for a variable x we have

e†(x) =




αk(a) if there is a sequence x = x0, x1, . . . xk in X that

fulfils e(x0) = x1, . . . e(xk−1) = xk and e(xk) = a
a0 else .
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Remark 3.9. For unary algebras, Example 3.8 describes all existing Elgot algebras. In fact, let
(A,α, (−)

†
) be an Elgot algebra and let a0 be the chosen solution of x ≈ α(x) (i. e., of inl : 1 −→

1 + A). Then for every flat equation morphism e : X −→ X + A the chosen solution sends a
variable x ∈ X to one of the above values αk(a) or a0. To prove this denote by Y ⊆ X the set
of all variables for which the “else” case holds above (i. e., no sequence x = x0, . . . xk in X fulfils
e(xi) = xi+1, for i = 0, . . . , k − 1, and e(xk) ∈ A). Apply functoriality to the morphism h from e
to 1 + e : 1 + X −→ 1 + X + A defined by h(y) ∈ 1 for y ∈ Y and h(x) = x ∈ X else. In fact,
the chosen solution of the unique element of 1 in 1 +X must be a0 by functoriality (consider the
left-hand coproduct injection from the flat equation morphism inl : 1 −→ 1 +A to 1 + e).

Example 3.10. Every complete lattice A is a complete Elgot algebra of HX = X×X . Analogously
to Example 3.2 we have a function α : TA −→ A assigning to every binary tree t in TA the join of
all labels of leaves of t in A. Now for every flat equation morphism e in A we have its unique solution
e† in TA and this yields a structure e 7−→ α · e† of a complete Elgot algebra. See Example 5.8 for
a proof.

4 The Eilenberg-Moore Category of the Monad R

We prove now that the category of all Elgot algebras and solution-preserving morphisms, defined
as expected, is the category AR of Eilenberg-Moore algebras of the rational monad R of H , see
Remark 2.7.

Throughout this section H denotes a finitary endofunctor of a locally finitely presentable
category A. We denote by Afp a small full subcategory representing all finitely presentable objects
of A. Recall the operations • and from Remark 2.13.

Definition 4.1. Let (A,α, (−)
†
), and (B, β, (−)

‡
) be Elgot algebras. We say that a morphism

h : A −→ B in A preserves solutions provided that for every finitary flat equation morphism
e : X −→ HX +A we have the following equation

X
e† //A

h //B ≡ X
(h•e)†

//B . (4.1)

Lemma 4.2. Every solution-preserving morphism between Elgot algebras is a homomorphism of
H-algebras, i.e., we have h · α = β ·Hh.

Proof. Let Afp/A be the comma-category of all arrows q : X −→ A with X in Afp . Since A is
locally finitely presentable, A is a filtered colimit of the canonical diagram DA : Afp/A −→ A

given by (q : X −→ A) 7−→ X .
Now Afp is a generator of A, thus, in order to prove the lemma it is sufficient to prove that for

every morphism p : Z −→ HA with Z in Afp we have

h · α · p = β ·Hh · p. (4.2)

Since H is finitary, it preserves the above colimit DA. This implies, since A(Z,−) preserves
filtered colimits, that p has a factorization

Z
p

//

s
''OOOOOOOOOOOOO HA

HX

Hq

OO

for some q : X −→ A in Afp/A and some s. For the following equation morphism

e ≡ Z +X
s+X

// HX +X
Hinr+q

// H(Z +X) +A
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we have a commutative square

Z +X
e† //

s+X

��

GF
@Ae

//

A

HX +X

Hinr+q

��

H(Z +X) +A
He†+A

// HA+A

[α,A]

OO

Consequently, e† · inr = q, and this implies e† · inl = α · H(e† · inr) · s = α · p. Since h preserves

solutions, we have h · e† = (h • e)‡ and therefore

(h • e)‡ = [h · α · p, h · q]. (4.3)

On the other hand, consider the following diagram

Z +X
(h•e)‡

//

s+X

��

p+hq

++VVVVVVVVVVVVVVVVVVVVVVGF

@A
h•e

//

B

HX +X

Hinr+q

��

Hq+hq
// HA+B

Hh+B

��
::::::::::::::::::

H(Z +X) +A

H(Z+X)+h

��

H[αp,q]+h

33hhhhhhhhhhhhhhhhhhh

H(Z +X) +B
H(h•e)‡+B

//

H[αp,q]+B

88qqqqqqqqqqqqqqqqqqqqqqqqqqq
HB +B

[β,B]

OO

It commutes: the outer shape commutes since (h • e)‡ is a solution. For the lower triangle use
equation (4.3), and the remaining triangles are trivial. Thus, the upper right-hand part commutes:

(h • e)‡ = [β ·Hh · p, h · q]. (4.4)

Now the left-hand components of (4.3) and (4.4) establish the desired equality (4.2).

Example 4.3. The converse of Lemma 4.2 is true for iterative algebras, as proved in [AMV2], but
for Elgot algebras in general it is false. In fact, consider the unary algebra id : A −→ A, where
A = { 0, 1 }. This is an Elgot algebra with the solution structure (−)

†
given by the fixed point

0 ∈ A, see Example 3.8.
Then const1 : A −→ A is a homomorphism of unary algebras that does not preserve solutions.

Indeed, consider the following equation morphism

e : {x} −→ {x}+A, x 7−→ x.

We have e†(x) = 0, and thus 1 = const1 · e†(x) 6= (const1 • e)†(x) = e†(x) = 0.

Notation 4.4. We denote by
Alg†H

the category of all Elgot algebras and solution-preserving morphisms.

Remark 4.5. For the two operations • and from Remark 2.13 we list some obvious properties
that these operations have for all e : X −→ HX + Y , f : Y −→ HY + Z, s : Z −→ Z ′ and
t : Z ′ −→ Z ′′:
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1. idY • e = e. This is trivial.
2. t • (s • e) = (t · s) • e.

See the following diagram

X
e // HX + Y

HX+s
//

HX+t·s
))SSSSSSSSSSSSSS HX + Y ′

HX+t

��

HX + Y ′′

3. s • (f e) = (s • f) e.
See the following diagram

X + Y
[e,inr]

// HX + Y
HX+f

//

HX+s•f
��

HX +HY + Z
can+Z

// H(X + Y ) + Z

H(X+Y )+s

��

HX +HY + Z ′
can+Z′

// H(X + Y ) + Z ′

Proposition 4.6. A free iterative algebra on Y is a free Elgot algebra on Y .

Proof. (1) We first recall the construction of the free iterative algebra RY on Y presented
in [AMV2]. For the functor H(−) + Y denote by EQY the full subcategory of Coalg (H(−) + Y )
given by all coalgebras with a finitely presentable carrier, i.e., finitary flat equation morphisms
e : X −→ HX+Y . The inclusion functor EqY : EQY −→ Coalg (H(−) +Y ) is an essentially small
filtered diagram. Put

RY = colim EqY .

More precisely, form a colimit of the above diagram EqY . This is a coalgebra RY with the following
coalgebra structure

i : RY −→ HRY + Y

and with colimit injections

e] : (X, e) −→ (RY, i) for all e : X −→ HX + Y in EQY .

Notice that this colimit is preserved by the forgetful functor Coalg (H(−) + Y ) −→ A since H is
finitary.

The coalgebra structure i : RY −→ HRY +Y is an isomorphism; its inverse gives an H-algebra
structure

ρY : HRY −→ RY

and a morphism
ηY : Y −→ RY.

And we proved that the algebra (RY, ρY ) is a free iterative H-algebra on Y with the universal
arrow ηY .

Recall further from [AMV2] that the unique solution

e‡ : X −→ RY

for every finitary flat equation morphism e : X −→ HX +RY is obtained as follows. There exists
a factorization

X
e //

e0
((QQQQQQQQQQQQQQQ HX +RY

HX + Z

HX+g]

OO

(4.5)
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with g : Z −→ HZ + Y in EQY . Define

e‡ ≡ X inl // X + Z
(g e0)]

// RY

This defines (−)
‡

from (−)]. Conversely, it is trivial to see that the equality

e] = (ηY • e)‡ (4.6)

holds for every e : X −→ HX + Y in EQY . Finally, the universal arrow ηY has for any finitely
presentable object Y the form ηY = inr] (for inr : Y −→ HY + Y ).

(2) We are prepared to prove the Proposition. Suppose that (A,α, (−)
†
) is an Elgot algebra and

let m : Y −→ A be a morphism. We are to prove that there exists a unique solution-preserving
h : RY −→ A with h · ηY = m.

In order to show the existence, we define a morphism h : RY −→ A by commutativity of the
following triangles

RY
h // A

X

e]

OO

(m•e)†

77ooooooooooooo

for all e : X −→ HX+Y in EQY . In fact, h is well-defined, since for any coalgebra homomorphism

k : (X, e) −→ (Z, g)

in EQY we have a coalgebra homomorphism

k : (X,m • e) −→ (Z,m • g).

Thus,
(m • e)† · k = (m • g)

†

by functoriality, which shows that we obtain a cocone for the diagram EqY . For e = inr : Y −→
HY + Y , Y finitely presentable, we have e] = ηY , thus,

h · ηY = (m • inr)
†

(Since ηY = inr])

= [α,A] · (H(m • inr)
†

+A) · (m • inr) (By (2.1))

= [α,A] · (H(m • inr)
†

+A) · (HY +m) · inr (Definition of •)
= m.

For arbitrary objects Y the equation h · ηY = m follows easily.
Let us show that h preserves solutions. We have

h · e‡ = h · (g e0)] · inl (Definition of e‡)
= (m • (g e0))

† · inl (Definition of h)

= ((m • g) e0)
† · inl (By 4.5(3))

= ((m • g)
† • e0)

†
(compositionality)

= ((h · g]) • e0)
†

(Definition of h)

= (h • (g] • e0))
†

(By 4.5(2))

= (h • e)† (By (4.5) and the definition of •)
Concerning the uniqueness, suppose that h with h · ηY = m preserves solutions, then we have

h · e] = h · (ηY • e)‡ (By (4.6))

= (h • (ηY • h))† (h preserves solutions)

= ((h · ηY ) • e)† (By 4.5(2))

= (m • e)†

which determines h uniquely.
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Theorem 4.7. The category Alg†H of Elgot algebras is isomorphic to the Eilenberg-Moore cate-
gory AR of R-algebras for the rational monad R of H.

Remark 4.8. The shortest proof we know is based on Beck’s Theorem. But it is not very intuitive.
A slightly more technical (and much more illuminating) proof has the following sketch: Denote for

any object Y by (RY, ρY , (−)
‡
) a free Elgot algebra on Y with a universal arrow ηY : Y −→ RY .

1. For every R-algebra α0 : RA −→ A we have an “underlying” H-algebra

α ≡ HA
HηA // HRA

ρA // RA
α0 // A,

and the following formula for solving equations: given a finitary flat equation morphism e :
X −→ HX +A put

e† ≡ X
(ηA•e)‡

// RA
α0 // A .

It is not difficult to see that this formula indeed yields a choice of solutions satisfying functo-
riality and compositionality.

2. Conversely, given an Elgot algebra α : HA −→ A, define α0 : RA −→ A as the unique
solution-preserving morphism such that α0 · ηA = id . It is easy to see that α0 satisfies the two
axioms of an Eilenberg-Moore algebra.

3. It is necessary to prove that the above passages extend to the level of morphisms and they
form functors which are inverse to each other.

Proof (Theorem 4.7). By Proposition 4.6 the natural forgetful functor U : Alg†H −→ A has a
left adjoint Y 7−→ RY . Thus, the monad obtained by this adjunction is R. We prove that the
comparison functor K : Alg†H −→ AR is an isomorphism, using Beck’s theorem (see [ML], Theo-

rem 1 in VI.7). Thus, we must prove that U creates coequalizers of U -split pairs. Let (A,α, (−)†)
and (B, β, (−)‡) be Elgot algebras, and f, g : A −→ B be solution-preserving morphisms with a
splitting

A
f

//

g
// B

c //

t

ff
C

s

ff

in A (where cs = id , ft = id and gt = sc). Since c is, then, an absolute coequalizer of f and g,
c is a coequalizer in AlgH for a unique H-algebra structure γ : HC −→ C. In fact, the forgetful
functor AlgH −→ A creates every colimit that H preserves.

It remains to show that C has a unique structure of an Elgot algebra such that

(1) c preserves solutions, and
(2) c is a coequalizer in Alg†H .

We establish (1) and (2) in several steps.

(a) An Elgot algebra on (C, γ). For every finitary flat equation morphism e : X −→ HX + C we
prove that the following morphism

e∗ ≡ X
(s•e)‡

// B
c // C

is a solution of e. In fact, the following diagram

X
(s•e)‡

//

s•e

((PPPPPPPPPPPPP

e

��

B
c // C

HX +B
H(s•e)‡+B

// HB +B

[β,B]

OO

Hc+c

''PPPPPPPPPPPP

HX + C
H(c·(s•e)‡)+C

//

HX+s
77nnnnnnnnnnnn

HC + C

[γ,C]

OO
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clearly commutes.
Functoriality: any coalgebra homomorphism

X
e //

h

��

HX + C

Hh+C

��

Z z
// HZ + C

is, of course, a coalgebra homomorphism

h : (X, s • e) −→ (Z, s • z) .

Thus,
e∗ = c · (s • e)‡ = c · (s • z)

‡ · h = z∗ · h

by the functoriality of (−)
‡
.

Let us prove compositionality: suppose we have finitary flat equation morphisms

e : X −→ HX + Y and k : Y −→ HY + C

Then we obtain the desired equation as follows:

(k∗ • e)∗ = c · (s • (k∗ • e))‡ (Definition of (−)∗)

= c · (s • (c · (s • k)‡ • e))‡ (Definition of (−)∗)

= c · ((s · c) • ((s • k)‡ • e))‡ (see 4.5(2))

= c · ((g · t) • ((s • k)
‡ • e))‡ (g · t = s · c)

= c · (g • (t • ((s • k)
‡ • e)))‡ (see 4.5(2))

= c · g · (t • ((s • k)
‡ • e))† (g preserves solutions)

= c · f · (t • ((s • k)
‡ • e))† (c · f = c · g)

= c · ((f · t) • ((s • k)‡ • e))‡ (f preserves solutions and 4.5(2))

= c · ((s • k)
‡ • e)‡ (f · t = id and 4.5(1))

= c · ((s • k) e)
‡ · inl (compositionality for (−)

‡
)

= c · (s • (k e))
‡ · inl (Since (s • k) e = s • (k e) by 4.5(3))

= (k e)∗ · inl (Definition of (−)∗)

(b) The morphism c : B −→ C is solution-preserving. In fact, for any finitary flat equation
morphism

e : X −→ HX +B

we have the desired equation:

(c • e)∗ = c · (s • (c • e))‡ (Definition of (−)∗)
= c · ((s · c) • e)‡ (See 4.5(2))

= c · ((g · t) • e)‡ (g · t = s · c)
= c · (g • (t • e))‡ (See 4.5(2))

= c · g · (t • e)† (g preserves solutions)

= c · f · (t • e)† (c · f = c · g)

= c · (f • (t • e))‡ (f preserves solutions)

= c · ((f · t) • e)‡ (See 4.5(2))

= c · (id • e)‡ (f · t = id)
= c · e‡ (See 4.5(1))



Elgot Algebras 19

(c) (−)∗ is a unique structure of an Elgot algebra such that c is solution-preserving: in fact, for
any such solution structure (−)∗ and for any finitary flat equation morphism e : X −→ HX + B
we have

c · e‡ = (c • e)∗ .
In particular, this is true for any equation morphism of the form

(s • e′) ≡ X e′ // HX + C
HX+s

// HX +B

Thus, we conclude
e∗ = ((c · s) • e)∗ (c · s = id and 4.5(3))

= (c • (s • e))∗ (See 4.5(2))

= c · (s • e)‡ (c preserves solutions)

(d) c is a coequalizer of f and g in Alg†H . In fact, let h : (B, β, (−)‡) −→ (D, δ, (−)+) be a
solution-preserving morphism with h · f = h · g. There is a unique homomorphism h : C −→ D
of H-algebras with h · c = h (because c is a coequalizer of f and g in AlgH). We prove that h is
solution-preserving. Let e : X −→ HX + C, be a finitary flat equation morphism. Then we have

h · e∗ = h · c · (s • e)‡ (Definition of (−)∗)
= h · (s • e)‡ (h = h · c)
= (h • (s • e))+ (h preserves solutions)
= ((h · s) • e)+ (See 4.5(2))

= ((h · c · s) • e)+ (h = h · c)
= (h • e)+ (c · s = id)

as desired. This completes the proof.

Example 4.9. Let A be a join semilattice. Recall from Example 3.2 the function α : RA −→ A
assigning to a rational binary tree t in RA the join of the labels of all leaves of t in A. Since joins
commute with joins it follows that this is the structure of an Eilenberg-Moore algebra on A. Thus,
A is an Elgot algebra as described in Example 3.2.

5 Complete Elgot Algebras

Recall our standing assumptions that H is an endofunctor of a category A with finite coproducts.
Stefan Milius has established in [M] that for every object-mapping T of A the following three
statements are equivalent:

(a) for every object Y , TY is a final coalgebra of H(−) + Y
(b) for every object Y , TY is a free completely iterative H-algebra on Y , and
(c) T is the functor part of a free completely iterative monad T on H .

See also [AAMV] where the monad T is described and the implication that (a) implies (c) is
proved.

We are going to add another equivalent item to the above list, bringing complete Elgot algebras
into the picture. The statements (a) to (c) are equivalent to

(d) for every object Y , TY is a free complete Elgot algebra on Y .

Furthermore, recall from [AAMV] that H is iteratable if there exist objects TY such that one of the
above equivalent statements holds. We will describe for every iteratable endofunctor the category
AT of Eilenberg–Moore algebras—it is isomorphic to the category of complete Elgot algebras of
H .
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Example 5.1. For a polynomial endofunctor HΣ of Set the above monad is the monad TΣ of all
(finite and infinite) Σ-trees.

In the following result the concept of solution-preserving morphism is defined for complete Elgot
algebras analogously to Definition 4.1: the equation (4.1) holds for all flat equation morphisms e.
We denote by

Alg†cH

the category of all complete Elgot algebras and solution-preserving morphisms.

Lemma 5.2. Every solution-preserving morphism between complete Elgot algebras is a homomor-
phism of H-algebras.

Proof. Let (A,α, (−)
†
) and (B, β, (−)

‡
) be complete Elgot algebras. Suppose that h : A −→ B is

a solution-preserving morphism, and consider the equation morphism

e ≡ HA+A
Hinr+A

//H(HA+A) +A

Its solution fulfils e† = [α,A] : HA+A −→ A. In fact, the following diagram

HA+A
e† //

Hinr+A

��

A

H(HA+A) +A
He†+A

// HA+A

[α,A]

OO

commutes. Thus, e† · inr = id , and then it follows that e† · inl = α. Since h preserves solutions we
know that h · α is the left-hand component of the solution of the following equation morphism

h • e ≡ HA+A
Hinr+A

//H(HA+A) +A
H(HA+A)+h

//H(HA+A) +B ,

i. e., (h • e)‡ · inl = h · α. Now consider the diagram

HA+A
Hinr+A

//

Hh+h

��

H(inr·h)+h

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX H(HA+A) +A
H(HA+A)+h

// H(HA+A) +B

H(Hh+h)+B

��

ED��GF h•e

HB +B
Hinr+B

// H(HB +B) +B

which trivially commutes. Hence, Hh + h is a morphism of equations from h • e to H inr + B.
By a similar argument as for e† above we obtain [β,B] = (H inr +B)‡. Thus, by functoriality we
conclude that

h · α = (h • e)‡ · inl = [β,B] · (Hh+ h) · inl = β ·Hh ,
i. e., h is an H-algebra homomorphism.

Theorem 5.3. Let Y be an object of A. Then the following are equivalent:

(1) TY is a final coalgebra of H(−) + Y , and
(2) TY is a free complete Elgot algebra on Y .

Before proving this theorem, we need a technical lemma:

Construction 5.4. Let (A,α, (−)
†
) be a complete Elgot algebra. For every morphism m : Y −→ A

we construct a new complete Elgot algebra on HA+ Y as follows:
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1. The algebra structure is

H(HA+ Y )
H[α,m]

//HA
inl //HA+ Y .

2. The choice (−)‡ of solutions is as follows: for every flat equation morphism e : X −→ HX +
HA+ Y consider the flat equation morphism

e ≡ X
e //HX +HA+ Y

HX+[α,m]
//HX +A ,

and put

e‡ ≡ X
e //HX +HA+ Y

[He†,HA]+Y
//HA+ Y .

Notice that e = [α,m] • e.
Lemma 5.5. The above construction defines a complete Elgot algebra such that [α,m] : HA +
Y −→ A is a solution-preserving morphism into the original algebra.

Proof. (1) The morphism [α,m] is solution-preserving: In fact, for any flat equation morphism
e : X −→ HX +HA+ Y we have the following commutative diagram

X
e //

e
&&MMMMMMMMMMMM

GF EDe‡

��

@A
e†=([α,m]•e)†

//

HX +HA+ Y
[He†,HA]+Y

//

HX+[α,m]

��

HA+ Y

[α,m]

��

HX +A
He†+A

// HA+A

[α,A]
&&MMMMMMMMMMM

A

The lower left-hand part commutes since e† solves e; the upper part is the definition of (−)
‡
, the

left-hand triangle is the definition of e, and all components of the inner right-hand part are clear.

(2) The morphism e‡ is a solution of e. In fact, the following diagram

X
e //

e

��

GF EDe‡

��
HX+HA+Y

[He†,HA]+Y
//

He+HA+Y

��

HA+Y

HX+HA+Y
He+HA+Y

//@A BC
He‡+HA+Y

OO
H(HX+HA+Y )+HA+Y

H([He†,HA]+Y )+HA+Y

// H(HA+Y )+HA+Y

[inl·H[α,m],HA+Y ]

OO

commutes: the upper and lower part as well as the left-hand square are obvious, and so are the
middle and right-hand components of the right-hand square. To see that the left-hand component
commutes, we remove H and observe that the following diagram commutes:

X
e† //

e

��

e

((QQQQQQQQQQQQQQ A

HX +A
He†+A

// HA+A

[α,A]
88qqqqqqqqqqq

HX +HA+ Y

HX+[α,m]

66nnnnnnnnnnnn

[He†,HA]+Y

// HA+ Y

[α,m]

OO
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(3) Functoriality: Suppose we have a morphism h : e −→ f of equations. Then h : e −→ f is also
one, und we obtain the following diagram

X
e //

h

��

GF EDe‡

��

HX +HA+ Y

Hh+HA+Y

��

[He†,HA]+Y

))TTTTTTTTTTTTTTT

HA+ Y

Z
f

//@A BC
f‡

OO

HZ +HA+ Y
[Hf

†
,HA]+Y

55jjjjjjjjjjjjjjj

It commutes: in the triangle the components with domains HA and Y are clear, for the left-hand
component remove H and use the functoriality of (−)

†
, and all other parts are obvious.

(4) Compositionality: Suppose we have two equation morphisms

f : X −→ HX + Y and g : Z −→ HZ +HA+ Y .

Observe that (g‡ • f)
‡

is the following morphism

X
f

// HX+Z
HX+g

// HX+HZ+HA+Y
HX+[Hg†,HA]+Y

//

�
H � g‡•f† �

,Hg†,HA � +Y
++WWWWWWWWWWWWWWWWWWWWW HX+HA�

H � g‡•f† �
,HA � +Y

��

ED��GF g‡•f

HA

(5.1)

and (g f)
‡ · inl is the following morphism

X
f

// HX+Z
HX+g

// HX+HZ+HA+Y
can+HA+Y

//

�
H � (g†•f)

† �
,Hg†,HA � +Y ++WWWWWWWWWWWWWWWWWWWWWWW H(X+Z)+HA+Y

[H(g f†),HA]+Y
��

ED��GF g f

HA+Y

(5.2)

In fact, to see that the last triangle commutes consider the components separately. The right-hand
one with domain HA+ Y is trivial, and for the left-hand one with domain HX +HZ it suffices
to observe the following equations:

g f
†

= ([α,m] • (g f))† (Definition of g f)

= (([α,m] • g) f)† (By 4.5(3))

=
[
(([α,m] • g)

† • f)
†
, ([α,m], •g)

†
]

(See (2.7))

=
[
(g† • f)

†
, g†
]

(Definition of g)

To show the desired identity of the morphisms in (5.1) and (5.2) it suffices to prove that the
slanting arrows in those diagrams are equal. The last three components are clear, and for the first
one the following equations are sufficient:

g† • f = ([α,m] • g)
† • f (Definition of g)

= ([α,m] · g‡) • f (See part (1) of the proof)
= [α,m] • (g‡ • f) (By 4.5(2))

= g‡ • f (Definition of g‡ • f)

This completes the proof.
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Proof (Theorem 5.3). Statement (1) is equivalent to

(1’) TY is a free CIA on Y ,

see Theorems 2.8 and 2.10 of [M]. We prove now that (2) is equivalent to (1). We first observe that

for a free Elgot algebra on Y , (TY, τY , (−)
†
), with a universal arrow ηY : Y −→ TY , the morphism

[τY , ηY ] : HTY + Y −→ TY is an isomorphism. In fact, by Lemma 5.5, HTY + Y carries the
structure of a complete Elgot algebra and j = [τY , ηY ] is solution-preserving and fulfils j · inr = ηY .
Invoke the freeness of TY to obtain a unique solution-preserving morphism i : TY −→ HTY + Y
such that i · ηY = inr. It follows that j · i = id . By Lemma 5.2, i is an H-algebra homomorphism.
Thus the following square

HTY + Y
j

//

Hi+Y

��

TY

i

��

H(HTY + Y ) + Y
Hj+Y

// HTY + Y

commutes, whence i · j = id .

Proof of (2) ⇒ (1). Let (TY, τY , (−)
†
) be a free complete Elgot algebra on Y with a universal

arrow ηY : Y −→ TY . Then [τY , ηY ] : HTY + Y −→ TY is an isomorphism with an inverse i. We
prove that (TY, i) is a final coalgebra of H(−) + Y . So let c : X −→ HX + Y be any coalgebra,
and form the flat equation morphism

e ≡ X
c //HX + Y

HX+ηY //HX + TY . (5.3)

Then e† is a coalgebra homomorphism from (X, c) to (TY, i); in fact, it suffices to establish that
the diagram

X
c //

e

''OOOOOOOOOOOOO

e†

��

HX + Y

He†+Y

��

HX+ηY

vvlllllllllllll

HX + TY

He†+TY
��

HTY + TY
[τY ,TY ]

wwoooooooooooo

TY HTY + Y
[τY ,ηY ]=i−1

oo

HTY+ηY
hhRRRRRRRRRRRRR

commutes. The upper part is (5.3), the left-hand part commutes since e† is a solution of e, the
right-hand one commutes by the naturality of η, and the lower part is obvious.

Now suppose that s is a coalgebra homomorphism from (X, c) to (TY, i). We prove that s = e†.
Observe first that s is a morphism of equations from e to the following flat equation morphism

f ≡ TY
i //HTY + Y

HTY+ηY //HTY + TY , (5.4)

In fact, the following diagram

X
c //

s

��

HX + Y
HX+ηY //

Hs+Y

��

HX + TY

Hs+TY

��

ED ��GF e

TY
i

// HTY + Y
HTY+ηY

// HTY + TYBC OO@A
f
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commutes: the left-hand square does since s is a coalgebra homomorphism, the right-hand one by
the naturality of η and the upper and lower parts are due to (5.3) and (5.4). By functoriality of

(−)† we obtain f † · s = e†. We shall show below that f † : TY −→ TY is a solution-preserving
map with f † · ηY = ηY . By the freeness of TY , we then conclude that f † = id , whence e† = s as
desired.

To see that f † · ηY = ηY consider the following diagram

TY

f†

��

i //
GF EDf

��

HTY + Y
[τY ,ηY ]

oo
HTY+ηY // HTY + TY

Hf†+TY

��

TY HTY + TY
[τY ,TY ]

oo

which commutes since f † is a solution of f . Follow the right-hand component of the coproduct
HTY + Y to see the desired equation.

Now to complete our proof we must show that the following triangle

X
e†

}}{{{{{{{{
(f†•e)†

!!CCCCCCCC

TY
f†

// TY

(5.5)

commutes for any equation morphism e : X −→ HX + TY . Notice first that

f † • e† = (f e)† · inl : X −→ TY (5.6)

by compositionality. Furthermore, we have an equation morphism [e†, TY ] : f e −→ f since the
following diagram

X+TY

[e†,TY ]

��

[e,inr]
// HX+TY

He†+TY

��

HX+i
// HX+HTY +Y

can+ηY //

[He†,HTY ]+Y

��

H(X+TY )+TY

H[e†,TY ]+TY

��

ED��GF f e

HTY+TY

[τY ,TY ]

wwoooooooooooo
[inr,i]

((RRRRRRRRRRRRR

TY
i

// HTY +Y
HTY+ηY

// HTY+TYBCOO@A
f

(5.7)

commutes. By functoriality we obtain the following equality

f † · [e†, TY ] = (f e)
†
,

whose left-hand component proves due to (5.6) the desired commutativity of (5.5).

(1’) ⇒ (2). We only need to show the universal property. Suppose that (TY, τY , (−)†) is a free
CIA on Y with a universal arrow ηY : Y −→ TY . Due to the equivalence of (1) and (2), [τY , ηY ]

has an inverse i, and (TY, i) is a final coalgebra of the functor H(−) + Y . Now let (A,α, (−)‡) be
a complete Elgot algebra and let m : Y −→ A be a morphism of A. Solve the following equation
morphism

g ≡ TY
i // HTY + Y

HTY+m
// HTY +A
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in A to obtain a morphism h = g‡ : TY −→ A. We first check that h · ηY = m. In fact, the
following diagram

TY

h

��

i //
GF EDg

��

HTY + Y
[τY ,ηY ]

oo
HTY +m

// HTY +A

Hh+A

��

A HA+A
[α,A]

oo

commutes since h is a solution of g. Consider the right-hand component of the coproduct HTY +Y
to obtain the desired equation.

Next let us show that h is a solution-preserving morphism. That is, we show that for any
equation morphism e : X −→ HX + TY the triangle

X
e†

}}{{{{{{{{
(h•e)‡

  
@@@@@@@

TY
h

// A

(5.8)

commutes. Since h = g‡,
(h • e)‡ = (g e)

‡ · inl : X −→ A (5.9)

due to compositionality of (−)
‡
. Moreover, [e†, TY ] is an equation morphism from g e to g. In

fact, consider the following commutative diagram

X+TY

[e†,TY ]

��

[e,inr]
// HX+TY

He†+TY

��

HX+i
// HX+HTY +Y

can+m
//

[He†,HTY ]+Y

��

H(X+TY )+A

H[e†,TY ]+A

��

ED ��GF g e

HTY+TY

[τY ,TY ]

wwoooooooooooo
[inr,i]

((RRRRRRRRRRRRR

TY
i

// HTY+Y
HTY+m

// HTY+ABC OO@A
g

which is analogous to Diagram (5.7). By the functoriality of (−)‡ we obtain the equation

g‡ · [e†, TY ] = (g e)
‡

whose left-hand component is due to (5.9) the desired (5.8). Thus, h is solution-preserving.
To show uniqueness suppose that h : TY −→ A is any solution-preserving morphism with

h · ηY = m. Observe that we have g = h • f , where f is the equation morphism of (5.4). Since h
preserves solutions we have

g‡ = (h • f)
‡

= h · f † .
To complete the proof it suffices to show that f † = id . This can be done with precisely the same
argument as in the first part of the proof of Theorem 5.3. One shows that f † : TY −→ TY is a
solution-preserving morphism such that f † ·ηY = ηY . From the universal property of the free CIA
TY it follows that f † = id , see also Proposition 2.3 in [M].

Corollary 5.6. For any endofunctor H : A −→ A the following are equivalent:

(1) H is iteratable, i. e., there exist final coalgebras of all functors H(−) + Y
(2) there exist free completely iterative H-algebras on every object Y
(3) there exist free complete Elgot algebras on every object Y .
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Proof. See [M], Corollary 2.11 for (1)⇔ (2). The equivalence (2)⇔ (3) follows from Theorem 5.3.

Theorem 5.7. If H is an iteratable functor, then the category Alg†cH of complete Elgot algebras
is isomorphic to the Eilenberg–Moore category AT of monadic T-algebras (for the free completely
iterative monad T of H).

Proof. By Corollary 5.6, the natural forgetful functor U : Alg†cH −→ A has a left adjoint Y 7−→
TY . Thus, the monad obtained by this adjunction is T. To prove that the comparison functor
K : Alg†cH −→ AT is an isomorphism use Beck’s Theorem. In fact, the argument that U creates
coequalizers of U -split pairs is entirely analogous to that of Theorem 4.7.

Example 5.8. Let A be a complete lattice. Recall from Example 3.10 the function α : TA −→ A
assigning to every binary tree t in TA the join of all labels of leaves of t in A. Since joins commute
with joins it follows that α : TA −→ A is the structure of an Eilenberg-Moore algebra on A. Thus,
A is a complete Elgot algebra as described in Example 3.10.

6 Summary and Future Work

The concept of Elgot algebra introduced in our paper formalizes algebras in which finitary flat
equation morphisms have solutions satisfying two simple axioms: one for change of parameters and
one for simultaneous recursion. And, analogously, complete Elgot algebras are algebras in which
flat equation morphisms (not necessarily finitary) have solutions subject to the same two axioms.
Such algebras can be used for interpreted semantics of recursive program schemes such as (1.1). In
view of the simplicity of the two axioms we consider this is a success. Moreover, the structure of
Elgot algebras is provided canonically by Elgot’s iterative theories: Elgot algebras are the monadic
algebras of the free iterative theory (as described by Calvin Elgot et al. for signatures in [EBT] and
by the authors in [AMV1,AMV2] for general endofunctors). And complete Elgot algebras are the
monadic algebras of the free completely iterative monad of Calvin Elgot et al. [EBT] (generalized
by Stefan Milius in [M]).

For the important “in-between” variant of algebraic trees of Bruno Courcelle [C], i. e., precisely
all trees obtained by tree unfoldings of recursive program schemes, no abstract treatment has been
presented so far. The present authors are planning to work in a setting in which abstract algebraic
trees can be treated. The basic category is, however, not Set, but Fin(Set), the category of all
finitary endofunctors of Set. This category is locally finitely presentable, and that was one reason
for presenting our theory in such general categories, not only in Set.

The function e 7−→ e† which is part of an Elgot algebra extends canonically from the above
flat equation morphisms e to a much broader class of “rational” equation morphisms—another
topic of our planned future research. In that sense one gets close to iteration algebras of Zoltan
Ésik [É]. The relationship of the latter to Elgot algebras needs further investigation.

Finally, this paper can be considered as part of a program proposed by Lawrence Moss to
rework the theory of recursive program schemes and their semantics using coalgebraic methods.
We believe that our paper contributed by presenting a “suitable” notion of algebra of a functor
which can be used for interpreted semantics or recursive program schemes. We do not have the
space to treat this semantics in our paper. This is the topic of the forthcoming paper [MM],
where basic results of a categorical theory of recursive program schemes are presented. In that
paper the authors introduce a general notion of recursive program scheme (rps), and they prove
that any guarded rps has a unique “uninterpreted” solution in the final coalgebra of the functor
describing the given operations. Furthermore, it is proved that an interpreted solution can be given
to a recursive program scheme in any complete Elgot algebra, and that this solution is unique in
case of a CIA. Finally, the fundamental result that every interpreted solution factors through an
uninterpreted one is proved. As applications one obtains the classical theory using continuous
algebras or completely metrizable ones as interpretations. New applications include, for example,
recursively defined operations satisfying extra conditions like commutativity, or applications in
non-well founded sets or measure spaces.
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We admit that the whole program is at this point still at a beginning phase and so far has
not yet produced many new results in semantics that go beyond what can be done with the
well-established classical methods. However, we strongly believe that our approach deepens the
understanding of the mechanisms at work in algebraic semantics, with categorical results of great
conceptual clarity. We hope that this will eventually lead to new insights and results for the
semantics of recursive computations.
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Abstract

In#nite trees form a free completely iterative theory over any given signature—this fact, proved
by Elgot, Bloom and Tindell, turns out to be a special case of a much more general categorical
result exhibited in the present paper. We prove that whenever an endofunctor H of a category
has #nal coalgebras for all functors H ( ) + X , then those coalgebras, TX , form a monad. This
monad is completely iterative, i.e., every guarded system of recursive equations has a unique
solution. And it is a free completely iterative monad on H . The special case of polynomial
endofunctors of the category Set is the above mentioned theory, or monad, of in#nite trees.

This procedure can be generalized to monoidal categories satisfying a mild side condition: if,
for an object H , the endofunctor H ⊗ + I has a #nal coalgebra, T , then T is a monoid. This
specializes to the above case for the monoidal category of all endofunctors.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Completely iterative theory; Monad; Coalgebra; Solution Theorem; Monoidal category

1. Introduction

Our paper presents an application of corecursion, i.e., of the construction method
using #nal coalgebras, to the theory of iterative equation systems. Recall that equations

∗ Corresponding author. Tel.: +49-531-3919521; fax: +49-531-3919529.
E-mail addresses: petera@cs.man.ac.uk (P. Aczel), adamek@iti.cs.tu-bs.de (J. Ad-amek),

milius@iti.cs.tu-bs.de (S. Milius), velebil@iti.cs.tu-bs.de (J. Velebil).
1 The support of the Grant Agency of the Czech Republic under the Grant No. 201/99/0310 is gratefully

acknowledged.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00728 -4

mailto:petera@cs.man.ac.uk
mailto:adamek@iti.cs.tu-bs.de
mailto:milius@iti.cs.tu-bs.de
mailto:velebil@iti.cs.tu-bs.de


2 P. Aczel et al. / Theoretical Computer Science 300 (2003) 1–45

such as

x1 ≈ x2 � a

x2 ≈ x1 � b
(1.1)

have unique solutions in the realm of in#nite expressions. In our case, the solution is
x1† =(((: : : � b) � a) � b) � a and x2† =(((: : : � a) � b) � a) � b. Such in#nite expressions,
or in#nite trees, have been studied in the 1970s in connection with (potentially in#-
nite) computations, where various additional structures were introduced with the aim
of formalizing an in#nite computation as a join of #nite approximations in a CPO, see
e.g. [18], or as a limit of a Cauchy sequence of approximations in a complete metric
space, see e.g. [10]. A diKerent approach, not using additional structures such as order-
ing or metric, has been taken by Elgot and his co-authors, see, e.g. [15,16]. The above
system (1.1) is an example of a system of iterative equations using a set X = {x1; x2}
of variables and a set Y = {a; b} of parameters. Given a signature � (here consisting
of a single binary symbol �) a system of iterative equations consists of equations

x ≈ e(x) (one for every variable x in X )

whose right-hand sides are #nite or in#nite �-labelled trees e(x) over the set X + Y .
That is, trees with leaves labelled by variables, parameters or nullary symbols, and
internal nodes with n children labelled by n-ary symbols. The symbol ≈ indicates a
formal equation, whereas = means the identity of the two sides. A solution of the
system of equations is a collection

e†(x) (x ∈ X )

of �-labelled trees over Y , i.e., trees without variables, such that the substitution of
e†(x) for x, for all variables x, turns the formal equations into identities. That is, for
every x0 ∈X we have

e†(x0) = e(x0)[e†(x)=x]:

The given system is called guarded provided that none of the right-hand sides is a
single variable. Every guarded system has a unique solution.
In the present paper we show that a coalgebraic approach makes it possible to

study solutions of iterative equations without any additional (always a bit arbitrary)
structure—that is, we can simply work in Set, the category of sets. We use the simple
and well-known fact that for polynomial endofunctors H of Set the algebra of all (#nite
and in#nite) properly labelled trees is a #nal H -coalgebra. Well, this is not enough:
what we need is working with “trees with variables”, i.e., given a set X of variables,
we work with trees whose internal nodes are labelled by operations, and leaves are
labelled by variables and constants. This is a #nal coalgebra again: not for the original
functor, but for the functor

H ( ) + X : Set→ Set
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We are going to show that for every polynomial functor H :Set→Set
(a) #nal coalgebras TX of the functors H ( )+X form a monad, called the completely

iterative monad generated by H ,
(b) there is also a canonical structure of an H -algebra on each TX , and all these

canonical H -algebras form the Kleisli category of the completely iterative monad,
and
(c) the H -algebra TX has unique solutions of all guarded systems of iterative equa-

tions.
A surprising feature of the result we prove is its generality: this has nothing to do

with polynomiality of H , nor with the base category Set. In fact, given an endofunctor
H of any category A with binary coproducts, and assuming that each H ( ) + X has
a #nal coalgebra (such functors are called iteratable) then (a)–(c) hold.

The above system (1.1) corresponds to the polynomial functor expressing one binary
operation, �, i.e., to the functor HZ =Z×Z . A #nal coalgebra TX of Z �→ Z × Z + X
can be described as the coalgebra of all #nite and in#nite binary trees with leaves
labelled in X . System (1.1) describes a function from X = {x1; x2} to the set T (X +Y )
of trees over variables from X and parameters from Y = {a; b}. Here we have

The above concept of solution is categorically expressed by a morphism

e† : X → TY

characterized by the property that e† is equal to the composite of e :X →T (X +Y ) and
the substitution morphism T (X + Y )→TY leaving parameters intact and substituting
e†(x) for x ∈ X . This substitution is given by the function s= [e†; �Y ] :X + Y →TY
(taking a variable x to the tree e†(x) and a parameter y to the trivial tree �Y (y)). This
extends to the unique homomorphism

ŝ : T (X + Y )→ TY

of H -algebras taking a tree over X +Y and substituting the leaves according to s. The
property de#ning a solution, e†, is thus that the following triangle

(1.2)

commutes. As mentioned above, T is a part of a monad, so that the substitution
corresponding to s :Z→TY is given by TZ Ts→TTY

�Y→TY , where � :TT→T is the
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monad multiplication. Thus, (1.2) is the following square

(1.3)

We are going to prove that “almost” all equations expressed by e :X →T (X + Y )
have a unique solution e† :X →TY . Exceptions are equations such as

x ≈ x

What we want to avoid is that the right-hand side of an equation is a variable from
X . This can be expressed categorically as follows: the #nal coalgebra TY is a #xed
point of H ( ) + Y (by Lambek’s lemma [20]), therefore, TY is a coproduct of HTY
and Y . Let us denote the coproduct injections by

where the right-hand injection is the unit of the monad T , and the left-hand one is
the structure of an H -algebra mentioned in (b) above. The object T (X + Y ) is, thus,
a coproduct of HT (X + Y ) + Y and X :

We can think of HT (X +Y )+Y as the “rest” of T (X +Y ) when single variables from
X have been removed. The equations we would like to solve are then the guarded
ones:

De�nition. By a guarded equation morphism is meant a morphism

e : X → T (X + Y )

(for an arbitrary object X “of variables” and an arbitrary object Y “of parameters”)
which factors through HT (X + Y ) + Y :
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Although guarded equation morphisms are allowed to have, on the right-hand sides,
trees of arbitrary depth over X and Y , it is actually suTcient to solve 3at equations
where the right-hand sides are allowed to be only
(a) Uat trees

for an n-ary operation symbol � and n variables x1; : : : ; xn ∈X (including n=0
where we have just �)

or
(b) single parameters from Y .
In fact, every guarded system can be “Uattened” by adding auxilliary variables.

Example. To solve the following system

where � is a binary operation we Uatten it by introducing new variables z1, z2, z3 as
follows:

Now for general functors H , 3at equation morphisms have the form

e : X → HX + Y:

But these are simply coalgebras of H ( )+Y ! And indeed, to solve e means precisely
to use corecursion: a morphism X →TY is a solution of e iK it is the unique homo-
morphism from the coalgebra e into TY (the #nal coalgebra). This is our Solution
Lemma, see Lemma 3.4.
The above Uattening can also be performed quite generally, thus, the Solution Lemma

implies the following

Solution Theorem. Given an iteratable endofunctor, every guarded equation morphism
has a unique solution.

Now in [16] a theory (or monad) T on Set is called completely iterative pro-
vided that every guarded system of equations, e :X →T (X +Y ), has a unique solution
e† :X →TY . Thus, our monad T is completely iterative. For example, if we start with
a polynomial functor H :Set→Set, then T is the monad of in#nite properly labelled
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trees. This is a free completely iterative monad on H , as proved in [16]. The proof
there is very involved. We present here a considerably shorter and conceptually clearer
proof. And moreover, the same proof works for all iteratable endofunctors of Set (not
just the polynomial ones), in fact, all iteratable endofunctors of any category A with
#nite coproducts.
We can also view the completely iterative monad T :A→A as an object of the

endofunctor category [A;A]. We prove that T is a #nal coalgebra of the following
endofunctor Ĥ of [A;A]:

Ĥ (B) = H · B + Id for all B : A→A:

Now [A;A] is a monoidal category whose tensor product ⊗ is composition and unit
I is the identity functor Id . And the completely iterative monad generated by H is
a monoid in [A;A]. We thus turn to the more general problem: given a monoidal
category B, we call an object H iteratable provided that the endofunctor Ĥ :B→B
given by Ĥ (B)=H ⊗ B + I has a #nal coalgebra T . Assuming that binary coproducts
of B distribute on the left with the tensor product, we deduce that T has a structure
of a monoid, called the completely iterative monoid generated by the object H .
Throughout the paper we use the concept of category as “category in some universe”.

Thus, we can form, e.g., the category [A;A] of all endofunctors for any category A.
As usual, a universe of “small sets” is supposed to be chosen, and the corresponding
category is called Set. On two occasions we mention non-well-founded set theory
brieUy; there we denote by Class the category of classes and class functions.

Related work. The present paper is an expanded and improved version of the extended
abstract [2].
In the very inspiring papers [24] and [25] of Moss, which we have discovered

after completing [2], the Solution Theorem and Substitution Theorem we prove below
have already been formulated and proved. In the setting of those papers, one works
with #nal coalgebras of H ( + X ), but Moss already discussed in [24] the fact that
these two approaches are equivalent; we state that explicitly below for the sake of
completeness. Thus, the fact that the monad T we construct is completely iterative is
due to Moss, whereas the result that T is free on H is new. And our proof of the
complete iterativeness, presented here, is a happy combination of the proofs presented
in [24] and [2].
The question of in#nite trees forming a monad has been asked by Ghani and de

Marchi, see also [17]. We acknowledge interesting discussion on that topic with them.

2. Iteratable functors

Assumption 2.1. Throughout this section, H denotes an endofunctor of a category A
with #nite coproducts. Whenever possible we denote by

inl : X → X + Y and inr : Y → X + Y
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the #rst and the second coproduct injection respectively. Recall that, since coproducts
are determined up to isomorphism only, equations such as Z =X +Y are always meant
as an isomorphism.

Remark 2.2. For the functor

H ( ) + X : A→A

(i.e., for the coproduct of H with the constant functor of value X ) it is well-known
that

initial (H ( ) + X )-algebra ≡ free H -algebra on X:

See e.g. [9]. More precisely, suppose that FX together with

�X : HFX + X → FX

is an initial algebra of H ( ) + X . The components of �X then form

an H -algebra ’X : HFX → FX

and

a universal arrow �F
X : X → FX:

That is, for every H -algebra

HA→ A

and for every morphism f :X →A there exists a unique homomorphism f] :FX →A
of H -algebras with

f = f] · �F
X :

Example 2.3. Polynomial endofunctors of Set.
These are the endofunctors of the form

H�Z = A0 + A1 × Z + A2 × Z × Z + · · · = ∐
n¡!

An × Zn;

where

� = (A0; A1; A2; : : :)

is a sequence of pairwise disjoint sets called the signature. An initial H -algebra can
be described as the algebra of all #nite �-labelled trees. Here a �-labelled tree t is
represented by a partial function

t : !∗ → ⋃
n¡!

An
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whose domain of de#nition Dt is a nonempty and pre#x-closed subset of !∗ (the
set of all #nite sequences of natural numbers), such that for any i1i2 : : : ir ∈ Dt with
t(i1 : : : ir) ∈ An we have

i1i2 : : : ir i ∈ Dt iK i ¡ n (for all i ¡ !):

The tree t is called #nite if Dt is a #nite set.
Now the functor

H�( ) + X

is also polynomial of signature

�X = (X + A0; A1; A2; : : :):

Therefore,

FX

can be described as the algebra of all #nite �X -labelled trees, i.e., trees with leaves
labelled by variables or nullary operation symbols, and nodes with n ¿ 0 successors
labelled by n-ary operation symbols.

Remark 2.4.
(1) Dualizing the concept of a free H -algebra, we can study cofree H -coalgebras. A

cofree H -coalgebra on an object X of A is just a free H op-algebra on X in Aop,
where H op :Aop→Aop is the obvious endofunctor. If A has #nite products, then,
by dualizing 2.2, we see that

#nal (H ( )×X )-coalgebra ≡ cofree H -coalgebra on X .
Example: let H� be a polynomial functor on Set. Then

H�( )× X

is also a polynomial functor, since

H�Z × X =
∐

n¡!
X × An × Zn:

This is the polynomial functor of signature

�X =(X × A0; X × A1; X × A2; : : :):

A cofree H�-coalgebra can be described as the coalgebra T̃X of all (#nite and
in#nite) �X -labelled trees. Every node with n successors is labelled by (i) an
n-ary operation symbol and (ii) a variable from X .

(2) Besides a free H -algebra on X and a cofree H -coalgebra on X , we have a third
structure associated with X : a #nal coalgebra of H ( ) +X . We will show that it
has an important universal property.
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De�nition 2.5. An endofunctor H of A is called iteratable provided that for every
object X of A the endofunctor

H ( ) + X

has a #nal coalgebra.

Notation 2.6. Let

TX

denote a #nal coalgebra of H ( ) + X . The coalgebra map

�X : TX → H (TX ) + X

is, by Lambek’s lemma [20], an isomorphism. Thus, TX is a coproduct of HTX and
X ; we denote the coproduct injections by

%X : H (TX )→ TX and �X : X → TX:

Thus [%X ; �X ] = �−1
X :H (TX ) + X →TX .

In particular, TX is an H -algebra via %X .

Example 2.7. Polynomial endofunctors of Set are iteratable.

A #nal coalgebra

TX

of the (polynomial!) functor H�( )+X of signature �X is the algebra of all #nite and
in#nite �X -labelled trees. That is, unlike the coalgebra

T̃X

of all �X -labelled trees, see Remark 2.4, where every node carries a label from X
and one from An (for the case of n children), the trees in TX have leaves labelled
by variables or nullary operation symbols, and nodes with n¿0 successors labelled by
n-ary operation symbols.
As a concrete example, consider a unary signature:

HZ = A× Z:

We have de#ned three algebras for a set X of variables: the free algebra

FX = A∗ × X

of all #nite �-labelled trees for �=(∅; A; ∅; ∅; : : :), the cofree coalgebra

T̃X = (A× X )∞
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(where ( )∞ denotes the set of all #nite and in#nite words in the given alphabet),
and the coalgebra

TX = A∗ × X + A!

(where ( )! denotes the set of all in#nite words in the given alphabet).

Example 2.8. Generalized polynomial functors are iteratable.

We want to include functors such as HZ =ZB, where B is a (not necessarily #nite)
set; the description of TX is quite analogous to the preceding case. Here we introduce
a generalized signature as a collection

� = (Ai)i∈Card

of pairwise disjoint sets indexed by all cardinals such that for some cardinal ' we have

i ¿ ' implies Ai = ∅:
(We say that � is a '-ary generalized signature; the case '=! being the above one.)
The generalized polynomial functor of generalized signature � is de#ned on objects by

H�Z =
∐
j¡'

Aj × Zj

and analogously on morphisms.
An initial algebra of H�( )+X , i.e., a free �-algebra, FX , on a set X of variables,

can be described as the algebra of all well-founded �X -labelled trees (i.e., �X -labelled
trees in which every branch is #nite). For a '-ary signature, a �X -labelled tree can be
formalized as follows: Let '∗ be the set of all words (= #nite sequences) of ordinals
smaller than '. A �X -labelled tree is a partial function

t : '∗ → X +
∐
j¡'

Aj

de#ned on a nonempty, pre#xed-closed subset Dt of '∗ such that for all i1 : : : ir ∈Dt

we have: if t(i1 : : : ir)∈X , then i1 : : : ir i =∈ Dt for any i, and if t(i1 : : : ir)∈Aj, then

i1 : : : ir i ∈ Dt iK i ¡ j (for all i ¡ '):

The tree t is well-founded if Dt does not contain any in#nite sequence of the form
i1; i1i2; i1i2i3; : : : ; see, e.g., [9, II.3.6].
A 5nal coalgebra, TX , of H ( )+X is, analogously to the #nitary case, the coalgebra

of all �X -labelled trees, as proved, e.g., in [5].

Example 2.9. Accessible (= bounded) endofunctors are iteratable.

Recall that an endofunctor of Set is called accessible if it preserves '-#ltered colimits
for some in#nite cardinal '. These are precisely the so-called bounded endofunctors,
see [6]. This generalizes Examples 2.7 and 2.8 above.
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Every accessible endofunctor has a #nal coalgebra: see a simple, explicit proof in
[11, Proposition 1.3]. That proof applies, in fact, to accessible endofunctors of all
locally presentable categories.
Since for H accessible also the functors H ( ) + X are accessible, we conclude that

accessible⇒ iteratable:

Example 2.10. Power-set functor and subfunctors.

The power-set functor P :Set→Set is not iteratable, in fact, it does not have a #nal
coalgebra T∅ (because there are no sets X isomorphic to PX ).
For every cardinal number + the subfunctor P+ of P de#ned on objects by

P+Z = {A |A ⊆ Z and card A ¡ +}
is iteratable because it is accessible: for every cardinal ' with co#nality bigger than +
it is clear that P+ preserves '-#ltered colimits.

For + = ℵ0 we use the notation Pf. A #nal coalgebra of Pf has been described by
Barr [11] as the coalgebra of all #nitely-branching extensional trees (i.e., non-ordered
trees such that any two distinct siblings yield non-isomorphic subtrees) modulo the
following equivalence ≡:

t≡ s iK for every n∈! the cuttings t|n and s|n at level n have isomorphic ex-
tensional quotients.

This can be generalized to the following description of TX for Pf :TX is the coal-
gebra of all #nitely-branching extensional trees with leaves labelled in X +{∅} modulo
the above congruence ≡ (where the cutting t|n is understood to have all new leaves
labelled by ∅).

Example 2.11. A non-accessible iteratable functor H :Set→Set (see Example 4.2
in [6]).

We assume the Generalized Continuum Hypothesis (GCH) here. Let M be a class
of cardinal numbers containing 1. De#ne

PM : Set→ Set

on sets A by

PM A = {B ⊆ A |B = ∅ or card(B) ∈ M}
and on functions f :A→A′ by

PM f : B �→
{

f[B] if f restricted to B is one-to-one;

∅ otherwise:

Then PM is accessible iK M is a set. In fact, if M is a set with supremum smaller
than ', then PM preserves '-#ltered colimits; if M is a proper class then PM does not
preserve '-#ltered colimits for any '.
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Now let M be a proper class of cardinals such that there exist arbitrarily large regular
cardinals � with the property

� �∈ M and 2� �∈ M: (2.1)

Then the following lemma shows that the functor PM ( ) + X has, for every set X ,
“#xed points” � and 2�, where �¿card(X ) is any regular cardinal number with � �∈M
and 2� �∈M . It follows from [5] that, then, a #nal coalgebra of PM ( ) + X exists,
i.e., that PM is iteratable (but not accessible). For the proof of the lemma we use
the following result: if � is a regular, in#nite cardinal number and -¡�, then �- = �
(under GCH), see [19].

Lemma. Let X be a set and � �∈M an in5nite regular cardinal number with card(X )
6�. Then every set A of cardinality � is a “5xed point” of PM ( ) + X , i.e.,

A ∼= PM (A) + X:

Proof. Since 1∈M , we have card(PM (A))¿card(A), thus, it is suTcient to prove

card(A)¿ card(PM (A) + X ):

Since card(A)= � �∈M , we have

PM (A) ⊆ ⋃
-¡�
{B ⊆ A | card(B) = -}

therefore

card(PM (A) + X )6

(∑
-¡�

�-

)
+ card(X )

6

(∑
-¡�

�

)
+ � = �× � + � = �:

Example 2.12. Iteratable endofunctors of Set do not have desired stability properties.
For example, if F and G are iteratable, then neither F ·G nor F + G need to be
iteratable. In fact, in the notation of Example 2.11, consider classes M and M ′ of
cardinal numbers containing 1 and such that
(1) M ∪M ′ is the class of all cardinal numbers
(2) there exist arbitrarily large cardinals � with � �∈M and 2� �∈M
and
(3) there exist arbitrarily large cardinals - with - �∈M ′ and 2- �∈M ′

Then PM and PM ′ are both iteratable by Example 2.11. But PM +PM ′ does not have
any #xed point (for every set A either card(PM A)¿card(A), or card(PM ′A)¿card(A)),
hence, PM + PM ′ it is not iteratable, having no #nal coalgebra. Analogously with
PM ·PM ′ .
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Example 2.13. All set functors are “almost” iteratable. There are, of course, non-
iteratable endofunctors of Set, e.g., the power-set functor P. However, every functor
H :Set→Set can be extended (uniquely up to natural isomorphism) to an endofunctor
H∞ of Class, the category of all large sets (= classes) and functions so that H∞

preserves colimits, of trans#nite chain, see [11].
Applying this to H ( ) + X we see that a #nal coalgebra, TX , always exists, but it

can be a proper class.

Example 2.14. Power-set functor in non-well-founded set theory.

The power-set functor P :Class→Class (assigning to every class the class of its
subsets) is iteratable. Assuming the anti-foundation axiom (AFA), for every class X
we can describe TX as the so called hyperuniverse of sets built up using the elements
of X as atoms. In Chapter 1 of [1] the sets of this hyperuniverse were called the X -sets
and they form the class VX of [12]. The Substitution and Solution theorems have been
exploited in the context of these hyperuniverses by applying them to Milner’s CCS
approach to concurrency, the Liar Paradox and Situation Theory. See also [13].

Example 2.15. Continuous functors are iteratable.

Recall that a functor is called continuous if it preserves limits of !op-sequences.
Here we assume that our base category A has

1. a terminal object 1
2. limits of !op-sequences
and
3. binary coproducts commuting with !op-limits.
(Set ful#lls these requirements, of course.) Every continuous endofunctor F has a #nal
coalgebra limn¡! Fn1—this is dual to the famous construction of an initial algebra as
colimn¡! Fn0 #rst formulated in [3].
If H is continuous, then due to 3., all functors H ( )+X are continuous, thus, have

a #nal coalgebra

TX = lim
n¡!

(H ( ) + X )n1:

Remark 2.16. Denote by U :H -Alg→A the forgetful functor of the category of all H -
algebras and homomorphisms. The universal property of free H -algebras ’X :HFX →
FX (provided they exist on all objects X of A) makes U a right adjoint. The left
adjoint is the functor

X �→ (FX; ’X ):

We now show a related universal property of the H -algebras %X :HTX →TX of 2.6:
given a morphism s :X →TY we prove that there is a unique homomorphism ŝ :TX →
TY of H -algebras extending s. This is interesting even for the basic case of the polyno-
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mial endofunctors of Set: here a morphism s :X →TY can be viewed as a substitution
rule, substituting a variable x∈X by the �Y -labelled tree s(x). We obviously have a
homomorphism ŝ :TX →TY extending s: take a tree t ∈TX , substitute every variable
x∈X on any leaf of t by the tree s(x) and obtain a tree

t′ = Ts(t) in TTY

over TY . Now forget that t′ is a tree of trees and obtain a tree ŝ(t) in TY . However,
it is not obvious that such a homomorphism is unique. This is what we prove now:

Substitution Theorem 2.17. For every iteratable endofunctor H of A and any mor-
phism

s : X → TY in A

there exists a unique extension into a homomorphism

ŝ : TX → TY

of H-algebras. That is, a unique homomorphism ŝ : (TX; %X )→ (TY; %Y ) with s= ŝ ·�X .

Proof. We turn TX +TY into a coalgebra of type H ( )+Y as follows: the coalgebra
map is

TX+TY =HTX+X+TY id+[s;id]−−−−−−→HTX+TY =HTX+HTY+Y [H inI;H inr]+id−−−−−−−→H (TX+TY )+Y

There exists a unique homomorphism

f : TX + TY → TY

of (H ( ) + Y )-coalgebras. Equivalently, a unique morphism

f = [f1; f2] : TX + TY → TY

in A for which the following two squares

commute. The right-hand square shows that f2 is an endomorphism of the #nal (H ( )+
Y )-coalgebra—thus,

f2 = id:
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The left-hand square is equivalent to the commutativity of the following two squares:

The square on the left tells us that f1 is a homomorphism of H -algebras. And since
f2 = id (thus Hf2+id= id) and �−1

Y = [%Y ; �Y ], the square on the right states f1 ·�X = s,
i.e., f1 extends s. This proves that there is a unique extension of s to a homomorphism:
put ŝ=f1.

Corollary 2.18. The formation of TX and �X (for all objects X) and of ŝ (for all
morphisms s :X →TY ) is a Kleisli triple on A.

In fact, the axioms of Kleisli triples (i.e., ŝ · �X = s, �̂X = id, and ŝ · t̂ = ̂̂s · t) follow
immediately from the uniqueness of ŝ in the Substitution Theorem.
In other words, TX is the object part of a functor T , such that �X are the components

of a natural transformation � : Id→T , and we have a natural transformation � :TT→T
de#ned by

�X = îd : TTX → TX

forming a monad T=(T; �; �) on A. Observe that
�X is a homomorphism of H -algebras

since each ŝ is. Also, for every morphism f :A→B in A, Tf :TA→TB is a homo-
morphism of H -algebras (because Tf= [�B ·f). Thus,

% : HT → T

is a natural transformation.

Remark 2.19. Our Substitution Theorem has been proved by Moss in [24] as Lemma
2.4, except that he works with #nal coalgebras of H ( +X ) rather than of H ( )+X .
However, in a remark preceding his 2.4 he shows the following:

Lemma. An endofunctor H is iteratable i< for every object X the endofunctor
H ( + X ) has a 5nal coalgebra. In fact
(i) a 5nal coalgebra of H ( + X ) is HTX with the structure map

H�X : HTX → H (HTX + X )

and, conversely,
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(ii) if �̂X : T̂X →H (T̂X + X ) is a 5nal H ( + X )-coalgebra, then T̂X + X with the
structure map

�̂X + X : T̂X + X → H (T̂X + X ) + X

is a 5nal coalgebra for H ( ) + X .

Proof. Ad (i): given an H ( + X )-coalgebra

1 : R→ H (R + X )

consider the (H ( ) + X )-coalgebra

1 + id : R + X → H (R + X ) + X

The unique (H ( ) + X )-homomorphism h :R + X →TX =HTX + X has the form
h= h1 + idX where h1 :R→HTX yields the desired H ( + X )-homomorphism.
Ad (ii): given an (H ( ) + X )-coalgebra

1 : R→ HR + X

consider the H ( + X )-coalgebra

H1 : HR→ H (HR + X ):

The unique H ( +X )-homomorphism h :HR→ T̂X yields the desired unique (H ( )+
X )-homomorphism g :R→ T̂X + X as follows

g ≡ R
1→HR + X h+id−→ T̂X + X:

Remark 2.20. Note that the last result is an instance of a general fact about categories
of #xed points of functors. Indeed, suppose that F; G :A→A are endofunctors. Then
applying F and G respectively yields functors

FG-Coalg
G−→←−
F

GF-Coalg

which preserve #xed points (i.e., coalgebras whose structure maps are isomorphisms).
It is trivial to show that the restrictions of the latter to the full subcategories of #xed
points of F-Coalg and G-Coalg respectively are equivalences of categories that are
inverse to one another.

De�nition 2.21. The above monad T, associated with any iteratable endofunctor H , is
called the completely iterative monad generated by H .

Examples 2.22.
(1) The completely iterative monad generated by the endofunctor

HZ = A× Z
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of Set is the monad

TX = A∗ × X + A!:

This can be described as the free-algebra monad of the variety of algebras with
(a) unary operations fa for a∈A,
(b) nullary operations indexed by A! (i.e., constants of the names a0a1a2 : : : ∈A!),
and
(c) satisfying the equations

fa(a0a1a2 : : :) = aa0a1a2 : : : for all a; a0; a1; : : : ∈ A

In this case, T is a #nitary monad on Set.
(2) The completely iterative monad generated by the endofunctor

HZ = Z × Z

of Set is the monad TX of all binary trees with leaves indexed in X . This is not
#nitary: consider the following element of TX :

in which all xi are pairwise distinct.
(3) Let

CPO

denote the category of CPO’s (say, posets with a smallest element ⊥ and joins of !-
chains) and strict continuous functions (i.e., those preserving ⊥ and joins of !-chains).
For all locally continuous functors H :CPO→CPO, i.e., such that the derived functions

CPO(A; B)→ CPO(HA; HB); f �→ Hf

are all continuous, it is well-known that
initial H -algebra ≡ #nal H -coalgebra,

see [26]. Since each H ( ) + X is also locally continuous, we deduce that
locally continuous functors are iteratable,

and in this case

FX ≡ TX

that is, the completely iterative monad T is just the free algebra monad F on H .
(4) Analogously for the category

CMS
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of all complete metric spaces and contractions: every contractive endofunctor H :CMS
→CMS, i.e., such that the derived functions

CMS(A; B)→ CMS(HA; HB); f �→ Hf

are all contractive with a common constant ¡1, has a single #xed point. There-
fore,

initial H -algebra ≡ #nal H -coalgebra,
see [7]. Since each H ( ) + X is also locally contractive, we again get

T = F:

Remark 2.23.
(1) The Kleisli category

AT →A

of the completely iterative monad is the above category K of all H -algebras
%X :HTX →TX (with its forgetful functor K→A). This follows from the Sub-
stitution Theorem.

(2) The Eilenberg–Moore category

AT →A

of all T-algebras and T-homomorphisms seems to be a new construct. As seen
in 2.22, it is usually in#nitary.

3. Solution theorem

3.1. Recall from the Introduction that a solution of an equation morphism e :X →
T (X + Y ) is a morphism e† :X →TY such that the following square

commutes. Elgot used the language of algebraic theories, i.e., Kleisli categories, rather
than monads. Both equations and solutions are morphisms of the Kleisli category, here:

e : X → X + Y and e† : X → Y:

If we denote by ∗ the composition of the Kleisli category (i.e., g ∗ f= �Z ·Tg ·f for
f :X →TY and g :Y →TZ in A) then a solution e† is de#ned by the equality

e† = [e†; 1] ∗ e:

This is the de#nition used in [15,16]. We are not going to use this notation below.
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Recall further from the Introduction that a 3at equation morphism

e : X → HX + Y

is just another name for a coalgebra of H ( ) + Y . However, we can also view e as a
guarded equation morphism. More precisely, we denote by

1X;Y : HX + Y → T (X + Y )

the “natural connecting morphism” whose left-hand component is

HX
H�X−→HTX HT inI−→ HT (X + Y )

%X+Y−→T (X + Y )

and the right-hand one is

Y inr−→X + Y
�X+Y−→T (X + Y ):

Since 1X;Y factors through [%X+Y ; �X+Y inr], we see that

1X+Y e : X → T (X + Y )

is a guarded equation morphism. We denote, for short, by

e† : X → TY

a solution of 1X;Y e (whenever there is no danger of confusion). Explicitly, e† is a
morphism such that the following diagram

commutes.

Examples 3.2.
(1) For polynomial functors solutions of Uat equations are discussed in the Introduc-

tion.
(2) For the #nite-power-set functor Pf :Set→Set a Uat system of equations without

parameters has the following form

x1 ≈ A1

x2 ≈ A2

...
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for a set X = {x1; x2; : : :} of variables, where A1, A2, . . . are #nite subsets of X .
This is the concept of a Uat system of equations as used in non-well-founded set
theory.
The functor Pf is iteratable, see Example 2.10. In non-well-founded set theory,
a #nal coalgebra T∅ is described as the coalgebra of all hereditarily #nite sets,
see [13]. Thus, every solution of equation systems as above is found in that coal-
gebra. In well-founded set theory, solutions will be extensional trees modulo the
equivalence described in Example 2.10.

(3) The power-set functor P leads to Uat systems of equations without parameters of
the form above, except that here the subsets A1, A2, . . . of X are arbitrary, not
necessarily #nite. The possibility of having a unique solution for every Uat system
of equations is (one of the formulations of) the anti-foundation axiom leading to
non-well-founded set theory, see [1,13].

Notation 3.3. We denote by

%∗ : H → T

the composite

H
H�→HT %→T:

Observe that the following triangle

commutes for every object. This follows from �X being a homomorphism of H -algebras
and � · �T = id:

Solution Lemma 3.4. For 3at equation morphisms we have

solution = corecursion:

That is, a 3at equation morphism e :X →HX + Y has a unique solution, viz, the
unique homomorphism of the coalgebra e into the 5nal coalgebra TY of H ( ) + Y .
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Proof. For any morphism x :X →TY , consider the following diagram

The lower square and the middle one clearly commute. Also the right-hand square
commutes by 3.3. Now suppose we put e† in the place of x in the diagram. Then the
outer square commutes, and therefore the upper square does, which shows that e† is
an H ( ) + Y coalgebra homomorphism, and thus e† = ẽ, where ẽ denotes the unique
homomorphism into the #nal coalgebra TY .
Conversely, if ẽ is put in the place of x, then the upper square commutes and thus

the whole diagram does, which shows that ẽ is a solution for e.

Remark 3.5. In the Introduction we have mentioned that every guarded equation mor-
phism e :X →T (X +Y ) has a “Uattening” by introducing additional variables, Z . That
is, there is a Uat equation morphism

g : X + Z → H (X + Z) + Y

such that to solve e is “the same” as to solve g. This is, in fact, a general phenomenon:

Proposition 3.6. For every guarded equation morphism

e : X → T (X + Y )

there exists a 3at equation morphism

g : X + Z → H (X + Z) + Y

such that the left-hand component of g† :X + Z→TY is a solution of e.

Proof. Since e is guarded, we have a commutative triangle

The above object Z has the property that

X + Z = T (X + Y ):
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More precisely, T (X + Y ) is a coproduct of X and Z with injections

X
�X+Y inl−−−−−→T (X + Y )

and

Z = HT (X + Y ) + Y id+inr−−−−−→HT (X + Y ) + (X + Y ) = T (X + Y )

respectively. The morphism g we are to de#ne thus has the codomain HT (X + Y ) +
Y =Z . Put simply

g = [f; id] : X + Z → Z:

The solution g† :X + Z =X + HT (X + Y ) + Y →TY has components h1 :X →TY ,
h2 :HT (X + Y )→TY and h3 :Y →TY . The property of being a solution means, by
the Solution Lemma, precisely that [h1; h2; h3] :T (X +Y )→TY is a homomorphism of
coalgebras. That is, g† is a solution if and only if the following square

commutes. Equivalently, iK the following hold:

h3 = �Y

h2 = %Y · Hg†

h1 = [%Y ; �Y ] · (Hg† + id) · f = [h2; �Y ] · f:

We prove that h1 solves e. Since g† · �X+Y = [h1; h3]= [h1; �Y ] and e= [%X+Y ; �X+Y ·
inr] · f we are to prove the commutativity of the outward square in the following
diagram

The right-hand inner square commutes because g† is a homomorphism of H -algebras:
g† ·%X+Y = h2 = %Y ·Hg† and thus, by Substitution Theorem it is enough to observe that

(g† · �X+Y ) · �T (X+Y ) = g† = �Y · �TY · g† = (�Y · Tg†) · �T (X+Y ):

All the other inner parts also commute (e.g., g† · [%X+Y ; �X+Y · inr] = [h2; h3]= [h2; �Y ]).
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Remark 3.7. The proof of the preceding proposition gives more than the statement:
every solution e† of the original equation morphism yields a solution of the Uat one
by the rule

g† ≡ X + Z = T (X + Y )
T [e† ;�Y ]−−−−−→TTY

�Y→TY:

In fact, the morphism

�Y · T [e†; �Y ] : X + HT (X + Y ) + Y → TY

has the following components

h3 = �Y · T [e†; �Y ] · �X+Y · inr = �Y · �TY · �Y = �Y

(by naturality: T [e†; �Y ] · �X+Y = �TY · [e†; �Y ])

h2 = �Y ·T [e†; �Y ]·%X+Y = �Y ·%TY ·HT [e†; �Y ] = %Y ·H�Y ·HT [e†; �Y ] = %Y ·Hg†

(since T ( ) and �Y are homomorphisms of H -algebras), and

h1 = �Y · T [e†; �Y ] · �X+Y · inl = �Y · �TY · e† = e† : X → TY:

Moreover, by de#nition of ( )† for e= [%X+Y ; �X+Y · inr] · f,

h1 = e† = �Y · T [e†; �Y ] · [%X+Y ; �X+Y · inr] · f = [h2; �Y ] · f:

Thus, the three equations of the above proof hold, i.e., g† is a homomorphism of
(H ( ) + Y )-coalgebras.

Corollary 3.8 (Solution Theorem). Given an iteratable functor, every guarded equa-
tion morphism has a unique solution.

Remark. This is the result called Parametric Corecursion by Moss, see [24] We have
proved it, independently, in [2].

Proof. In fact, the existence follows from 3.4 and 3.6. The uniqueness from 3.7: since
g† = �Y ·T [e†; �Y ] implies g† ·�X+Y = �Y ·�TY · [e†; �Y ] = [e†; �Y ] we have e† = g† ·�X+Y ·
inr. Thus, the uniqueness of g† (see 3.4) proves the uniqueness of e†.

4. Completely iterative monads

Assumption 4.1. In the present section we assume that a category A with #nite co-
products is given such that coproduct injections are monomorphisms. (One can work,
more generally, with binary coproducts without further restriction, see Remark 4.16
below.)

We are going to introduce solutions of guarded equations in general monads, and
obtain the concept of complete iterativity for monads. Our main result will be that the
above monad T is a free completely iterative monad on the given functor H .
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Elgot has introduced the concept of an ideal algebraic theory in order to speak about
ideal equations and (completely) iterative theories. As we show below, his concept is
the special case, for A=Set and for #nitary monads, of the following:

De�nition 4.2. A monad S=(S; �; �) on A is called ideal provided that
(i) S is a coproduct of endofunctors, S = S ′ + Id , with �= inr : Id→ S

and
(ii) � : SS→ S restricts to �′ : S ′S→ S ′.

Remark 4.3. More precisely, we should say that an ideal monad is a sixtuple (S; �; �; S ′;
�; �′) consisting of a monad (S; �; �), a natural transformation � : S ′→ S forming inl of
the coproduct S = S ′ + Id with �= inr, and a natural transformation �′ : S ′S→ S ′ such
that the following square (expressing “a restriction of �”)

commutes.
However, the above de#nition is precise enough since we assume that coproduct

injections in A (and, thus, in [A;A]) are monomorphisms, which makes �′ unique.

Examples 4.4.
(1) The completely iterative monad T for a given iteratable endofunctor H , see De#-

nition 2.21, is ideal. Here

T = HT + Id

with coproduct injections % and �. And for �′ =H� the relevant square commutes,
because each �X :TTX →TX is (by de#nition) a homomorphism of H -algebras:

(2) Consider the variety of algebras on one binary operation given by the single equa-
tion

(xy)z = x:

The corresponding monad S is easily seen to be such that � : Id→ S is a coproduct
injection. However, this monad is not ideal: this follows from the fact that although
none of the terms

is congruent to a variable, the term t[s=u] is congruent to x.
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Remark 4.5. The de#nition of ideal theory used by Elgot is the following. An algebraic
theory (in the sense of Lawvere) is a category whose objects are given by the set N
of natural numbers and such that for each n ≥ 0 there are so-called distinguished
morphisms

i1; : : : ; in : 1→ n

which form coproduct injections. Such a theory is called ideal whenever the following
property holds: if f : 1→ n is not distinguished, then g · f : 1→m is not distinguished
for every g : n→m. Recall that every #nitary variety gives rise to an algebraic theory
as follows: an arrow

s : n→ m

is a substitution that gives for each of n variables x1, . . . , xn a term s(xi) in m variables.
The distinguished morphism

ik : 1→ n

substitutes xk for the given variable.

Recall further that #nitary varieties correspond to #nitary monads on Set. Moreover,
for every #nitary variety, the notion of ideal monad as de#ned in 4.2 coincides with
the notion of ideal theory:

Lemma 4.6. The algebraic theory corresponding to a 5nitary variety V is ideal if
and only if the 5nitary monad corresponding to V is ideal.

Proof. Suppose the theory of a given #nitary variety is ideal. Let (S; �; s �→ ŝ) be the
corresponding #nitary monad given by its Kleisli triple. Then for arbitrary #nite sets
X , Y and substitution s :X → SY , the homomorphism ŝ : SX → SY satis#es the follow-
ing property: if t ∈ SX is not (congruent to) a variable, then neither is ŝ(t)∈ SY . In
particular, this is true for Sf= [f · �Y for any f :X →Y . Since Sf preserves variables,
we conclude that S = S ′ + Id with coproduct injection � : Id→ S (for in#nite sets use
that S is #nitary). That � restricts to �′ follows since �Y = îdSY .
Conversely, suppose that the #nitary monad (S; �; �) of a given variety V is ideal

in the sense of De#nition 4.2. Let s :X → SY be any substitution where X and Y are
#nite, and let t ∈ S ′X . Then ŝ(t) is in S ′Y since ŝ= �Y · Ss, which on S ′X restricts
to �′

Y ·S ′s. But this is equivalent to the theory of V being ideal in the sense of Elgot.

De�nition 4.7. Let S be an ideal monad on A.
(1) By an equation morphism we understand a morphism in A of the form

e : X → S(X + Y ); X; Y are objects of A:

(2) By a solution of e is understood a morphism

e† : X → SY
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for which the following diagram

commutes.
(3) We call e guarded if it factors through S ′(X + Y ) + Y :

De�nition 4.8. An ideal monad is called completely iterative provided that every
guarded equation morphism has a unique solution.

Example 4.9. The monad T associated with an iteratable functor H is completely
iterative. This is the Solution Theorem.

We are going to prove that solutions are preserved by monad morphisms. Recall that
for monads S=(S; �; �) and S̃=(S̃ ; �̃; �̃) a monad morphism ’ :S→ S̃ is a natural
transformation ’ : S→ S̃ such that the following diagrams

commute. (Here, ’∗’ denotes the horizontal composition, i.e., ’∗’=’S̃ ·S’= S̃’·’S.)

De�nition 4.10. If S and S̃ are ideal monads, we call a morphism ’ :S→ S̃ ideal if
it has the form ’=’′ + id for a natural transformation ’′ : S ′→ S̃

′
.

Lemma 4.11. Monad morphisms preserve solutions of equations. That is, given a
monad morphism ’ :S→ S̃ and given an equation morphism e :X → S(X + Y ) with
a solution e† :X → SY (w.r.t. S), then the equation morphism

X e→ S(X + Y )
’X+Y−→ S̃(X + Y )

has a solution

X e†→ SY
’Y→ S̃Y



P. Aczel et al. / Theoretical Computer Science 300 (2003) 1–45 27

Proof. The following diagram

commutes: for the middle triangle notice that the following triangle

commutes.

Remark 4.12.
(1) Elgot used a slightly more restrictive concept than guarded equation: his ideal equa-

tion morphism is an equation morphism e :X → S(X + Y ) which factors through
�X+Y : S ′(X +Y )→ S(X +Y ). Note that all equations used in the main result, The-
orem 4.14 below, are ideal, which shows that that result remains valid if complete
iterativeness is de#ned by means of ideal, rather than guarded, equation morphisms.

(2) Given an ideal monad S with S = S ′ + Id an ideal transformation from a functor
H to S is a natural transformation H→ S which factors through � : S ′→ S.
Example: %∗ :H→T of Notation 3.3 is ideal.

Lemma 4.13. For every ideal equation morphism the solution is also ideal, i.e., it
factors through �Y .

Proof. Given
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consider the following commutative diagram

Theorem 4.14 (Free completely iterative monads). For every iteratable endofunctor
H the monad T of Corollary 2.18 is a free completely iterative monad on H .

More precisely: the natural transformation %∗ :H→T is ideal, and given a com-
pletely iterative monad S=(S; �S ; �S) and an ideal transformation ' :H→ S
then there exists a unique ideal monad morphism X' :T→S for which the following
triangle

commutes.

Remark 4.15.
(1) Since � : S ′→ S, being a coproduct injection, is a (pointwise) monomorphism, the

last condition on the ideal morphism X'= X'′ + id is equivalent to stating that for
X'′ :HT→ S ′ the following triangle

commutes.
(2) Categorically, the statement of the theorem says that every iteratable functor H in

[A;A] has a universal arrow w.r.t. the forgetful functor

U : CIM(A)→ [A;A]

of the category CIM(A) of all completely iterative monads and ideal morphisms.
Beware! The functor U assigns to every completely iterative monad S=(S; �S ; �S)
the functor S ′, not S. This choice of U corresponds to the requirement that
' :H→ S be an ideal transformation.
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(3) The assumption that H be iteratable is fundamental: it has been proved in [23]
that every endofunctor generating a free completely iterative monad is iteratable.

Proof. I. Uniqueness of X'.
Observe that in our monad T the following equation morphism

HTX
H�TX−→HTTX %TX−→TTX = T (HTX + X )

is guarded. Its solution is simply

%X : HTX → TX:

In fact, the following diagram

commutes.
Suppose a monad morphism X' :T→S as above is given. By Lemma 4.11, the

following equation morphism

has the solution

X'X · %X : HTX → SX;

and since 'TX is ideal, the solution is unique. This determines the left-hand component
of X'X :HTX + X → SX , and the right-hand one is clear from X'X · �X = �S

X .
Shorter: we have the formula

X'X = [('TX )†; �S
X ]: (4.1)

II. Existence of X'. Our task is to show that, given ', formula (4.1) de#nes an ideal
monad morphism X' :T→S with '= X' · %∗.
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(a) Naturality of X'X : given a morphism f :X →Y we want to show the commuta-
tivity of the following square

The right-hand components are clear. For the left-hand components we use the follow-
ing, easily established, fact:

Given a guarded equation morphism e :Z→T (Z + X ) then also e′ =
T (id + f) · e :X →T (Z + Y ) is guarded, and (e′)† =Tf · e†, for every morphism
f :X →Y .

Apply this to e= 'TX : we conclude that in the desired square

the lower passage is a solution of e′ = S(idHTX + f) · 'TX . It suTces to show that the
upper passage also solves e′. This is true because the following diagram

commutes. In fact, the upper right-hand square commutes due to the fact that 'TY has
solution X'Y %Y , see (4.1). To see that the lower square commutes, extract S and observe
that the two components obviously commute.
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(b) Equality '= X' · %∗. This follows from the next commutative diagram (where we
use X'X · %X =('TX )

†):

From �S · S�S = id we conclude that '= X' · %∗.
(c) X' is an ideal monad homomorphism. In fact, since ' is an ideal transformation,

say '= � · '′ (where '′ is unique and natural, since �, being a coproduct injection, is
pointwise monomorphic), we have for ('TX )

† the following diagram

Put

X'
′
X = �′S

X · S ′[('TX )†; �S
TX ] · '′

TX : HTX → S ′X

to obtain a natural transformation

X'
′
: HT → S ′ with X' = X'

′
+ id:

It remains to verify that X' is a monad morphism. Since � : Id→T is a coproduct
injection, we have

X'X · �X = [('TX )†; �S
X ] · �X = �S

X :

Next, we are to show that the following square
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commutes. The right-hand components are both equal to X' :T→ S: for the lower pas-
sage this follows from � · �T = id, for the upper one from

(�S · S X' · X'T ) · �T = �S · S X' · �ST = �S · �SS · X' = X':

Thus, we are to establish the commutativity of the left-hand components:

(4.2)

In the following proof of (4.2) we put '̃Z = 'TZ
† :HTZ→ SZ and

f ≡ HTTZ + HTZ
['TTZ ;Sinr·'̃Z ]−−−−−−→ S(HTTZ + HTZ + Z) = STTZ:

This is an equation morphism (with variables X =HTTZ + HTZ and parameters Z)
and it is guarded. In fact, use Lemma 4.13 on e= 'TZ to get a morphism e′ with
'̃Z = �TTZe′, then the following triangle

commutes. We are going to prove that the solution of f is given as follows

f† ≡ HTTZ + HTZ
[ X'Z ·�Z ·%TZ ;'̃Z ]−−−−−−→ SZ: (4.3)

That is, we will verify that the following square

commutes. It is suTcient to concentrate on the left-hand components (the right-
hand ones are both '̃Z due to �S

Z · S�S
Z = id). For this we consider the following
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diagram:

All parts commute: this is obvious, except for the middle triangle. We show that this
commutes even if we delete H . Use TTZ =HTTZ +HTZ +Z with coproduct injections
%TZ , �TZ · %Z and �TZ · �Z respectively: the left-hand components are X'Z · �Z · %TZ , the
middle ones are '̃Z = X'Z ·�Z ·�TZ · %Z = X'Z · %Z , and the right-hand ones are �S

Z = X'Z ·�Z .
This proves (4.3).
But the morphism f also has the following solution

f† ≡ HTTZ + HTZ
[�S

Z ·S X'Z ·'̃TZ ;'̃Z ]−−−−−−−→ SZ: (4.4)

In fact, the following square

commutes: the right-hand components commute trivially (as above) and for the left-
hand ones consider the following diagram:
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It commutes: this is obvious for all parts except the lower part, for which we delete S
to obtain

which commutes since �S · �SS = id.
Since solutions are unique, the two solutions of f above are equal. The equality

of the right-hand components in (4.3) and (4.4) is precisely the fact that (4.2) above
commutes. This concludes the proof of (c).

Remark 4.16. The above theorem holds, more generally, in categories A with binary
coproducts also when we do not assume that coproduct injections are monomorphisms.
However, we have to de#ne ideal equations and solutions diKerently, then. In the
present approach, a guarded equation morphism e :X → S(X + Y ) is one that factors
as

and, as long as coproduct injections are monomorphisms, we do not need a name for
the factorizing arrow. Now generally, we can introduce guarded equation morphisms
as arrows f :X → S ′(X +Y )+Y . And a solution of f is, then, de#ned as a morphism
f†′ :X → S ′Y + Y such that the following diagram

commutes. An ideal monad S=(S; �; �; S ′; �; �′) is called completely iterative if every
guarded equation arrow f has a unique solution f†′ .
In this greater generality it remains true that for every iteratable functor H

(i) the monad T is completely iterative,
and
(ii) T is a free completely iterative monad on H .
The latter means, now, that for every completely iterative monad S=(S; �; �; S ′; �; �′)
and every natural transformation '′ :H→ S ′ there exists a unique monad morphism

X' : T→ S
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such that
(a) X' is ideal, i.e., has the form X'= X'′ + id for X'′ :HT→ S ′,
and
(b) the triangle of Remark 4.15

commutes.
In other words, the functor U of Remark 4.15 has a universal arrow for every iteratable
H . The proof is the same as the proof of Theorem 4.14 above.

5. A completely iterative monoid of an object

We can view the procedure of forming the monad T of Section 2 globally by
working, instead of in the given category A, in the endofunctor category [A;A].
Here H is an object. If H is iteratable, then 2.21 de#nes another object, T , together
with a morphism (natural transformation)

� : T → HT + Id:

This is a coalgebra of the functor

Ĥ : [A;A]→ [A;A]

de#ned on objects by

Ĥ (S) = H · S + Id (for all S : A→A)

and analogously on morphisms. We prove below that T is a #nal Ĥ -coalgebra.
Within the realm of locally small categories (i.e., with small hom-sets) with coprod-

ucts this global approach is equivalent to that of Section 2:

Proposition 5.1. Let A be a locally small category with coproducts. For every end-
ofunctor H , the following are equivalent:
(1) H is an iteratable object of [A;A], i.e., a 5nal Ĥ -coalgebra exists.
(2) H is an iteratable endofunctor, i.e., all 5nal (H ( ) + X )-coalgebras exist.

Remark.
(i) More detailed: if T is a #nal Ĥ -coalgebra, we prove that TX is a #nal coalgebra

of H ( ) + X for all objects X . And vice versa.
(ii) The proof that 2 implies 1 holds for all categories A with binary coproducts.

For the proof that 1 implies 2, only copowers indexed by hom-sets of the category
A are used. Thus the proposition also holds e.g. for the category A=Set5n of #nite
sets, and for any poset A with binary joins.
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Proof. 1 implies 2: For every pair X , Y of objects in A denote by KX; Y the following
endofunctor

KX;Y A =
∐

A(X;A)
Y

for objects A, analogously for morphisms. This is just a left Kan extension of Y ,
considered as a functor 1→A, along the functor X : 1→A. In fact, for every functor
P :A→A we have a bijection

KX;Y → P
Y → PX

natural in P, which to every natural transformation ’ :KX; Y →P assigns the composite

Y u→ ∐
A(X;X )

Y
’X−→PX;

where u is the idX -injection. Conversely, given a morphism f :Y →PX , the corre-
sponding natural transformation f@ :KX; Y →P has components

f@
A :
( ∐

h : X→A
Y
)
→ PA

determined by Y
f→PX Ph→PA.

Let � :T→HT + Id be a #nal Ĥ -coalgebra. We will show that

�X : TX → HTX + X

is a #nal (H ( ) + X )-coalgebra for every X .
In fact, for every (H ( ) + X )-coalgebra

b : Y → HY + X

when composing b with

Hu + id : HY + X → H

( ∐
A(X;X )

Y

)
+ X = (ĤKX;Y )X

we obtain a morphism

Xb : Y → (ĤKX;Y )X

which by the above adjointness yields an Ĥ -coalgebra

Xb
@
: KX;Y → ĤKX;Y :

Let ’ be the unique homomorphism of Ĥ -coalgebras
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Then ’=f@ for a unique f :Y →TX , and the commutativity of the above square
yields the commutativity of

2 implies 1: It has been noted above (see Corollary 2.18) that if �X :TX →HTX +X
denotes a #nal coalgebra for H ( )+X , then the assignment X �→ TX can be extended
to a functor T :A→A.

Analogously one can show that the collection of all �X ’s constitutes a natural trans-
formation � :T→H · T + Id . Thus, � makes T an Ĥ -coalgebra.
To verify that � is indeed a #nal Ĥ -coalgebra, consider any coalgebra - : S→

H · S + Id . For each X in A there exists a unique morphism fX : SX →TX such
that the following square

commutes. It is easy to show that the collection of fX ’s is natural in X and that it
de#nes a unique natural transformation f : S→T for which the following square

commutes.

Remark 5.2. In Example 2.15 we have formulated properties of a category A so that
every continuous endofunctor H be iteratable. Let us observe that the corresponding
completely iterative monad, T , is also continuous: by Proposition 5.1, T is a #nal Ĥ -
coalgebra. Now Ĥ is an endofunctor of the category [A;A] which also satis#es 1.–3,
of Example 2.15. Consequently, we have the formula

T = lim
n¡!

Ĥ
n
(C1);

where C1 (the constant endofunctor of A with value 1) is a terminal object of [A;A].
Since each Ĥ (C1) is easily seen to be continuous, we obtain T as a limit of continuous
functors—thus, T is continuous.

Remark 5.3. For every category A the endofunctor category [A;A] is monoidal with
composition as a tensor product and Id as a unit. Moreover composition distributes
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over coproducts on the left: (H + K) · L=(H · L) + (K · L). This leads us to consider
an arbitrary monoidal category

(B;⊗; I)

with coherence isomorphisms (for all H , K , L in B):

lH : I ⊗ H → H; rH : H ⊗ I → H

and

aH;K;L : H ⊗ (K ⊗ L)→ (H ⊗ K)⊗ L

satisfying the usual laws, and which is left-distributive in the following sense:

De�nition 5.4.
(1) A monoidal category is called left-distributive if it has binary coproducts and the

canonical morphisms

dH;K;L : (H ⊗ L) + (K ⊗ L)→ (H + K)⊗ L

are all isomorphisms.
(2) An object H of a monoidal category B is said to be iteratable provided that the

endofunctor Ĥ :B→B de#ned by

Ĥ (B) = H ⊗ B + I

has a #nal coalgebra.
(3) A left distributive monoidal category with each object iteratable is called an iter-

atable category.

Examples 5.5.
(1) The category

Cont[Set; Set]

of continuous endofunctors (i.e., those preserving !op-limits) of Set is iteratable:
we know that continuous functors are closed under
(a) composition (here: a tensor product)
(b) identity functor (here: unit I)
and
(c) #nite coproducts,
thus Cont[Set;Set] is a distributive monoidal subcategory of [Set;Set]. Now, every
continuous functor is iteratable, and by Remark 5.2 the completely iterative monad
is also continuous; therefore Cont[Set;Set] is an iteratable category.

(2) More in general, Cont[A;A] is an iteratable category for every locally small
category A satisfying conditions 1.–3, of Example 2.15.

(3) The category

Fin[Set; Set]
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of all #nitary endofunctors of Set (i.e., those preserving #ltered colimits) is it-
eratable. In fact, #nitary functors are closed under composition, identity functor,
and #nite coproducts, thus, Fin[Set;Set] is a distributive monoidal subcategory of
[Set;Set].
A completely iterative monad T of a #nitary functor H exists, since #nitary

functors always have #nal coalgebras, see [11], Theorem 1.2, and each H ( )+X
is clearly #nitary. However, this monad is seldom #nitary, see Example 2.22(2).
We can form a #nitary part T5n of every monad T on Set (see [21]): it is

obtained by restricting the underlying functor T to the full subcategory Set5n of
#nite sets, and then forming a left Kan extension of T=Set5n along the embedding
of Set5n in Set.
It is easy to verify that T5n is a #nal coalgebra of the endofunctor H · ( )+ Id

of Fin[Set;Set]. In fact, given any coalgebra

S → H · S + Id

(with S #nitary, of course) the unique Ĥ -homomorphism f : S→T is easily seen
to have a factorization through the canonical morphism m :T5n→T . That is, we
have a unique f′ : S→T5n with f=m·f′. And f′ is the unique homomorphism of
coalgebras of the functor H ·( )+Id , considered as an endofunctor of Fin[Set;Set].

Example: the functor

H : Set→ Set with HZ = Z × Z

has the completely iterative monad T where TX are all binary trees with leaves
indexed in X . And T5n is the #nitary monad where T5nX are all binary trees with
leaves indexed in a #nite subset of X .

(4) More generally, if A is a locally #nitely presentable category (see [8]) then
Fin[A;A], the category of #nitary endofunctors of A, is iteratable. The argu-
ment is the same: we form a completely iterative monad T in [A;A], which
exists by Theorem 1.2 in [11] (although formulated for Set, it holds in all locally
presentable categories) and then take a #nitary part T5n just as in (3) above.

(5) Let B be a left distributive monoidal category having a terminal object 1 and
limits of !op-chains which commute with both the tensor product and the binary
coproduct. Then every object H is iteratable and T is a limit of the following
countable chain:

1 !←H ⊗ 1 + I H⊗!+id←−−−−− H ⊗ (H ⊗ 1 + I) + I
H⊗(H⊗!+id)+id←−−−−−−−−− · · ·

For example: the category of sets with a binary product as ⊗ and a terminal
object I as a unit is an iteratable category: the (polynomial) functor

Ĥ (Z) = H × Z + I

has a #nal coalgebra

T = H∞

for every set H .
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And the cartesian closed category Cat of all small categories is an iteratable
category. Every small category H is iterable with

T = 1 + H + (H × H) + · · ·+ H !

(6) Let H be an iteratable Abelian group (where we consider the category Ab of all
Abelian groups with the usual tensor product). Then a #nal coalgebra of Ĥ is,
as we show below in 5.8, a monoid in the given monoidal category—thus, in the
present case

T is a ring:

Notation 5.6. For every iteratable object H we denote by T and � :T→H ⊗T + I a
#nal coalgebra of Ĥ . By Lambek’s Lemma, T is a coproduct of H ⊗T and I . We
denote the injections by

% : H ⊗ T → T and � : I → T

where �−1 = [%; �].
This makes T into an algebra for the functor H ⊗ . More generally, every object

S of B yields an algebra

%S ≡ H ⊗ (T ⊗ S)
aH;T;S−→(H ⊗ T )⊗ S

%⊗idS−→ T ⊗ S

(where aH;T;S is the associativity isomorphism). Put

�S ≡ S
rS→ I ⊗ S

�⊗idS−→ T ⊗ S:

Substitution Theorem 5.7. Let H be an iteratable object in a monoidal category B.
For every morphism

s : S → T

in B there is a unique homomorphism

ŝ : T ⊗ S → T

of algebras of type H ⊗ with

s = ŝ · �S :

Proof. This is quite analogous to the proof of Theorem 2.17. We turn the object
T ⊗ S + T into an Ĥ -coalgebra as follows:

T ⊗ S + T ∼= H ⊗ T ⊗ S + S + T
id+[s;id]−−−−−→ H ⊗ T ⊗ S + T ∼=

∼= H ⊗ T ⊗ S + H ⊗ T + I
[H⊗id;H⊗inr]+id−−−−−−−−−→ H ⊗ (T ⊗ S + T ) + I:

The unique homomorphism

f = [f1; f2] : T ⊗ S + T → T
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of Ĥ -coalgebras is the unique morphism of B which has the second component, f2,
an endomorphism of the #nal Ĥ -coalgebra � :T→H ⊗T + I , thus,

f2 = id;

and for the #rst component we get two commutative diagrams: one tells us that f1 is
a homomorphism of (H ⊗ )-algebras, and the other one is as follows:

Since f2 = id, this diagram tells us that f1 · �S = s, which proves the Substitution
Theorem.

Corollary 5.8. For every iteratable object H , a 5nal Ĥ -coalgebra T is a monoid with
respect to

� : I → T

and

� = îdT : T ⊗ T → I:

Proof. In fact, the equality � · �T = id follows from the de#nition of � and the
other two equalities de#ning monoids in (B;⊗; I) easily follow from the uniqueness
of ŝ.

De�nition 5.9. The monoid of the above corollary is called a completely iterative
monoid generated by an iteratable object H .

We now prove a remarkable property of iteratable categories B: denote by

T : B→ B

the functor assigning to every object H a completely iterative monoid generated by H .
Then T, as an object of [B;B], is itself a completely iterative monoid: it is generated
by IdB. Example: Set is an iteratable category, see Example 5.5(5), and the assignment
H �→ H∞ is, as an object of [Set;Set], itself a completely iterative monoid generated
by Id.
For every monoidal category B we consider [B;B] as a monoidal category (with

the “pointwise” tensor product P⊗Q :H �→P(H)⊗Q(H) and the “pointwise” unit
CI :H �→ I).



42 P. Aczel et al. / Theoretical Computer Science 300 (2003) 1–45

Theorem 5.10. Suppose that (B;⊗; I) is an iteratable category. Then the following
hold:
(1) The functor category [B;B] is iteratable.
(2) The assignment of a completely iterative monoid to every object is an endofunc-

tor of B which, as an object of [B;B], is itself a completely iterative monoid
generated by IdB.

Proof. 1. First observe that [B;B] is indeed a distributive monoidal category, since
the required structure is transported pointwise from B.
Consider now any functor H :B→B. To show that the derived functor

Ĥ = H ⊗ ( ) + CI : [B;B]→ [B;B]

has a #nal coalgebra, form, for each B in B, a #nal coalgebra of the functor H (B)⊗ ( )
+ I :

aB : T (B)→ H (B)⊗ T (B) + I:

It is clear that there is a unique canonical way of making the assignment B �→T (B)
functorial: consider any morphism f :B→C in B and de#ne T (f) :T (B)→T (C) to
be the unique morphism such that the following diagram

commutes. It is easy to show that this indeed de#nes a functor T :B→B.
The collection of morphisms aB :T (B)→H (B)⊗T (B) + I is natural in B and thus

de#nes a coalgebra for H ⊗ ( ) + CI :

a : T → H ⊗ T + CI :

To show that a is a #nal coalgebra, consider any coalgebra

b : S → H ⊗ S + CI :

For every B in B there exists a unique morphism 'B : S(B)→T (B) such that the
following square

S(B) bB−−−−−→ H (B)⊗ S(B) + I

'B




 H (B)⊗'B+id

T (B) −−−−−→
aB

H (B)⊗ T (B) + I
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commutes. To show that the collection ('B) constitutes a natural transformation, observe
that, for every f :B→C, both

'C · S(f) : S(B)→ T (C) and T (f) · 'B : S(B)→ T (C)

are homomorphisms of (H (C)⊗ ( ) + I)-coalgebras from

(H (f)⊗ S(B) + id) · bB : S(B)→ H (C)⊗ S(B) + I

to

aC : T (C)→ H (C)⊗ T (C) + I

and therefore they are equal.
We have formed a #nal coalgebra

a : T → H ⊗ T + CI :

2. Put ?(B)=TB for every object B, where TB denotes a completely iterative monoid
generated by B, and extend the assignment B �→ ?(B) to a functor ? :B→B as in
the #rst part of the proof.
Let us now consider the functor

Id⊗ ( ) + CI : [B;B]→ [B;B]:

The collection of morphisms aB :?(B)→B⊗?(B)+ I de#nes a coalgebra for Id⊗ ( )
+ CI :

a : ?→ Id⊗ ? + CI

and it follows from the #rst part of the proof that this coalgebra is #nal.
To conclude the proof use the monoidal version of the existence of a completely

iterative monad from Corollary 5.8.

Finally, we show that if H is an iteratable object (with the corresponding monoid
T ) of a left distributive monoidal category B, then guarded equation morphisms have
unique solutions.

De�nition 5.11. Let H be an iteratable object of a left distributive category B with a
completely iterative monoid T . Every morphism of the form

e : S → T ⊗ (S + I) S an object of B

is called an equation morphism. It is called guarded if it factors through
[%⊗ (S + I); (�⊗ (S + I)) · inr]:
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Solution Theorem 5.12. For every iteratable object H every guarded equation mor-
phism e : S→T ⊗ (S + I) has a unique solution, i.e., there exists a unique morphism
e† : S→T such that the following diagram

commutes.

Proof. The proof is analogous to the proof of Corollary 3.8.
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Abstract

Completely iterative theories of Calvin Elgot formalize (potentially infinite) computations as solutions
of recursive equations. One of the main results of Elgot and his coauthors is that infinite trees form a free
completely iterative theory. Their algebraic proof of this result is extremely complicated. We present com-
pletely iterative algebras as a new approach to the description of free completely iterative theories. Examples
of completely iterative algebras include algebras on complete metric spaces. It is shown that a functor admits
an initial completely iterative algebra iff it has a final coalgebra. The monad given by free completely iter-
ative algebras is proved to be the free completely iterative monad on the given endofunctor. This simplifies
substantially all previous descriptions of these monads. Moreover, the new approach is much more general
than the classical one of Elgot et al. A necessary and sufficient condition for the existence of a free completely
iterative monad is proved.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of the current paper is the study of completely iterative algebras (cia), i.e., algebras in
which every system of recursive equations has a unique solution. This study allows a new approach
to completely iterative theories, which were introduced and studied by Elgot et al. [10]. Completely
iterative theories allow the treatment of the semantics of potentially infinite computations of a
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computer program in an algebraic setting abstracting away from the nature of the external memo-
ry. They are algebraic theories (in the sense of Lawvere [13] and Linton [14]) that allow for unique
solutions of fixed point equations. An important example of a completely iterative theory is the
theory of finite and infinite trees over a signature�. In [10] it is shown that this is the free completely
iterative theory over �.

In recent years it has been realized that a more abstract categorical approach to completely itera-
tive theories allows to generalize the classical results beyond the universal algebra setting.Moreover,
the proofs become substantially simpler and conceptually much clearer, see the work of Moss [17]
and the work of Aczel et al. [1]. To be a bit more precise, in lieu of a signature one starts with an
endofunctorH on Set (or more generally, any categoryAwith binary coproducts) having “enough
final coalgebras,” i.e., for any object Y there exists a final coalgebra T Y of H( _ )+ Y . The main
result of [1] is that T is a free completely iterative monad on H .

In the present paper, we add completely iterative algebra to the picture, andwe establish for every
category A with binary coproducts, and every endofunctor H on A that given an object mapping
T of A the following three statements are equivalent:

(a) for every object Y , T Y is a final coalgebra of H( _ )+ Y ,
(b) for every object Y , T Y is a free completely iterative H -algebra on Y , and
(c) T is a free completely iterative monad on H .

The implication that (a) implies (c) is the main result of [1]. The converse (c) implies (a) is a new
result. It has appeared before in the extended abstract [16] but not in a journal article. The main
contribution of the current paper is to add (b) to the above list. Here we shall first establish the
equivalence of (a) and (b), and then we prove that (b) implies (c). This leads to a substantial simpli-
fication of the proof of [1]. For the converse (c) implies (b) we use the technical material from [16],
and we take here the opportunity to streamline it a bit. More on the technical side this material will
allow us to drop an annoying little side condition of our results in [1]—there coproduct injections
were assumed to be monomorphic—and the freeness in (c) can be slightly extended.

In Section 1, we shall restrict ourselves to the classical case to clarify our results a bit more. So
suppose we are given a polynomial endofunctor H� on the category Set, i.e., one that is obtained
from a signature � = (�n)n<ω as follows:

H�X = �0 +�1 × X +�2 × X 2 + · · · .
Thus, the classical�-algebras are precisely the algebras of the functorH�. From Section 2 on we

shall work more generally with an endofunctor on an arbitrary category with binary coproducts.
A �-algebra A is called completely iterative, if every system

xi ≈ ti, i ∈ I , (1.1)

where I is some (possibly infinite) set, X = { xi | i ∈ I } is a set of variables and the ti are terms over
X + A, none of which is just a single variable, has a unique solution in A. By a solution we mean a
set { xi† | i ∈ I } of elements of A such that the above formal equations (1.1) become actual identities
in A when the variables are substituted by the solutions and the terms ti are interpreted in A, i.e.,

xi
† ≡ ti

(
{ xj†/xj | j ∈ I }

)
, i ∈ I.
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Example. Suppose we have a signature �. The algebra A = T� of all finite and infinite �-trees, i.e.,
trees whose nodes with n children are labelled by n-ary operation symbols from �, is completely
iterative. For example, let � consist of a binary operation symbol ∗ and a constant symbol c. Then
the following system:

x1 ≈ x2 ∗ t x2 ≈ (x1 ∗ s) ∗ c, (1.2)

where s and t are some trees in T� has the following solution:

Observe that it is sufficient to allow for the right-hand side in (1.2) only so-called flat terms, i.e.,
terms t that are either

t = �(x1, . . . , xn), � ∈ �n, x1, . . . , xn ∈ X ,
or

t ∈ A.
In fact, for every system (1.1) one can give a system with only flat terms on the right-hand side,
which has the same solution. This is done by introducing (possibly infinitely many) new variables.
For example for the system (1.2) we get the following flat one:

x1 ≈ x2 ∗ z1 z2 ≈ x1 ∗ z4
x2 ≈ z2 ∗ z3 z3 ≈ c

z1 ≈ t z4 ≈ s

Obviously, the solutions x1† and x2† are the same trees as before.
Clearly, one can write every system with flat right-hand sides as a single map

e : X −→ H�X + A

and a solution is a map e† : X −→ A such that the following square

X
e† ��

e
��

A

H�X + A
H�e

†+A
�� H�A+ A

[a,A]
��



4 S. Milius / Information and Computation 196 (2005) 1–41

where a denotes the algebra structure of A, commutes. We call an algebra A completely iterative
if any flat equation morphism e has a unique solution e†. Among classical algebras the property
of being completely iterative seems to be quite rare. However, there exist interesting examples of
completely iterative algebras, e.g., the algebras

T�

of finite and infinite �-trees form a completely iterative algebra, in fact, we prove below that T� is
the initial completely iterative �-algebra. It follows that for any set Y the algebra

T�Y

of all finite and infinite �-trees with leaves labelled by constant symbols from � or variables from
Y is a free cia on Y . The free cias define a monad �� on Set, and this monad is the free completely
iterative monad on H�.

In our proof we work with an arbitrary endofunctor H on Set (or, more generally, on every
category with binary coproducts), which has free cias on every set Y . In Section 2, we shall intro-
duce completely iterative algebras in this general setting. And we will prove the equivalence of the
above statements (a) and (b). In Section 3, we prove an extension of the Solution Theorem of [1]
to all completely iterative algebras. In Section 4, we prove (b) implies (c) (see above): Let H be an
endofunctor on a category with binary coproducts (with monomorphic injections), which has free
cias on every object Y . Then these free cias define a monad �, and this monad is a free completely
iterative monad onH . In Section 5, we show how the technical assumption of having monomorphic
coproduct injections in the base category used in Section 4 can be avoided at the expense of being
slightly more careful with some technical notions. This also leads to an extension of the freeness
result. Finally, we shall prove in Section 6 that any free completely iterative monad is given by
free completely iterative algebras, i.e., (c) implies (b) above. More precisely, if � = (T , �,�) is a free
completely iterative monad on H , then for every object Y , T Y is a free cia on Y , or, equivalently,
T Y is a final coalgebra of H( _ )+ Y .

Related Work. The study of completely iterative algebras and completely iterative monads is
very closely linked to the study of iterative algebras and iterative monads. In fact, historically, iter-
ative theories were introduced by Elgot [9] before completely iterative theories. They are, roughly
speaking, algebraic theories such that finitary recursive systems of equations, i.e., with a finite set
of variables only, have unique solutions. Adámek et al. [2,3] have given a categorical approach to
iterative theories. Similar ideas as those we use in the current paper for a simplified approach to
completely iterative monads apply to the iterative case. In the latter case one starts by investigating
iterative algebras, i.e., algebras that admit unique solutions of finitary systems of recursive equa-
tions. This leads to a construction of free iterative algebras using coalgebras, and these algebras
yield the free iterative monad. This simplified approach to iterative theories can be found in [4].
That paper developed simultaneously with the current one.

In the classical setting of polynomial endofunctors on Set, iterative algebras were introduced
by Nelson [18] to obtain a short proof of Elgot’s description of free iterative theories. Also Tiu-
ryn [20] introduced and studied a concept of iterative algebras with the aim of relating iterative
theories to properties of algebras. Our notion of completely iterative algebras is an extension and
generalization of the notion of iterative algebra of [18].
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2. Completely iterative algebras for an endofunctor

Let H : A −→ A be an endofunctor on a category A with binary coproducts. We denote by
inl : X −→ X + Y and inr : Y −→ X + Y the coproduct injections and we shall write can : HX +
HY −→ H(X + Y ) for the canonical arrow [H inl,H inr].
Definition 2.1. Amorphism e : X −→ HX + A of A is called a flat equation morphism in (the object
of parameters) A. Suppose that A is the underlying object of an H -algebra a : HA −→ A. Then a
solution of e in A is a morphism e† : X −→ A such that the diagram

X
e† ��

e

��

A

HX + A
He†+A

�� HA+ A

[a,A]
��

(2.1)

commutes.
An H -algebra is called completely iterative (or shortly, cia) if every flat equation morphism in it

has a unique solution.

Notation 2.2. For any flat equation morphism e : X −→ HX + Y and any morphism f : Y −→ Z

we get a flat equation morphism f • e as the “renaming of parameters by f ”:

f • e ≡ X
e ��HX + Y

HX+f
��HX + Z.

Homomorphisms of H -algebras are precisely the solution-preserving morphisms as we prove
now:

Proposition 2.3. Let (A, a) and (B, b) be completely iterative H -algebras, and let f : A −→ B be a
morphism. Then the following are equivalent:

(i) f : (A, a) −→ (B, b) is an H -algebra homomorphism,
(ii) f is solution-preserving, i.e., for all e : X −→ HX + A we have

(f • e)† = f · e†.

Proof. (i) ⇒ (ii): Consider the following commutative diagram:

X
e† ��

e

��

��

��

f •e

��

A
f

�� B

HX + A
He†+A

��

HX+f
��

HA+ A

[a,A]

��

Hf+f

���
���

���
���

���
�

HA+f
��

HX + B
He†+B

�� HA+ B
Hf+B

�� HB+ B

[b,B]

��
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In fact, the upper middle square commutes since e† is a solution of e, and the upper right-hand part
since f is an H -algebra homomorphism. The other three parts are obvious. Thus, the outer square
commutes proving that f · e† is a solution of f • e. The result follows from the unicity of solutions
in B.

(ii) ⇒ (i): Suppose that f : A −→ B is a solution-preserving morphism. We have to show that f
is an H -algebra homomorphism, i.e., f · a = b · Hf . To prove it we use the uniqueness of solutions.
First, consider the equation morphism

e ≡ HA+ A
H inr+A

��H(HA+ A)+ A.

Its unique solution is [a,A] : HA+ A −→ A. In fact, the following diagram

HA+ A
[a,A]

��

H inr+A
�� ����

����
����

���

����
����

����
���

A

H(HA+ A)+ A
H [a,A]+A

�� HA+ A

[a,A]
��

commutes. Since f is solution-preserving we know that f · a is the left-hand component of the
unique solution of the following equation morphism:

f • e ≡ HA+ A
H inr+A

��H(HA+ A)+ A
H(HA+A)+f

��H(HA+ A)+ B,

in symbols, f · a = (f • e)† · inl. Now consider the following commutative diagram:

HA+ A

H inr+A
��

Hf+f
��

H(inr·f)+f

����
���

���
���

���
���

���
���

��
HB+ B

H inr+B

��

[b,B]
��

��
��

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
��

��
� B

H(HA+ A)+ A

H(HA+A)+f
��

H(HA+ A)+ B
H(Hf+f)+B

�� H(HB+ B)+ B
H [b,B]+B

�� HB+ B

[b,B]

��

It shows that [b,B] · (Hf + f) = (f • e)†; thus, we obtain

f · a = (f • e)† · inl = b · Hf ,

which completes the proof. �
Notation 2.4. We denote by CIAH the category of all completely iterative algebras and H -algebra
homomorphisms. It is a full subcategory of AlgH , the category of all H -algebras and homomor-
phisms.
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Examples 2.5.
(i) Classical algebras are seldom cias. For example, letH� : Set −→ Set be the functor expressing

one binary operation, H�X = X × X . Then a group is a cia iff its unique element is the unit 1,
since the recursive equation x ≈ x · 1 has a unique solution. A lattice is a cia iff it has a unique
element; consider x ≈ x ∨ x.

(ii) In [4] it was proved that the algebra of addition on

Ñ = { 1, 2, 3, . . . } ∪ { ∞ }

is a cia w.r.t. the functor H� of (i).
(iii) Final coalgebras are completely iterative algebras. More precisely, denote by (T ,�) a final

coalgebra of H , i.e., for any coalgebra (C , !) there exists a unique coalgebra homomorphism
!" : (C , !) −→ (T ,�) so that � · !" = H(!") · ! . Recall that by Lambek’s Lemma [12], the struc-
ture map � is an isomorphism, whose inverse we denote by # : HT −→ T . Then thisH -algebra
(T , #) is completely iterative. In fact, consider an equation morphism

e : X −→ HX + T ,

and form the H -coalgebra

e ≡ X + T
[e,inr]

��HX + T
HX+�

��HX + HT
can ��H(X + T ).

We claim that the left-hand component of e" : X + T −→ T is the desired solution of e,
and that it is unique. Indeed, any coalgebra homomorphism (X + T , e) −→ (T ,�) must
have as its right-hand component a coalgebra homomorphism from (T ,�) to itself, whence
the identity on T . Then we get the following commutative diagram for the left-hand compo-
nent:

X
s ��

e

��

��

��

e·inl

��

T

HX + T
Hs+T

��

HX+�
��

HT + T

[#,T ]

��

[HT ,�]

��

HX + HT

can

��

[Hs,HT ]
���

���

����
���

�

H(X + T)
H [s,T ]

��HT
��

��

#

��

If s is the left-hand component of e", then the outer shape commutes, whence so does the upper
square, which shows that s solves e. Conversely, if s is a solution of e, then the upper square
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commutes and therefore the outer shape does, too. Thus, [s, T ] : X + T −→ T is a coalgebra
homomorphism, and so we have [s, T ] = e".

(iv) Infinite trees form completely iterative algebras. Let � be a signature. It is well-known that
the �-algebra T� of all (finite and infinite) �-trees is a final H�-coalgebra. Thus, T� is a
cia.

(v) Finitely branching strongly extensional trees. The final coalgebra of Pfin : Set −→ Set, the
finite power-set functor, has been described by Worrell [21]. It is the algebra T of all strongly
extensional finitely branching trees (i.e., unordered trees such that the subtrees defined by any
pair of siblings are not bisimilar). It follows from (iii) that T is a cia.

(vi) Algebras over complete metric spaces as a tool for the semantics of infinite computation have
been investigated by America and Rutten [6]. Those algebras yield cias. Take A = CMS, the
category whose objects are complete metric spaces (i.e., such that each Cauchy sequence has
a limit), where distances are measured in the interval [0, 1]. The morphisms of CMS are the
non-expanding maps, i.e., functions f : (X , dX ) −→ (Y , dY ) such that dY (f(x), f(y)) � dX (x, y)
for all x, y ∈ X . Recall that for given complete metric spaces (X , dX ) and (Y , dY ) the hom-set
in CMS is a complete metric space with the metric given by

dX ,Y (f , g) = sup
x∈X

dY (f(x), g(x)).

Nowsupposewe have a functorH : CMS −→ CMSwhich is contracting, i.e., there exists a con-
stant ε < 1 such that for any non-expandingmaps f , g : (X , dX ) −→ (Y , dY ) between complete
metric spaces we have

dHX ,HY (Hf ,Hg) � ε · dX ,Y (f , g).

Then any non-empty H -algebra (A, a) is completely iterative. In fact, given any flat equa-
tion morphism e : X −→ HX + A in CMS, choose some element a ∈ A and define a Cauchy
sequence (e†

n)n∈N in CMS(X ,A) inductively as follows: let e†
0 = consta, and given e†

n define

e
†
n+1 by the commutativity of the following diagram:

X

e

��

e
†
n+1

�� A

HX + A
He

†
n+A

�� HA+ A

[a,A]
��

In [5] it is proved that this is indeed a Cauchy sequence in CMS(X ,A) and that its limit yields
a unique solution of e.

(vii) (Unary algebras over Set)
Here we have A = Set and H = Id . A unary algebra (A,�A) is completely iterative if and
only if
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(a) there exists a unique fixed point a0 ∈ A of all �kA : A −→ A, k � 1,
(b) for any sequence (bi)i<ω in A with bi = �A(bi+1) we have bi = a0 for every i < ω (i.e., for

any a /= a0 in A there is no infinite �-chain of elements of A ending in a).
To see that (a) and (b) are necessary, solve the equation x ≈ �x to obtain the fixed point a0.
Furthermore, the system

xi ≈ �xi+1, i < ω,

has as solutions any sequence as in (b); in particular, the constant sequence at a0 is a solution,
and this must be the unique one.
For the sufficiency, suppose that (A,�A) satisfies (a) and (b). Given any equation morphism
e : X −→ H�X + A there is a unique solution e† : X −→ A: If x ∈ X is such that there exist
equations

x = x0 ≈ �x1

x1 ≈ �x2
...

xk−1 ≈ �xk

xk ≈ a,

where a ∈ A, then e†(xk) = a and therefore e†(x) = �k(a). Otherwise we have equations

x = x0 ≈ �x1

x1 ≈ �x2

x2 ≈ �x3
...

and (a) and (b) ensure that the unique solution is given by e†(xi) = a0, for all i.

We shall now show that final H -coalgebras are precisely the initial completely iterative
H -algebras. This is the first step towards proving the equivalence of the statements (a) and (b)
of the introduction. First, we establish two auxiliary results. For the first one observe that any en-
dofunctor H lifts to one on the category AlgH of algebras. The lifted endofunctor acts on objects
by (A, a) �−→ (HA,Ha), and on morphisms its action is that of H . The same is true for completely
iterative algebras.

Proposition 2.6. Any endofunctor H lifts to the category of completely iterative H -algebras, i.e., for
any cia (A, a) the H -algebra (HA,Ha) is completely iterative, too.

Proof. Suppose we are given an equation morphism e : X −→ HX + HA, we have to produce a
solution e† : X −→ HA, and show its uniqueness. Let us form an equation morphism

e ≡ X
e ��HX + HA

HX+a
��HX + A
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w.r.t. (A, a). Then its solution e† makes the diagram

X
e† ��

e

��

e

����
���

���
���

��� A

HX + A
He†+A

�� HA+ A
[a,A]

�������������

HX + HA
HX+a

��������������

[He†,HA]
�� HA

a

��

(2.2)

commutative. In fact, its upper part commutes since e† is a solution, and the other two parts are
obvious. Now define

e† ≡ X
e ��HX + HA

[He†,HA]
��HA.

We prove that e† solves e. In fact, the diagram

X

e

��

e �� HX + HA
[He†,HA]

�� HA

HX + HA

[He†,HA]�������

		����������

H([He†,HA]·e)+HA
�� HHA+ HA

[Ha,HA]
��

commutes; the upper left-hand triangle is obvious, and so is the right-hand coproduct component
of the lower right-hand one. The left-hand coproduct component of the latter triangle yields the
outer square of Diagram (2.2) after H is removed. This proves the existence of a solution.

For the uniqueness, suppose that s : X −→ HA solves e. Then a · s solves e. In fact, notice that
a : (HA,Ha) −→ (A, a) is an H -algebra homomorphism and then use a similar argument as in the
first part of the proof of Proposition 2.3. Thus, by uniqueness of solutions we have a · s = e†, and
we obtain

s = [Ha,HA] · (Hs+ HA) · e
= [H(a · s),HA] · e
= [He†,HA] · e
= e†. �

Lambek’s Lemma [12] states that the structure map of an initial H -algebra is an isomorphism.
The same is true in the completely iterative case.

Lemma 2.7. If (T , #) is an initial completely iterative H -algebra, then the structure morphism # is an
isomorphism.
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Proof. By Proposition 2.6 we have a cia (HT ,H#). Then by initiality we obtain a unique H -algebra
homomorphism i : (T , #) −→ (HT ,H#), i.e., such that the following square:

HT
# ��

Hi
��

T

i
��

HHT
H#

�� HT

commutes. Clearly, # : (HT ,H#) −→ (T , #) is an H -algebra homomorphism. Thus, by initiality we
conclude that # · i = 1T . But then also i · # = H# · Hi = H 1T = 1HT . �

We are now ready to prove the main result of this section.

Theorem 2.8. Let H : A −→ A be any endofunctor.
(i) If (T ,�) is a finalH -coalgebra, then (T , #)with # = �−1 is an initial completely iterativeH -algebra.
(ii) Conversely, if (T , #) is an initial completely iterativeH -algebra, then (T ,�) with � = #−1 is a final

H -coalgebra.

Proof. Before we prove the two statements we shall establish one useful fact about the relation
between H -coalgebras and cia’s. Suppose that (C , c) is any H -coalgebra and (A, a) is a cia. We can
form an equation morphism

e ≡ C
c ��HC

inl ��HC + A.

Then there is a one-to-one correspondence between solutions of e and morphisms h : C −→ A such
that h = a · Hh · c (the so-called coalgebra to algebra homomorphisms). Indeed, this follows easily
by inspection of the following diagram:

C
h ��

c


�

���
���

���

e

��

A

HC
inl

��		
		
		
		
	

Hh �� HA

a

��										

inl



�
��

��
��

��

HC + A
Hh+A

�� HA+ A

[a,A]

��

Since there exists a unique solution e† for e, there exists a unique coalgebra to algebra homomor-
phism h. It is now quite easy to prove the theorem.

(i) We have seen in Example 2.5 that (T , #) is completely iterative. It remains to prove the initial-
ity. Given any cia (A, a) we have by the above considerations a unique coalgebra to algebra
homomorphism h : T −→ A, i.e., unique H -algebra homomorphism h : (T , #) −→ (A, a).
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(ii) By Lemma 2.7 we only need to show finality of the coalgebra (T ,�). Given any H -coalgebra
(C , c) there exists a unique coalgebra to algebra homomorphism h : C −→ T , i.e., a unique
H -coalgebra homomorphism h : (C , c) −→ (T ,�). �

Remark 2.9. Observe that in the above proof of part (ii) in lieu of the full universal property of
(T , #) we have only used that the structure map # is an isomorphism. Thus, the only cia with an
isomorphic structure map is the initial one.

In the realm of H -algebras it is quite trivial to show that the initial algebra for the functor
H( _ )+ Y is precisely the free H -algebra on the object Y . The same will now be proved for cia’s,
and this is the second neccessary ingredient to establish the equivalence of statements (a) and (b)
from the introduction.

By a free cia on an object Y of A we mean, of course, a cia (T Y , #Y ) together with a morphism
�Y : Y −→ T Y in A such that for any cia (A, a) and any morphism f : Y −→ A in A there exists a
unique homomorphic extension f " : (T Y , #Y ) −→ (A, a), i.e., such that the diagram

Y
�Y ��

f
















 T Y

f "

��

HT Y
#Y��

Hf "

��

A HA
a��

commutes.

Theorem 2.10. For any object Y of A the following are equivalent:
(i) T Y is an initial completely iterative H( _ )+ Y -algebra.
(ii) T Y is a free completely iterative H -algebra on Y .

Proof.First, we shall establish the following fact: To give a completely iterativeH -algebra (A, a) and
amorphism f : Y −→ A is the same as to give a completely iterative algebra (A, [a, f ]) ofH( _ )+ Y .

In fact, suppose we have a cia (A, a) and a morphism f . Then it is our task to find a unique
solution for any equation morphism

e : X −→ HX + Y + A

for the functor H( _ )+ Y . But e gives the following equation morphism

e ≡ X
e ��HX + Y + A

HX+[f ,A]
��HX + A

for the functor H . Now the solutions of e correspond precisely to the solutions of e. Indeed, this
follows by inspecting the following diagram:
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X
s ��

e

��

��

��
e

��

A

HX + Y + A
Hs+Y+A

��

HX+[f ,A]
��

HA+ Y + A

[[a,f ],A]
��

HA+[f ,A]
��

HA+ A
Hs+A

�� HA+ A

��

��

[a,A]

��

The arrow s solves e if and only if the upper part commutes. Equivalently, the outer square com-
mutes. But this says precisely that s solves e. Since e has a unique solution, so has e.

For the converse, suppose that (A, [a, f ]) is a completely iterative algebra of H( _ )+ Y . We must
show that any equation morphism

e : X −→ HX + A

has a unique solution. We simply form an equation morphism

e ≡ X
e ��HX + A

HX+inr
��HX + Y + A.

As before, solutions of e correspond precisely to solutions of e. In fact, inspect the following
diagram:

X
s ��

e

��

��

��
e

��

A

HX + A
Hs+A

��

HX+inr
��

HA+ A

[a,A]
��

HA+inr
��

HX + Y + A
Hs+Y+A

�� HA+ Y + A

��

��

[a,f ,A]

��

The morphism s solves e precisely if the upper square commutes. This is equivalent to the commu-
tativity of the outer shape, i.e., s solves e. Hence, since e has a unique solution, so has e.

The result of the current theorem can now be proved precisely as in the case of ordinary H -alge-
bras. This is straightforward and we leave it to the reader. �

In [1] we have called an endofunctor iteratable, if for any object Y of A there exists a final co-
algebra T Y of H( _ )+ Y . Collecting the results of Theorems 2.8 and 2.10 we obtain the following
characterization, i.e., the equivalence of statements (a) and (b), see Section 1.

Corollary 2.11. For any endofuntor H : A −→ A the following are equivalent:
(i) H is iteratable with final coalgebras T Y of H( _ )+ Y , for any Y in A.
(ii) For any object Y there exists a free completely iterative H -algebra T Y on Y .
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Example 2.12. The free cias of H� : Set −→ Set.
Recall from Example 2.5(iv) the algebra T� of all (finite and infinite) �-trees. This alge-
bra is a cia. For every set Y the algebra T�Y of all �-trees over Y (i.e., trees with nodes
having n > 0 children labelled by n-ary operation symbols and leaves labelled by constant
symbols or variables from the set Y ) is also a cia. It is well known that T�Y is a final coalge-
bra of H�( _ )+ Y . By Corollary 2.11, this implies that T�Y is a free completely iterative �-algebra
on Y .

Example 2.13. The free cias of Pfin : Set −→ Set.
Recall the final coalgebra T of Pfin from Example 2.5(v). Analogously, for a set Y a final coalgebra
of Pfin( _ )+ Y is the algebra T(Y ) of all finitely branching strongly extensional trees with leaves
partially labelled in the set Y . By Corollary 2.11, this implies that T(Y ) is a free cia on Y .

Remark 2.14.A special case of a recursive equation morphism is that where no parameters appear,
i.e., simply coalgebras e : X −→ HX . They appear in various contexts, e.g., in non-wellfounded set
theory [7] or, dually, in the theory of transitive sets [19]. However, these special equation morphisms
are not sufficient for our purposes. Let us (just in the present remark) call an algebraweakly iterative
if every equation morphism e : X −→ HX has a unique solution e† : X −→ A (i.e., e† = a · He† · e).
For example in case H� : Set −→ Set represents a binary operation, H�X = X × X , the free cia
T�{ a } on one generator has the property that every equation e : X −→ X × X has the unique
solution e† : x �−→ t0, the constant function to the complete binary tree t0. Consequently, every
subalgebra of T�{ a } containing t0 is weakly iterative. However, not every such subalgebra is com-
pletely iterative; for example, the smallest subalgebra of T�{ a } containing t0 and all finite �-trees
is weakly iterative but not completely iterative.

3. The solution theorem

In Section 1, we considered non-flat system (1.1) of formal recursive equations for �-algebras.
And we argued that, due to the possibility of flattening such a system it suffices to consider only the
flat equation morphisms X −→ H�X + A. In this section, we shall make that statement precise by
showing that in completely iterative algebras (not only in Set) much more general systems of recur-
sive equations are uniquely solvable. This result illustrates that for polynomial endofunctors onSet
cias are an extension and generalization of iterative algebras as presented by Nelson [18]. Applied
to free cias our result implies the solution theorem of [1], which was also discovered independently
by Moss [17] under the name Parametric Corecursion.

Let us remark first that the condition stated in (1.1) that no right-hand side of a system is a vari-
able is important; for example, the equation x ≈ x has a unique solution only in the trivial terminal
algebra. Systems satisfying the above condition are called guarded.

In this section we assume that H : A −→ A is an iteratable endofunctor on a category A with
binary coproducts. By Corollary 2.11, there exists a free cia T Y on every object Y . In other words,
we have an adjoint situation

CIAH ��⊥ A��
.
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This adjunction creates a monad � = (T , �,�) on A. More detailed, for every object Y denote by
T Y the (underlying object of a) free cia on Y with universal arrow

�Y : Y −→ T Y

and algebra structure

#Y : HT Y −→ T Y.

Use the freeness of the cia T T Y on T Y to obtain �Y : T T Y −→ T Y as the unique homomor-
phism of H -algebras with �Y · �T Y = 1T Y . It is easy to check the naturality of �, #, and � as well
as the three monad laws. Notice also that it follows from Theorems 2.8 and 2.10 that the mor-
phism [#Y , �Y ] : HT Y + Y −→ T Y is an isomorphism whose inverse is the structure map of a final
coalgebra of H( _ )+ Y .

Finally, observe that the following Substitution Theorem proved in [1] using coinduction is now
a trivial consequence of the freeness of the cias T Y :

Theorem 3.1 (Substitution theorem). For any morphism s : X −→ T Y there exists a unique homo-
morphism ŝ : TX −→ T Y of H -algebras extending s, i.e., with ŝ · �X = s.

Remark 3.2. In case of a polynomial endofunctor on Set induced by a signature � Theorem 3.1
states that substitution works for infinite �-trees in precisely the same way as for terms (i.e., finite
trees): for a set X of variables the mapping s : X −→ T�Y assigns to each variable its substitute,
which is a �-tree over the set Y , and the extension ŝ : T�X −→ T�Y performs on any tree t of T�X
the substitution s, to obtain a tree of T�Y .

Notice that the fact that each ŝ is an H -algebra homomorphism results in the following property
of substitution of infinite trees: for each tree t which is not just a leaf labelled by a variable, i.e., for
all elements of the left-hand coproduct component H�T�X of T�X , the result of any substitution
will never be just a leaf labelled in Y , i.e., ŝ(t) lies in H�T�Y . Or, more shortly, non-variables are
preserved by substitution.

Whereas the concept of variables and substitution is appropriately captured categorically by the
concept of a monad, the idea of “non-variable” and its preservation by substitution is not. How-
ever, we will need such a concept when we speak of guarded systems of equations below. In fact, in
the setting of algebraic theories (i.e., monads on Set) Elgot [9] introduced the concept of an ideal
theory. In [1] we proved that the following concept is equivalent to this.

For a monad � = (S , �,�) over Set we can form the complements of the image �X [X ] of X under
�X in SX , say,

�X : S ′X −→ SX

for all objects X .
Themonad is called idealprovided� : S ′ −→ S is a subfunctor of S , and themonadmultiplication

has a domain-codomain restriction �′ : S ′S −→ S ′. For general base categories the corresponding
concept is as follows:
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Definition 3.3. By an ideal monad is understood a six-tuple

� = (S , �,�, S ′, �,�′)

consisting of amonad (S , �,�), a subfunctor � : S ′ ↪−→ S and a natural transformation�′ : S ′S −→
S ′ such that

(i) S = S ′ + Id with coproduct injections � and �, and
(ii) � restricts to �′ along �, i.e., the following square

S ′S
�′

��

�S
��

S ′

�

��

SS �
�� S

commutes.

Examples 3.4.
(i) Free monads are ideal. If H is a varietor, i.e., there exist free H -algebras F Y on every object Y

ofA, then this is the object assignment of a freemonad F onH , and thismonad is ideal. In fact,
it is well-known that we have a coproduct F Y = HF Y + Y with injections ϕY : HF Y −→ F Y

and �Y : Y −→ F Y given by the structure and the universal arrow of the freeH -algebra. Thus,
since coproduct injections are monomorphic, we have the subfunctor

ϕ : HF ↪−→ F.

The restriction of � is

�′ = H� : HFF −→ HF

and the square

HFF

ϕF

��

H�
�� HF

ϕ

��

FF �
�� F

commutes since �Y is defined as the unique H -algebra homomorphism with �Y · �F Y = 1F Y .
(ii) Similarly, the free cia monad � = (T , �,�) together with the endofunctor HT and the natural

transformation

# : HT ↪−→ T

expressing the H -algebra structure #Y : HT Y −→ T Y of each T Y is ideal. The restriction of �
is �′ = H� again.
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(iii) The monad on Set given by the free algebras with a binary commutative operation is ideal. In
fact, this is the free monad on the endofunctor that assigns to every set X the set of unordered
pairs from X .

(iv) The free semigroupmonad X �−→ X+ onSet is ideal. Here S ′X ↪−→ X+ is the subset of words
of length at least 2, and �′ is the obvious restriction of the concatenation of words to that
subset.

(v) The free monoid monad X �−→ X ∗ on Set is not ideal. In fact, recall that the unit �X maps
elements of X to words of length 1. Now consider the word xx′ in { x, x′ }∗ and the substitution
s that subsitutes x by itself and x′ by the empty word. Then ŝ(xx′) = x whence � cannot have
the necessary restriction.

(vi) Classical algebraic theories (groups, lattices, etc.) are usually not ideal.
(vii) For a polynomial endofunctor on Set the algebras R�Y of rational trees, i.e., those finite and

infinite �-trees over Y that have (up to isomorphism) finitely many subtrees only, yield an
ideal monad R� on Set. More generally, we have shown in [4] that any finitary functor H on
a locally presentable category A generates a rational monad R, and that this monad is ideal.

(viii) Coproducts of ideal monads exist and are ideal. Assume that A has colimits of ω-chains and
let S = S ′ + Id andM = M ′ + Id be ideal monads so that S ′ andM ′ are ω-cocontinuous, i.e.,
they preserve colimits of ω-chains. Then a coproduct of S and M in the category of monads
of A exists and is an ideal monad, see [11].

Remark 3.5. In [1] we defined an equation morphism to be a morphism

e : X −→ T(X + Y )

generalizing and extending the notion of a non-flat system, see (1.1). An equation morphism e is
called guarded whenever there exists a factorization through [#X+Y , �X+Y · inr]:

X
e ��

��

T(X + Y )

HT(X + Y )+ Y

[#,�·inr]
��

We proved that any guarded equation morphism has a unique solution, i.e., a unique morphism
e† : X −→ T Y such that the square

X
e† ��

e
��

T Y

T(X + Y )
T [e†,�Y ]

�� T T Y

�Y

��
(3.1)

commutes. It is easy to extend the notion of equation morphisms and their solution to any monad,
and the notion of guardedness to any ideal monad �, see [1], Definition 4.7. In the current paper, we
go one step further, and we introduce solutions in any Eilenberg–Moore algebra of �, and we prove
that any cia considered as an algebra of � admits unique solutions of guarded equation morphisms.
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Definition 3.6. Let � = (S , �,�, S ′, �,�′) be an ideal monad on A.
(i) By an equation morphism is meant a morphism

e : X −→ S(X + Y )

in A where X is any object (“of variables”) and Y is any object (“of parameters”).
(ii) The equation morphism e is called guarded if it factors through the morphism [�X+Y , �X+Y ·

inr]:
X

e ��

��

S(X + Y )

S ′(X + Y )+ Y

[�,�·inr]
��

(iii) Given an Eilenberg–Moore algebra � : SA −→ A and a morphism f : Y −→ A (interpreting
parameters in A), we call a morphism e† : X −→ A a solution of e induced by f provided that
the square

X
e† ��

e
��

A

S(X + Y )
S[e†,f ]

�� SA

�

��

(3.2)

commutes.

Notation 3.7. For any cia a : HA −→ A we denote by

ã : TA −→ A

the unique H -algebra homomorphism with ã · �A = 1A. It is easy to check that ã is the structure of
an Eilenberg–Moore algebra of the monad �. Notice that in case of a polynomial functor this can
be thought of as computations of finite and infinite �-trees over A in the �-algebra A.

Remark 3.8. For the free cia monad � obtained from a polynomial functor of Set and a cia (A, a)
considered as an Eilenberg–Moore algebra ã : TA −→ A the commutativity of square (3.2) means
that the assignment e† of variables of X to elements of A has the following property: form first the
“substitution” mapping [e†, f ] : X + Y −→ A (which interprets variables according to the solution
e† and parameters according to f ). Apply this substitution to the right-hand side of the given system
e of formal equations, and compute the resulting infinite trees in A. This yields the same assignment
of variables to elements of A as e†. That means that the formal equations x ≈ e(x) become actual
identities in A after the substitution x �−→ e†(x) is performed on both sides of the equations and the
right-hand side is evaluated in A.

Formally, one extends [e†, f ] to the unique homomorphism

ã · T [e†, f ] : T(X + Y ) −→ A

from the free cia on X + Y to A. Precomposed with e it yields the morphism e†.
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Theorem 3.9. In a completely iterative algebra, for any guarded equation morphism and every inter-
pretation of its parameters there exists a unique solution.

Remark. More precisely, let a : HA −→ A be a cia considered as an Eilenberg–Moore algebra ã :
TA −→ A. Suppose that we have a guarded equation morphism

X

e0
����

���
���

���
�

e �� T(X + Y )

HT(X + Y )+ Y

[#,�·inr]
��

(3.3)

and an interpretation f : Y −→ A. Then there exists a unique morphism e† : X −→ A such that the
square

X

e
��

e† �� A

T(X + Y )
T [e†,f ]

�� TA

ã

��

commutes.

Proof.We form the following flat equation morphism

e ≡ T(X+Y ) [#,�]−1
��HT(X+Y )+X+Y [inl,e0,inr]

��HT(X+Y )+Y HT(X+Y )+f
��HT(X+Y )+A

w.r.t. the cia A. Let us denote by s the unique solution of e, i.e., s is the unique morphism such that
the following diagram

T(X + Y )
s ��

[#,�]−1

��

A

HT(X + Y )+ X + Y

[inl,e0,inr]
��

[#,�]
��

HT(X + Y )+ Y

HT(X+Y )+f
��

HT(X + Y )+ A
Hs+A

�� HA+ A

[a,A]

��

(3.4)

commutes. Consider the coproduct components ofHT(X + Y )+ X + Y separately to conclude that
s is uniquely determined by the following three equations:
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(i) s · #X+Y = a · Hs,
(ii) s · �X+Y · inr = f ,
(iii) s · �X+Y · inl = [a,A] · (Hs+ A) · (HT(X + Y )+ f) · e0.

Existence of a solution of e induced by f . We define the morphism

e† ≡ X
inl ��X + Y

�X+Y
��T(X + Y )

s ��A.

It follows immediately that s is a homomorphism ofH -algebras with s · �X+Y = [e†, f ] : X + Y −→
A, see (i) and (ii) above. We invoke the freeness of the cia T(X + Y ) to conclude that the equation

s = ã · T [e†, f ] (3.5)

holds. To establish that e† is a solution of e induced by f consider the following commutative
diagram

X

e

��

�·inl
��

inm

����
���

���
���

��

e0

��











































 T(X+Y )

[#,�]−1

��

s ��

(∗)

A
������

e†

HT(X+Y )+X+Y

[inl,e0,inr]

��

HT(X+Y )+A Hs+A
��

HT [e† ,f ]+A

��

����

HA+A

[a,A]

�����������������

HT(X+Y )+Y
[#,�·inr]

�����
���

���
��

HT(X+Y )+f
���

�����

HT [e† ,f ]+f
�� HTA+A

Hã+A
��

[#,�]

���
��

��
��

��

T(X+Y )
T [e† ,f ]

�� TA

ã

��

(3.6)

The upper most part is the definition of e†, part (∗) is diagram (3.4), the lower left-hand triangle is
(3.3), and the right-hand part commutes due to the definition of ã. The inner right-hand triangle
commutes because of (3.5), and the remaining parts are obvious. Thus, the outer square commutes
as desired.

Uniqueness. Suppose that e† is any solution of e induced by f . Let s = ã · T [e†, f ] : T(X + Y ) −→ A.
To complete the proof it suffices to show that s solves ew.r.t. the cia A (equivalently, the above equa-
tions (i), (ii), and (iii) hold). In fact, the morphism s determines e† since clearly we have the equation
e† = s · �X+Y · inl. Observe first that s is anH -algebra homomorphismwith s · �X+Y = [e†, f ]. Thus,
the equations (i) and (ii) hold. To see that equation (iii) holds consider again diagram (3.6). Its outer
square commutes since e† is a solution of e induced by f . Since all other parts clearly commute, so
does part (∗) when extended by �X+Y · inl. But this is precisely the desired equation (iii). �
Remark 3.10. Theorem 3.9 shows that the Eilenberg–Moore algebra ã : TA −→ A arising from a
cia (A, a) admits unique solutions. For general Eilenberg–Moore algebras of � uniqueness of so-
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lutions fails. In fact, for the endofunctor H� = Id of Set (expressing one unary operation) the
two element set { 0, 1 } carries an Eilenberg–Moore algebra as follows: Notice that for any set X ,
T�X = N × X + { ∞ }. It is easy to check that the map

T�A −→ A, (n, i) �−→ i, i = 0, 1, ∞ �−→ 0
is a structure of an Eilenberg–Moore algebra, see also [5], Example 3.8 and Theorem 5.5. However,
the equation x ≈ x expressed by the guarded equation morphism

{ x } −→ N × { x } + { ∞ } = T�({ x } + ∅), x �−→ (1, x),
has for the unique interpretation ∅ −→ A two solutions 0 and 1.

The following result was first proved independently by Moss [17] and by Aczel et al. [1]. We
obtain it as a corollary of Theorem 3.9.

Theorem 3.11 (Solution theorem). For any guarded equation morphism e : X −→ T(X + Y ) there
exists a unique solution in the algebra T Y , i.e., a unique morphism e† : X −→ T Y such that Diagram
(3.1) commutes.

Proof. Apply Theorem 3.9 to e and f = �Y : Y −→ T Y and observe that #̃Y = �Y : T T Y −→
T Y . �

4. Free completely iterative monad

In this section, we still assume that H : A −→ A is an iteratable endofunctor on a category A
with binary coproducts (equivalently, H has free cias on every object of A, see Corollary 2.11). We
also assume that coproduct injections are monomorphic; this can be avoided (see Section 5).

As themain result of [1] it was proved that themonad �, which is given by the final coalgebras T Y
of H( _ )+ Y , is a free completely iterative monad on H . The proof given there is technically quite
complicated, involving an unpleasant amount of rather unintuitive diagram chasing arguments.
Here we will give a much simpler proof. Recall the statements (a), (b), and (c) from the introduc-
tion. In lieu of proving (a) implies (c) directly we use the equivalence of (a) and (b) established in
Section 2 and prove (b) implies (c). In fact, the universal property of the free cias T Y , for every
object Y , more easily yields the desired universal property of the monad �.

We start by recalling the definition of a completely iterative monad from [1].

Definition 4.1. An ideal monad � = (S , �,�, S ′, �,�′) is called completely iterative if every guarded
equation morphism e : X −→ S(X + Y ) has a unique solution induced by �Y : Y −→ SY in the free
Eilenberg–Moore algebra �Y : SSY −→ SY , i.e., for each guarded e there exists a unique solution
e† : X −→ SY so that the square

X

e
��

e† �� SY

S(X + Y )
S[e†,�Y ]

�� SSY

�Y

��

(4.1)

commutes.
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An ideal monad morphism from an ideal monad (S , �S ,�S , S ′, �,�′S) to an ideal monad
(U , �U ,�U ,U ′,ω,�′U ) is a monad morphism 2 : (S , �S ,�S) −→ (U , �U ,�U) which has a domain-
codomain restriction to the ideals (i.e., there exists a natural transformation 2′ : S ′ −→ U ′ with
2 · � = ω · 2′).

Given a functor H , a natural transformation 2 : H −→ S is called ideal provided that it factors
through � : S ′ ↪−→ S .

Example 4.2. The monad � is ideal (w.r.t. T ∼=HT + Id ), and the Solution Theorem 3.11 states
that � is completely iterative. Notice that � comes with the following canonical natural transfor-
mation

3 ≡ H
H�

�� HT
# �� T ,

which is ideal.

Theorem 4.3. The monad � is a free completely iterative monad. That is, for any completely iterative
monad � and every ideal natural transformation 2 : H −→ S there exists a unique monad morphism
2 : � −→ � with 2 · 3 = 2. And the induced 2 is an ideal monad morphism.

Remark 4.4.
(i) Notice that the statement of the Theorem is slightly stronger than in [1]. Here we do not re-

quire that the monad morphism 2 be ideal in order to obtain its uniqueness. And the proof is
substantially simpler.

(ii) For the category CIM(A) of all completely iterative monads and ideal monad morphisms we
have a forgetful functor

U : CIM(A) −→ [A,A], � �−→ S ′.

The theorem states that there exists a universal arrow at each iteratable endofunctor H . How-
ever, notice that this does not imply the existence of a left adjoint to U . (A left adjoint may not
even exist if one restricts the codomain of U to iteratable functors. It is not clear that for an
iteratable functor H the ideal HT of the completely iterative monad � is iteratable again.) If A
is a locally presentable category and we restrict the codomain of U to Acc[A,A], the category
of accessible endofunctors on A, and the domain to the category CIAM(A) of accessible com-
pletely iterative monads � (i.e., such that both S and S ′ are accessible) then this restriction has
a left adjoint, viz. the functor H �−→ �. In fact, T is then accessible, see [4],

Proof. (1) For every object Y consider SY as an H -algebra as follows:

HSY
2SY �� SSY

�Y �� SY.

It is completely iterative. In fact, every equation morphism e : X −→ HX + SY yields the following
equation morphism w.r.t. �:

e ≡ X
e �� HX + SY

2X+SY
�� SX + SY

can �� S(X + Y ).
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To verify that e is guarded, use the restriction 2′ : H −→ S ′ of 2 and consider the commutative
diagram

X
e �� HX+SY 2X+SY

��

2′
X

+SY ����
���

���
��

SX+SY can �� S(X+Y )

S ′X+SY
S′X+[�Y ,�Y ]−1

��

�X+SY
��

S ′X+S ′Y+Y
S′X+[�Y ,�Y ]

��
can+Y

�� S ′(X+Y )+Y

[�X+Y ,�X+Y inr]
��

To see the commutativity of the square, consider the three components of S ′X + S ′Y + Y separately,
and use naturality of � and �.

We prove that a morphism e† : X −→ SY is a solution of e in the H -algebra SY if and only if it
is a solution of e w.r.t. the iterative monad �.
(1a) Let e† be a solution of e in the algebra SY , i.e., let

X
e† ��

e

��

SY

SSY + SY

[�Y ,SY ]
��

HX + SY
He†+SY

�� HSY + SY

2SY+SY
��

(4.2)

commute. We are to show that the following diagram:

X
e† ��

e

��

SY

HX+SY He†+SY
��

2Y +SY
��

HSY+SY 2SY +SY
�� SSY+SY

[�Y ,SY ] ��									

[SSY ,S�Y ]
��

��
��

��
��

��
��

SX+SY Se†+SY

���������������������������������

can

��

S(X+Y )
S[e† ,�Y ]

�� SSY

�Y

��

(4.3)

has the outward square commutative. The upper part is (4.2), the one directly below it is the natu-
rality of 2. The lower part is obvious as is the right-hand triangle due to �Y · S�Y = 1SY .
(1b) Let the outward square of (4.3) commute. Then (4.2) commutes because it forms the upper part
of (4.3), where the two adjacent parts and the lower part commute.
(2) Existence of an ideal monad morphism 2 with 2 · 3 = 2. Denote by

2Y : T Y −→ SY

the unique homomorphism of H -algebras with
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2Y · �Y = �SY .

We first observe that 2 is a natural transformation. Given a morphism h : Y −→ Z then Sh is a
homomorphism of H -algebras from SY to SZ :

HSY
2SY ��

HSh
��

SSY
�Y ��

SSh
��

SY

Sh
��

HSZ
2SZ

�� SSZ �Z
�� SZ

(4.4)

Thus, we have two parallel homomorphisms of H -algebras

Sh · 2Y , 2Z · Th : T Y −→ SZ.

They agree when precomposed with �Y ; in fact, the following diagram commutes:

T Y
2Y ��

Th

��

SY

Sh

��

Y
h��

�Y

��������
�SY

��������

Z
�Z

�����
���

� �SZ
���

���
��

TZ
2Z

�� SZ

By the universal property of �Y , and since SZ is a completely iterative H -algebra, this proves that
the above naturality square commutes.

Let us prove that 2 is a monad morphism. Since 2 · � = �S by definition, it only remains to prove
the commutativity of the following diagram:

T T Y
2T Y ��

�Y
��

ST Y
S2Y �� SSY

�SY
��

T Y
2Y

�� SY

(4.5)

By (4.4), applied to h = 2Y , we see that S2Y is a homomorphism of H -algebras. By the universal
property of �T Y it is sufficient to prove that (4.5) commutes when precomposed with �T Y :

T T Y
2T Y ��

�Y

��

ST Y
S2Y �� SSY

�SY

��

T Y
2Y ��

�T Y

����������

�ST Y
����������

��
��
��
��
�

��
��
��
��
�

SY
�SSY

����������

��
��

��
��

��
��

��
��

T Y
2Y

�� SY
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Finally, the equation

2 = 2 · 3 = 2 · # · H�

follows from the commutativity of the diagram

HY
H�Y ��

2Y
��

HT Y
#Y ��

2T Y

����
��
��
��
�

H2Y



�
��

��
��

��
T Y

2Y

��

SY
S�Y ��

S�SY �����
����

����
����

�� ST Y
S2Y

���
��

��
��

��
(i) HSY

2SY

����
��
��
��
�

(ii)

SSY
�SY

�� SY������
id

(4.6)

where (i) is naturality of 2, (ii) is the definition of 2, the upper left-hand part is the naturality of 2, and
the triangle below it uses the unit law for 2. For the lowest part use the monad law �SY · S�SY = 1SY .

Thus, we have found a monad morphism 2 : � −→ � with 2 · 3 = 2. It remains to verify that 2
is ideal. To this end consider the commutative diagram

HT Y
#Y ��

H2Y
��

T Y

2Y

��

HSY

2′
SY

��

2SY

���
��

��
��

��

S ′SY �SY
��

�′
Y
��

SSY
�Y

���
��

��
��

�

S ′Y �Y
�� SY

The upper right-hand part commutes by the definition of 2Y , the left-hand triangle commutes since
2 is an ideal transformation, and for the lower part we use that � restricts to �′. Thus, we see that
�′S · 2′S · H2 : HT −→ S ′ is the desired restriction of 2.
(3) Uniqueness of 2. Suppose that 2 : � −→ � is a monad morphism with 2 · 3 = 2. We are go-
ing to show that for any object Y , 2Y is an H -algebra homomorphism extending �SY , and then
invoke the freeness of T Y as a completely iterativeH -algebra, which establishes the desired unique-
ness.

First, notice that for any object Y we have

#Y = �Y · 3T Y . (4.7)
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Indeed, the following diagram commutes:

HT Y

H�T Y
��

��
3T Y

��

��

��
id

��

HT T Y
#T Y ��

H�Y
��

T T Y

�Y
��

HT Y #Y
�� T Y

Consequently, the following diagram

HT Y
3T Y



�
��

��
��

��

H2Y

��

#Y �� T Y

2Y

��

Y
�Y��

�SY

����
��
��
��
��
��
��
�

T T Y

�Y
����������

(2∗2)Y
��

HSY
2SY

�� SSY
�SY

�� SY

commutes: the right-hand triangle and the lower right-hand part commute since 2 is a monad mor-
phism, the lower left-hand part commutes since 2 · 3 = 2 and by naturality, and the upper triangle
is (4.7).

Thus, 2Y : T Y −→ SY is an H -algebra homomorphism between completely iterative H -algebras
such that 2Y · �Y = �SY . This determines 2Y uniquely. �

Remark 4.5. For polynomial endofunctors on Set, the freeness of � specializes to second order
substitution, see [8], i.e., substitution of finite or infinite trees for operation symbols.

For example, consider a signature � with a binary operation symbol b, and a unary one u, and
another signature 5 with two binary operation symbols + and ∗ and a constant symbol 1. The
following assignment:

b(x, y) �−→

∗

1 +

x y

��
�� ��

��

��
�� ��

��
u(x) �−→

+

x x
��
�� ��

�� (4.8)

of operation symbols in � to 5-trees gives rise to a natural transformation 2 : H� −→ T5. The
induced ideal monad morphism 2 : �� −→ �5 replaces, for any set of variables X , the operation
symbols in trees of T�X according to 2. Example:
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2({ z0, z1 }) :

b

u z1

z0

��
�� ��

��

�−→

∗

1 +

+

z0 z0

z1

��
�� ��

��

��
��

��
�� ��

��

��
��

The requirement that 2 be an ideal transformation means that no operation symbol of � is
replaced by a single variable, i.e., that 2 is a so called non-erasing substitution.

5. Idealized monads

In this section, we show how to prove the results of the previous section in full generality, i.e., for
any categoryAwith binary coproducts (not necessarily havingmonomorphic coproduct injections)
and every iteratable endofunctor H : A −→ A. The proof ideas remain essentially unchanged, al-
though the technical difficulty is somewhat increased due to the fact that ideal monads should be
replaced with idealized monads, which we introduce below, but, on the other hand, the freeness
result of Theorem 4.3 can be extended a little further.

The main technical tool of this section is an ideal coreflection of any idealized monad. The ideas
for the proofs of the respective results are essentially those used in the technical material of [16].
We shall need that material in Section 6 below where we complete the proof of the equivalence of
the three statements (a), (b), and (c) from the introduction. Here we will use an ideal coreflection
to extend the result of Theorem 4.3 to idealized monads, more precisely, we prove in Theorem 5.14
below that the free cia monad � is a free w.r.t. all idealized completely iterative monads, thus we
establish (b) implies (c) in full generality.

Remark 5.1.
(i) Recall that in Example 3.4(ii) we showed that the free cia monad � is ideal. A quick inspec-

tion of all previous proofs reveals that this was the only place where we used the assumption
that coproduct injections are monomorphic. However, when we drop that assumption, it is
no longer sufficient to have in an ideal monad � just a “restriction” �′ : S ′S −→ S ′ of �. It is
natural to assume additionally that �′ obeys certain laws similar to the ones for the monad
multiplication �; this leads to the requirement that (S ′,�′) be an S-module, see Definition 5.5
below.

(ii) Another restriction in the previous section was the requirement that an ideal monad � should
satisfy S ′ + Id so that intuitively S ′ gives an abstract notion of “non-variables” to be used as
the allowed right-hand sides of guarded equation morphisms. We have used that property of S
in part (1) of the proof of Theorem 4.3. A different point of view is that of equipping a monad
with some abstract notion of “allowed right-hand sides of equations”, which leads us to the
notion of idealized monad as introduced below.
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Definition 5.2. Let (M , �,�) be a monad on A. A (right) M -module is a pair (F , f) consisting
of an endofunctor F on A and a natural transformation f : FM −→ F such that the following
diagrams:

F
F�

��

��
��

��
��

�

��
��

��
��

� FM

f

��

F

and

FMM
fM

��

F�

��

FM

f

��

FM
f

�� F

commute.
If (F , f) and (G, g) are M -modules, then a natural transformation h : F −→ G such that the

square

FM

f

��

hM �� GM

g

��

F
h

�� G

commutes is called a module homomorphism.

Remark 5.3. In [15], Section VII.4, (left) modules are defined under the name action for any monoi-
dal category. The above Definition 5.2 states that definition for the special case of the monoidal
category of endofunctors ofA with composition as tensor product and the identity functor as unit.
Here we chose the name module since in the monoidal category of abelian groups monoids are
precisely rings and modules are the usual R-modules for a ring R.

Examples 5.4.
(i) Any monad (M , �,�) is trivially an M -module (M ,�).
(ii) If� = (S , �,�, S ′, �,�′) is an idealmonad in the sense ofDefinition 3.3, then (S ′,�′) is an S-mod-

ule. This follows easily from the monad laws for S using the fact that the coproduct injections
�Y : S ′Y −→ SY are monomorphic.

Definition 5.5.An idealized monad � = (S , �,�, S ′, �,�′) consists of a monad (S , �,�), an S-module
(S ′,�′), and a module homomorphism � : (S ′,�′) −→ (S ,�).

We call � ideal if S = S ′ + Id with coproduct injections � and �.
An idealized monad � is called completely iterative if any guarded equation morphism

X
e ��

����
���

���
���

S(X + Y )

S ′(X + Y )+ Y

[�,�·inr]
��

has a unique solution e† : X −→ SY (i.e., such that Diagram (4.1) commutes).
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A morphism of idealized monads between � and � = (M , �M ,�M ,M ′,m,�′M) is a pair (h, h′) con-
sisting of amonadmorphism h : (S , �,�) −→ (M , �M ,�M) and a natural transformation h′ : S ′ −→
M ′ such that the squares

S ′S
�′

��

h′∗h �� M ′M
�′M
��

S ′
h′

�� M ′
and

S ′

�

��

h′
�� M ′

m

��

S
h

�� M

commute. (Notice that the left-hand square means that h′ is a module homomorphism with change
of base h.)

Remark 5.6. Notice that idealized monad morphisms (h, h′) : � −→ � between ideal monads are
determined by their second components. In fact, since the equations S = S ′ + Id andM = M ′ + Id
hold, the two equation m · h′ = h · � and h · � = �M imply that h = h′ + Id .

Examples 5.7.
(i) Any ideal monad in the sense of Definition 3.3 is an ideal monad in the sense of Definition 5.5.
(ii) The monad � given by the free completely iterative H -algebras is an ideal monad.
(iii) The free semigroup monad X �−→ X+ together with S ′ assigning to X the set of words in X

of length at least n, for some n > 2, is an idealized monad which is not ideal. It is trivial
to check that the restriction of the monad multiplication to S ′ satisfies the necessary
laws.

(iv) Let � be a signature and let �′ be a subsignature of �. Then T� together with S ′ = H�′T� is
an idealized monad. Note that S ′ assigns to a set Y all finite and infinite �-trees over Y whose
root node is labelled by a symbol from�′. Once again, the laws of an idealized monad are easy
to check, and this is another example which is not ideal whenever �′ is a proper subsignature
of �.

Notation 5.8.We denote by CIzM(A) the category of all idealized completely iterative monads and
all idealized monad morphisms. By CIM(A) we denote its full subcategory consisting of all ideal
completely iterative monads.

We also use CIzAM(A) to denote the full subcategory of CIzM(A) consisting of all
accessible idealized monads �, i.e., such that S and S ′ are accessible functors. Analogously
CIAM(A).
Proposition 5.9. Idealized monad morphisms preserve solutions.

Remark. More precisely, let (h, h′) : � −→ � be an idealized monad morphism between idealized
monads. Then for every guarded equationmorphism e : X −→ S(X + Y )we get a guarded equation
morphism hX+Y · e, and any solution s of e yields a solution hY · s of hX+Y · e. In particular, if �

and � are completely iterative, we have (hX+Y · e)† = hY · e†.
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Proof. To see that hX+Y · e is guarded, consider the commutative diagram

X
e ��

����
���

���
���

S(X + Y )
h �� M(X + Y )

S ′(X + Y )+ Y

[�,�S ·inr]
��

h′+Y
�� M ′(X + Y )+ Y

[m,�M ·inr]
��

To see that hY · s solves e, inspect the commutative diagram

X
s ��

e
��

SY
h �� MY

S(X + Y )
S[s,�S ]

��

h
��

SSY

�S

��

h∗h
���

��
��

��
��

M(X + Y )
M [hY ·s,�M ]

�� MMY

�M

��

where ∗ denotes parallel composition. �
Lemma 5.10. If � is an idealized monad, then S ′ + Id yields an ideal monad.

Remark. By this we mean, of course, the sixtuple

�̃ = (S ′ + Id , �̃, �̃, S ′, inl, �̃′),

where

�̃ ≡ Id
inr ��S ′ + Id ,

�̃′ ≡ S ′(S ′ + Id )
S ′[�,�]

��S ′S
�′

��S ′ ,

�̃ ≡ (S ′ + Id )2 = S ′(S ′ + Id )+ S ′ + Id
[�̃′,S ′]+Id

��S ′ + Id .

The proof of this result is essentially straightforward and involves only diagram chasing argu-
ments using the axioms of the given idealized monad �. For the sake of brevity we leave it to the
reader. A very similar result was proved as Lemma 3.4 in [16].

Proposition 5.11. The natural transformation [�, �] : S ′ + Id −→ S yields a morphism

([�, �], 1S ′) : �̃ −→ �

of idealized monads. And this is a coreflection of � in the category of ideal monads and morphisms of
idealized monads.
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Remark 5.12.More precisely, for any ideal monad

� = (M , �M ,�M ,M ′,m,�′M)

and any morphism of idealized monads (h, h′) : � −→ � there exists a unique idealized monad
morphism (h, h

′
) : � −→ �̃ such that

[�, �] · h = h and h
′ = h′. (5.1)

That means that the inclusion of the full subcategory of ideal monads in the category of idealized
monads has a right adjoint.

Proof. (1) We start by showing that [�, �] : S ′ + Id −→ S is a monad morphism. In fact, the unit
law is obvious. For the associativity consider the commutative diagram

(S ′ + Id )(S ′ + Id )
(S ′+Id )∗[�,�]

����

��

�̃

��

(S ′ + Id )S
[�,�]∗S

�� SS

S ′(S ′ + Id )+ S ′ + Id
S ′[�,�]+[�,�]

��

S ′[�,�]+S ′+Id
��

S ′S + S
[�S ,�S]

��

�′+S
��

SS

�

��

S ′S + S ′ + Id
�′+[�,�]

��

[�′,S ′]+Id
��

S ′ + S

[�,S]
���

���
���

���
��

S ′ + Id [�,�]
�� S

That 1S ′ is a “restriction” of [�, �] is trivial, we have [�, �] · inl = � = � · 1S ′ . Finally, 1S ′ is amodule
homomorphism with change of base [�, �]:

S ′(S ′ + Id )
S ′[�,�]

��

S ′[�,�]
��

��

��

�̃′

��

S ′S

�′

��

S ′S
�′

��

S ′ S ′

Thus, ([�, �], 1S ′) is a morphism of idealized monads.
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(2) Existence. Put S̃ = S ′ + Id . Given � and (h, h′), then (h′ + Id , h′) : � −→ �̃ is the desired ideal
monad morphism. In fact, preservation of units is obvious. For the multiplication consider the
following diagram

MM
h∗h ����

��

�M

��

S̃S̃ ��

��

�S̃

��

M ′(M ′+Id )+M ′+Id
h′∗(h′+Id )+h′+Id

��

M ′[m,�M ]+M ′+Id
��

S ′(S ′+Id )+S ′+Id

S′[�,�]+S′+Id

��

M ′M+M ′+Id
h′∗h+h′+Id

��

[�′M ,M ′]+Id
��

S ′S+S ′+Id

[�′ ,S′]+Id

��

M ′+Id=M
h′+Id=h

�� S̃=S ′+Id

whose commutativity easily follows from axioms for ideal(ized) monads.
We leave the task to check that h′ is a module homomorphism with change of base h′ + Id ,

i.e., a restriction of h (see Definition 5.5), to the reader. This follows easily from the corresponding
properties of (h, h′).

Finally, we need to check the first equation of (5.1):

[�, �] · h = [�, �] · (h′ + Id )

= [� · h′, �]
= [h · m, h · �M ]
= h · [m, �M ]
= h.

(3) Uniqueness. Given any morphism of idealized monads (h, h
′
) : � −→ S̃ satisfying (5.1), we im-

mediately have h
′ = h′, and therefore h = h

′ + Id = h′ + Id . �

Lemma 5.13. If � is a completely iterative monad, then so is its coreflection �̃.

Remark. This result means, that the restrictionCIM(A) −→ CIzM(A) of the embedding of Remark
5.12 also has a right adjoint. Notice also that this adjunction also clearly holds for the respective
subcategories of accessible completely iterative monads:

CIAM(A) ��
⊥ CIzAM(A).��

The proof of this result is similar to the proof of Lemma 3.5 in [16]. In our current setting it can
be simplified due to Proposition 5.9.
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Proof. Denote for any object X by S̃X the coproduct S ′X + X . We have to show that any guarded
equation morphism

X
e ��

f
����

���
���

���
� S̃(X + Y )

S ′(X + Y )+ Y

S ′(X+Y )+inr

��

has a unique solution e† : X −→ S̃Y . Define another guarded equation morphism w.r.t. � by com-
posing with the coreflection arrow:

e ≡ X
e �� S̃(X + Y )

[�,�]
��S(X + Y ).

That e is indeed guarded follows from Proposition 5.9. Solve e to obtain a unique arrow
e† : X −→ SY such that the upper part of the following diagram commutes:

X

f

��

e† ��

e

��  
   

   
   

   SY

S(X + Y )
S[e†,�]

�� SSY

�
������������

S ′Y + Y

[�,�]
��

S ′(X + Y)+ Y

[�,�·inr]

��������������

S ′[e†,�]+Y
�� S ′SY + Y

�′+Y
��

[�S ,S�·�]

������������

(5.2)

Then the outer square commutes, since the other three inner parts clearly do.
We shall prove that the following morphism

e† ≡ X
f

��S ′(X+Y )+Y S′[e† ,�]+Y
��S ′SY+Y �′+Y

��S ′Y+Y = S̃Y (5.3)

is a unique solution of e.
That this morphism solves e follows from inspection of the diagram

X

f

��

f
�� S ′(X+Y )+Y S′[e† ,�]+Y

�� S ′SY+Y �′+Y
�� S ′Y+Y = S̃Y

S ′SY+S ′Y+Y

[�′ ,S′Y ]+Y
��

S ′(X+Y )+Y

!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!

S′(X+Y )+inr
��

S′[e† ,inr]+inr

�� S ′(S ′Y+Y )+S ′Y+Y
S′[�,�]+S′Y+Y

��

S̃(X+Y )
S̃[e† ,�̃]

�� S̃S̃Y

��

��

�̃

��
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It commutes except, perhaps, for the upper middle part, which we consider componentwise. The
right-hand coproduct component is obvious, and for the left-hand one notice that the last arrow is
�′ on both paths. We show that the rest already commutes, even when S ′ is removed, i.e., we plug
in the definition (5.3) of e† and obtain the commutative diagram:

X + Y
[e†,�]

��

[f ,inr]
��

SY

S ′(X + Y )+ Y
S ′[e†,�]+Y

�� S ′SY + Y
�′+Y

�� S ′Y + Y

[�,�]
��

Its right-hand component is obvious, and the left-hand one is the outer square Diagram (5.2).
We have proved existence of a solution of e so far. As for the unicity suppose that s : X −→ S̃Y

is any solution of e, i.e., the following diagram commutes:

X
s ��

f

��

S ′Y + Y = S̃Y

S ′SY + S ′Y + Y

[�′,S ′Y ]+Y
��

S ′(X + Y )+ Y
S ′[s,inr]+inr

��

[inl,inr]
��

S ′(S ′Y + Y )+ S ′Y + Y

S ′[�,�]+S ′Y+Y
��

S̃(X + Y )
S̃[s,̃�]

�� S̃S̃

��

��

�̃

��

(5.4)

Since [�, �] : S̃ −→ S is the first component of an idealized monad morphism (the coreflection
arrow), the following morphism:

X
s ��S ′Y + Y

[�,�]
��SY (5.5)

solves e, see Proposition 5.9. Then it is not difficult to show that s = e†. In fact, start with the
definition of the solution e†

e† = (�′
Y + Y ) · (S ′[e†, �Y ] + Y ) · f ,

then substitute (5.5) for e† to obtain

(�′
Y + Y ) · (S ′[[�, �] · s, �Y ] + Y ) · f , (5.6)

and finally use the equation �Y = [�Y , �Y ] · inr in order to see that (5.6) is the same as

(�′
Y + Y ) · (S ′[�, �] + Y ) · (S ′[s, inr] + Y ) · f ,

which is just s due to the upper left-hand part of Diagram (5.4). �
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At this point we are ready to prove the main result of this section, i.e., we extend the freeness
result of Theorem 4.3 to all idealized monads. Thus, we establish that (b) implies (c) (see Section 1)
in full generality.

Theorem 5.14. For every completely iterative monad � and every ideal natural transformation 2:
H −→ S there exists a unique idealized monad morphism (2, 2

′
) : � −→ � such that the following

diagram:

H
H�

��

2′
















 HT

2
′

��

# �� T

2

��

S ′

�
  















S

(5.7)

commutes.

Proof. First, suppose that � is an ideal monad. Theorem 4.3 states that the monad � of free cias is
free w.r.t. all ideal completely iterative monads �, whenever coproduct injections are monomorphic
in A. The same proof works in our current setting (i.e., with coproduct injections not necessarily
monomorphic) with some minor modifications only. For the existence part we must verify that the
induced pair (2, 2

′
), where

2
′ ≡ HT

H2 �� HS
2′S �� S ′S

�′
�� S ′, (5.8)

is a morphism of idealized monads, and that the left-hand triangle in (5.7) commutes. For the latter,
consider the following diagram

H
H�

��

2′

��

H�S ��""
"""

"""
"""

"" HT

H2
��

HS

2′S
��

S ′ S ′�S
��

"""
"""

"""
"""

"

"""
"""

"""
"""

" S ′S
�′
��

S ′

It commutes: for the upper triangle use the fact that 2 is a monad morphism, for the middle part
use the naturality of 2′, and the lower triangle is the unit law of the �-module S ′.

To see that (2, 2
′
) is an idealized monad morphism, it only remains to show that 2

′
is a module

homomorphism with change of base 2. Consider the following diagram
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HTT
2

′∗2 ��

H�

��

H2∗2 ���
��

��
��

�� S ′S

�′

��

HSS
2′SS ��

H�

��

S ′SS
S ′�
��

�′S

����������

HS
2′S

�� S ′S

�′
���

��
��

��
��

HT
H2

�����������

2
′

�� S ′

For the upper part it suffices to consider the parallel components for HT and T separately. The
HT -part is (5.8), the other one is trivial. The other parts of the diagram are clear. For the middle
three parts use—from left to right—that 2 is a monad morphism, naturality of 2′ and the module
laws for S ′, and the lower part is (5.8) again.

For the uniqueness of (2, 2
′
) assume that (m,m′) : � −→ � is an idealized monad morphism

such that (5.7) with (2, 2
′
) replaced by (m,m′) commutes. Then from the proof of Theorem 4.3 we

conclude that m = 2 and from this it follows that:

m′ = �′ · 2′S · Hm = �′ · 2′S · H2 = 2
′
.

In fact, to see the first equality consider the diagram

HT
Hm ��

H�T

��

2′T
���

��
��

��
���

��
id

��

HS

2′S
��

HTT
m′T

��

H�

��

S ′T
S ′m

�� S ′S
�′
��

HT
m′

�� S ′

The lower square commutes since m′ is a module homomorphism with change of base m, the left-
hand part does by the unit law of the monad �, the upper triangle by (5.7) and the upper right-hand
part by naturality of 2′.

We have established the desired result for all ideal completely iterative monads �. Now if � is an
arbitrary (idealized) completely iterative monad, form its ideal coreflection �̃, which is completely
iterative by Lemma 5.13. We have an ideal transformation

t ≡ H
2′

�� S ′ inl �� S̃

inducing a unique morphism of idealized monads (t, t′) : � −→ �̃ which extends t. Use the adjunc-
tion of Lemma 5.13 to see that the composition of (t, t′) with the coreflection arrow �̃ −→ � yields
the desired unique idealized monad morphism extending the given ideal transformation 2.
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Remark 5.15. For accessible functors the last part of the proof just composes the two adjunctions
from Remark 4.4 and Lemma 5.13 (see 5.8 for notation)

CIzAM(A) ��⊥ CIAM(A) ��

��
⊥ Acc[A,A]��

and it is clear that this extends to all completely iterative monads using the freeness of � for ideal
completely iterative monads and (the full strength of) the adjunction from Lemma 5.13.

For the record we note the following result.

Proposition 5.16. If � is a free completely iterative monad on H then it is ideal.

Proof. We will show that the ideal coreflection �̃ −→ � is an isomorphism. Recall that �̃ is given
by S̃ = S ′ + Id . Since � is completely iterative, so is �̃ by Lemma 5.13. Moreover, from the universal
arrow 3 : H −→ S we get an ideal transformation

2 ≡ H
3′

�� S ′ inl �� S ′ + Id .

Thus, by the freeness of � we have a unique idealized monad morphism � = (2, 2
′
) : � −→ �̃

extending2.We shall show that this is an inverse of the coreflection arrow8 = ([�, �], 1S ′) : �̃ −→ �.

(i) 8 · � = 1�: Consider the following commutative diagram:

H
3′

��

3′
!!
##

##
##

##

3′





S ′

2
′

��

� �� S

2
��

S ′
inl

�� S ′ + Id

[�,�]
��

S ′
�

�� S

It shows that 8 · � is an idealized monad morphism extending 3 = � · 3′, whence it must be the
identity on �.
(ii) � · 8 = 1�̃: From 8 · � = 1� we get in the second component 2

′ = 1S ′ . Hence, we must only check
the first component of � · 8. Consider the coproduct components of S ′ + Id separately to see that
2 · [�, �] = [inl · 2′

, �̃] = [inl, inr] = 1S ′+Id . �

6. Iterability is necessary

In this section, we assume thatA is a category with binary coproducts. We have seen above that
any iteratable endofunctor onA admits a free completely iterative monad. In this section, we prove
that, conversely, every endofunctor admitting a free completely iterative monad is iteratable. This is
a new result, which has only appeared in the extended abstract [16]. It is the last ingredient we need
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to complete the main task of the current paper, i.e., to establish that the statements (a), (b), and (c)
from the introduction are equivalent. Fortunately, as compared to [16] the proof is now relatively
short since all the necessary technical auxiliary results have already been established in Section 5.
Also because of the equivalence of statements (a) and (b), the proof can be somewhat simplified.

Theorem 6.1. Every endofunctor generating a free completely iterative monad is iteratable.

Remark 6.2.More detailed, suppose that H is an endofunctor on A and

3 : H −→ S

is a free completely iterative monad on H (where 3 is an ideal transformation), then for all objects
Y of A, SY is a free completely iterative H -algebra on Y with universal arrow �Y : Y −→ SY , and
it follows that H is iteratable, see Corollary 2.11.

Proof. Let a free completely iterative monad � = (S , �,�, S ′, �,�′) on H with universal arrow 3:
H −→ S be given. Observe first that (HS ,H�) forms a right S-module. In fact, the module laws
follow trivially from the monad laws for S . The following natural tranformation:

s ≡ HS
3S ��SS

�
��S

is a module homomorphism (HS ,H�) −→ (S ,�). To see this inspect the commutative diagram

HSS
3SS ��

H�

��

SSS
�S

��

S�

��

SS

�

��

HS
3S

�� SS �
�� S

Thus, we have an idealized monad

� = (S , �,�,HS , s,H�).

This monad is completely iterative, since any guarded equation morphism e for � is also guarded
for �. To see this consider the commutative diagram

X
e ��

��""
"""

"""
"""

"" S(X + Y )

HS(X + Y )+ Y
�′·3′S+Y

��
[s,�·inr]

""$$$$$$$$$$$$$$
S ′(X + Y )+ Y

[�,�·inr]
��

Thus, e has a unique solution.
Now denote by �̃ the ideal coreflection of � whose underlying functor is given by HS + Id .

We clearly have an ideal transformation

2 ≡ H
H�

��HS
inl ��HS + Id .
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Since � is free on H , we obtain a unique idealized monad morphism � = (a, a′) : � −→ �̃

extending 2, i.e., such that the diagram

H
3′

��

H�
  













 S ′ � ��

a′
��

S

a

��

HS

inl 

�
��

��
��

��

HS + Id

commutes. Let us prove that � is an isomorphism with an inverse given by

8 = (b, b′) ≡ �̃
([�·3S ,�],1HS) ���

(1S ,�′·3′S)
���

It is not difficult to see that 8 is an idealizedmonadmorphism. The first morphism is the coreflection
arrow, and for the second one it is clear that 1S is amonadmorphism and it is easy to see that�′ · 3′S:
HS −→ S ′S −→ S ′ is a module homomorphism (with change of base 1S , i.e., no change of base).

(1) 8 · � = 1�: Notice that 8 · � is an idealized monad morphism extending the universal arrow 3,
i.e., the following diagram

H

3′

��

3′
��

H�
  
%%

%%
%%

%%
S ′

�
��

a′
��

S

a
��

������
3

HS

3′S
��

inl �� HS + Id

3S+Id
��

S ′S
�′
��

�S �� SS

�
���

��
��

��
��

�
inl �� SS + Id

[�,�]
��

S ′

S ′�
##&&&&&&&&
S ′

�
�� S

commutes. By the freeness of �, 8 · � must be the identity on �.
(2) � · 8 = 1�̃: Since �̃ is an ideal monad, it suffices to check the second component of � · 8 (see
Remark 5.6). Hence, we show that a′ · b′ = 1HS :

a′ · b′ = a′ · �′ · 3′S (definition of b′)
= (�′)̃S · (a′ ∗ a) · 3′S (a′ is a module homomorphism)
= (�′)̃S · (H� ∗ a) (a′ · 3′S = H�),
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where ∗ denotes parallel composition. Analyzing the last arrow further, we finally get the following
commutative diagram

HS
Ha ��

   
   

   
   

   
  

   
   

   
   

   
  H(HS + Id )

Hb

��

H�(HS+Id )
�� HS(HS + Id)

HSb

��

��

��
(�′ )̃S

��

HS

''''
''''

''''
''''

''''
'

''''
''''

''''
''''

''''
'

H�S
�� HSS

H�

��

HS

For the left-hand triangle use that 8 · � = 1�, the lower triangle is one of the monad laws of
S , the upper square is naturality of �, and the right-hand part is the definition of �′ for the ideal
coreflection �̃ (see Lemma 5.10). Thus a′ · b′ = 1HS , and therefore � · 8 is the identity on �̃ as desired.

To complete the proof we show now that SY carries the structure of a free cia on Y . In fact, notice
first that bY · inr = �Y . We shall prove below that SY with the structuremap cY = bY · inl = �Y · 3SY
is a completely iterative H -algebra. Then, it follows from the proof of Theorem 2.10 that (SY , bY )
is a completely iterative algebra of H( _ )+ Y , and since bY is an isomorphism this cia is initial, see
Remark 2.9. Thus, by Theorem 2.10, (SY , cY ) is a free cia with universal arrow �Y : Y −→ SY .

Now in order to see that (SY , cY ) is a cia let e : X −→ HX + SY be a flat equation morphism.
Then form the following equation morphism:

e ≡ X
e ��HX + SY

3+SY
��SX + SY

can ��S(X + Y )

for the monad �. Since 3 is an ideal transformation, e is guarded. Solutions of ew.r.t. the completely
iterative monad � are in one-to-one correspondence with solutions of e w.r.t. the algebra (SY , cY ).
Indeed, consider the diagram

X

e

��

s �� SY

HX + SY

3+SY
��

Hs+SY
�� HSY + SY

[cY ,SY ] �������������

[3S ,S�]
((

((
((

(

$$
((

((
((

(SX + SY
[Ss,S�]

%%))))
)))))

)))))
)))))

)))))

can
��

S(X + Y )
S[s,�]

�� SSY

�

��

The arrow s is a solution of e if and only if the outer square of the diagram commutes. Equivalently,
the upper part commutes since all other parts obviously do. But this is precisely the case if s solves
e. Thus, since e has a unique solution so does e. �

To conclude the paper let us collect the results of Corollary 2.11, and Theorems 5.14 and 6.1 to
state our main result compactly.
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Corollary 6.3. Let H be an endofunctor on A, and let T be an object assignment of A. Then the
following are equivalent:
(i) for every object Y of A, T Y is a final coalgebra of H( _ )+ Y , i.e., H is iteratable,
(ii) for every object Y of A, T Y is a free completely iterative algebra of H on Y , and

(iii) T is a free completely iterative monad on H .
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Abstract

Completely iterative monads of Elgot et al. are the monads such that every guarded
iterative equation has a unique solution. Free completely iterative monads are
known to exist on every iteratable endofunctor H, i. e., one with final coalgebras of
all functors H( ) + X. We show that conversely, if H generates a free completely
iterative monad, then it is iteratable.

Key words: monad, completely iterative, iterable

1 Introduction

There have been various attempts to algebraically capture the concept of
computations on data through a program, taking into account that such com-
putations are potentially infinite. During the 1970’s the ADJ-group studied
continuous algebras, i. e., algebras endowed with a CPO structure. There, an
infinite computation is a join of the directed set of its finite approximations,
see e. g. [ADJ]. Later, algebras over complete metric spaces were considered,
where an infinite computation is a limit of a Cauchy sequence of finite approx-
imations, see e. g. [ARu].

Another approach to infinite computations are iterative algebraic theories,
introduced by Calvin C. Elgot in [E]. This notion has been extended to the
notion of completely iterative theories by Elgot, Bloom and Tindell, see [EBT].
The latter are algebraic theories (in the sense of Lawvere and Linton [Lin])
that allow for unique solutions of fixed point equations. An important example
of a completely iterative theory is the theory of finite and infinite trees over
a given signature Σ. In [EBT] it is shown that this is the free completely
iterative theory over Σ.

It has recently been discovered by Peter Aczel, Jǐŕı Adámek, Jǐŕı Velebil,
and the present author [AAMV], that the above fact is a special case of a
much more general categorical result using a coalgebraic approach to infinite

1 Email: milius@iti.cs.tu-bs.de
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computation. This coalgebraic approach has also independently been studied
by Larry Moss in [M]. Here one considers a category A with binary coproducts,
and an iteratable endofunctor H on A, i. e., such that for every object X a
final coalgebra

TX

of H( ) + X exists. In [AAMV] the notion of a completely iterative monad
is introduced. Informally, this is a monad that allows for unique solutions of
systems of equations of a certain liberal type. It has been shown that the
mapping X 7→ TX is the object assignment of a completely iterative monad.
Moreover, it was proved that this monad T is a free completely iterative monad
on H.

In the present paper we investigate the exact relationship between the no-
tion of iteratability and the existence of free completely iterative monads for
an endofunctor. The main result of [AAMV] shows that iteratable endofunc-
tors admit free completely iterative monads. Here we prove that no other
functors do so. More precisely, if S is a free completely iterative monad over
an endofunctor H on A, then H is iteratable, and for all objects X of A, SX

is a final coalgebra of H( ) + X.

Before we prove our main result in Section 3 we shall recall the results
of [AAMV] and give some motivation for the notion of completely iterative
monad in Section 2.

2 Iteratable Endofunctors and Completely Iterative

Monads

2.1 A Motivating Example

We take from [AMV] a motivating example for the coalgebraic approach of
[AAMV]. Consider the algebra of finite and infinite trees over a given signature
Σ. This algebra allows for the unique solution of systems of so-called guarded
equations. Let us give the details of this. Denote by

TΣX

the algebra of all finite and infinite Σ-labelled trees with variables from X.
That is, trees labelled so that a node with n > 0 children is labelled by an
n-ary operation symbol (an element of Σn) and a leaf is labelled by a variable
or a constant (an element of X + Σ0). The operations on TΣX are given by
tree-tupling. Furthermore, consider a system of equations

x0 ≈ t0(x0, x1, x2, . . . , y0, y1, y2, . . .)

x1 ≈ t1(x0, x1, x2, . . . , y0, y1, y2, . . .)
...(1)

xn ≈ tn(x0, x1, x2, . . . , y0, y1, y2, . . .)
...

2
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where ti are trees with variables from X = {x0, x1, x2, . . .} and parameters
from Y = {y0, y1, y2, . . .}, i.e.,

ti ∈ TΣ(X + Y ) for i = 0, 1, 2, . . .

Notice that in a system we denote by ≈ formal equations and = is the identity
of the two sides. A system is called guarded provided that none of the trees ti

is just a variable from X. This condition is enough to force the existence of
a unique solution of (1), i.e., a unique tuple xi

†(y0, y1, y2, . . .) of trees in TΣY

such that the identities

x0
† = t0(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)

x1
† = t1(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)
...

xn
† = tn(x0

†, x1
†, x2

†, . . . , y0, y1, y2, . . .)
...

hold.

Theorem 2.1 Every guarded system of equations has a unique solution.

In fact, this is a special case of a much more general Solution Theorem we
mention in Subsection 2.2 below.

Example 2.2 Let Σ consist of binary operations + and ∗ and a constant ⊥.
The following system of equations

x0 ≈ x1

y ⊥

∗

+

x1 ≈
x0 ⊥

∗

is guarded. The solution is given by the following trees in TΣY :

x0
† =

⊥ y ⊥

⊥ y ⊥

+

∗ ∗
+

∗ ∗
+

x1
† =

x0
†

⊥

∗

2.2 Substitutions and Solutions Coalgebraically

The coalgebraic approach of [AAMV] and [M] relies on the following obser-
vation. To any signature Σ there is an associated polynomial endofunctor
HΣ : Set −→ Set defined by

HΣX = Σ0 + Σ1 × X + Σ2 × X2 + · · ·

3
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Recall that HΣ-algebras are just the classical universal Σ-algebras. A final
HΣ-coalgebra is well-known to be the coalgebra TΣ∅ of all finite and infinite
Σ-labelled trees without variables, see [AK]. Now HΣ( )+X is also polynomial
(for the signature obtained from Σ by adding a constant symbol for every
element of X), thus, TΣX is a final coalgebra of HΣ( ) + X.

Taking the existence of such a parametrized family of final coalgebras as
the primitive notion, one can abstract away from signatures (=polynomial
endofunctors) and from the category Set.

Assumption 2.3 For the rest of this section we assume that A denotes a

category with binary coproducts whose injections are monomorphic, and H is

an endofunctor on A.

Definition 2.4 An endofunctor H of A is called iteratable if for every object
X of A there exists a final coalgebra of H( ) + X.

The following examples of iteratable endofunctors have been taken from
[AAMV].

Example 2.5

(i) Accessible (=bounded) endofunctors on Set. An endofunctor is called
accessible if it preserves λ-filtered colimits for some infinite cardinal λ.
In [AP], it was shown that those are precisely the so-called bounded
endofunctors. This example subsumes all the following ones.

(ii) (Generalized) polynomial endofunctors on Set, i. e., H is defined by

HZ =
∐

i<λ

Ai × Zi

for some cardinal λ; for λ = ω one has a polynomial endofunctor associ-
ated to a finitary signature as in 2.1.

(iii) The bounded power set functors defined on objects by

PλX = {Y ⊆ X | |Y | < λ}

for some cardinal λ. Notice that the (unbounded) power set functor
P : Set −→ Set does not allow for a final coalgebra, and hence, it is not
iteratable.

Note that the notions of accessibility and iteratability are not equivalent.
In fact, there are examples of non-accessible endofunctors that are iteratable
(see [AAMV]).

Remark 2.6 If H is an iteratable endofunctor on A we denote by

TX

the final coalgebra of H( )+X. By the Lambek Lemma (see [L]), the structure
map of that final coalgebra is an isomorphism, and consequently, TX is a

4
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coproduct of HTX and X with injections

ηX : X −→ TX “injection of variables”

τX : HTX −→ TX “TX is an H-algebra”

The final coalgebras TX have a rich structure. Firstly, the way how substi-
tution works on trees in TΣX generalizes smoothly to the categorical setting.
Recall here that given an interpretation of variables x ∈ X as trees s(x) over
Y , i. e., a function s : X −→ TΣY , then the corresponding substitution of
trees from TΣY into (leaves of) trees of TΣX is a homomorphism

ŝ : TΣX −→ TΣY

of Σ-algebras. Moreover, ŝ is the unique extension of s. This can be general-
ized to all iteratable endofunctors:

Substitution Theorem 2.7 For any arrow s : X −→ TY there exists a

unique homomorphism ŝ : TX −→ TY of H-algebras extending s, i. e., such

that ŝ · ηX = s.

The proof can be found in [M] or [AAV] (slightly improved in [AAMV]).

Next, one can generalize in a straightforward way the notion of a system
of equations. An equation arrow is a morphism

e : X −→ T (X + Y )

in A. It is called guarded if it factors as follows

X
e T (X + Y )

HT (X + Y ) + Y .

[τX+Y ,ηX+Y ·inr]

Notice that for a polynomial endofunctor H = HΣ on Set this is precisely the
notion of a guarded system as presented above, since T (X+Y ) = HT (X+Y )+
X + Y . Finally, a solution for an equation arrow e is an arrow e† : X −→ TY

such that the following triangle

X
e†

e

TY

T (X + Y )
̂[e†,ηY ]

commutes. Again, this corresponds precisely to the notion of solution for
systems of equations in case of polynomial endofunctors on Set.

The following result is called Parametric Corecursion in [M] and Solution
Theorem in [AAV]; see also an improved version of the proof in [AAMV]:

5
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Solution Theorem 2.8 Given an iteratable endofunctor H, every guarded

equation morphism has a unique solution.

Remark 2.9 It is an easy consequence of the Substitution Theorem that

(T, η, (̂ )) forms a Kleisli triple, i. e., the following three conditions are satisfied

(i) η̂X = idTX for all objects X,

(ii) ŝ · ηX = s for all arrows s : X −→ TY ,

(iii) r̂ · ŝ = ̂̂r · s for any morhisms s : X −→ TY and r : Y −→ TZ.

Thus setting µX = îdTX : TTX −→ TX we obtain a monad (T, η, µ), and we
call it the completely iterative monad generated by H.

2.3 The free Completely Iterative Monad

Based on the consideration in the previous section 2.2 it is quite natural to
call for any monad (S, η, µ) on A a morphism

e : X −→ S(X + Y )

an equation arrow. Recall that for any monad there is an associated Kleisli
triple, where for s : X −→ SY we have ŝ = µY · Ss. Hence, a morphism
e† : X −→ SY with

X
e†

e

SY

S(X + Y )
̂[e†,ηY ]

will be called a solution. However, it is in general not obvious how the property
of e being guarded is to be expressed for an arbitrary monad.

Elgot, Bloom and Tindell [EBT] use, in their setting of algebraic theories,
the notion of an ideal theory introduced by Elgot in [E]. For finitary monads
on Set this notion is equivalent to the following notion of ideal monad (see
[AAMV] for a simple proof of this fact):

Definition 2.10

(i) Let (S, η, µ) be a monad. A (right) ideal of S is a subfunctor σ : S ′ S

such that there exists a (necessarily unique) restriction µ′ : S ′S −→ S ′ of
µ, i. e., the following square

S ′S

σS

µ′

S ′

σ

SS µ S

commutes.

(ii) A monad together with an ideal of it is called an idealized monad. If
furthermore we have S = S ′ + Id , i. e., [σ, η] : S ′ + Id −→ S is an

6
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isomorphism, then S is called an ideal monad.

(iii) An idealized-monad morphism between idealized monads S1 and S2 with
chosen ideals σi : S ′

i Si , i = 1, 2, is a monad morphism h : S1 −→ S2

that preserves the chosen ideals, i. e., there exists a (necessarily unique)
natural transformation h′ : S ′

1 −→ S ′
2 such that the following square

S ′
1

h′

σ1

S ′
2

σ2

S1 h
S2

commutes.

Example 2.11

(i) Recall that the monad T is a coproduct of HT and Id . Hence the ideal
τ : HT T , where µ′ is given by Hµ makes T into an ideal monad.

(ii) Any monad S has ideals, e. g., the largest one (S itself). If A has a strict
initial object, then the smallest ideal is given by the constant functor on
the initial object.

Remark 2.12

(i) Notice that the notion of an ideal of a monad corresponds precisely to
the notion of a right ideal for a monoid. Indeed, recall that a right ideal
of a monoid M is a subset I of M such that I · M ⊆ I. Now a monad is
just a monoid in the monoidal category [A, A] of endofunctors on A with
tensor product being given by composition of functors.

(ii) It is not difficult to show that the category of ideal monads and ideal
monad homomorphisms is a coreflective subcategory of the category of
idealized monads with the same morphisms. In fact, if (S, η, µ) is a monad
with ideal σ : S ′ S the coreflection arrow is given by

S ′ + Id
[σ,η]

S.

Since this is not needed here, the proof is omitted.

Remark 2.13 Observe that the completely iterative monad T generated by
H comes with a natural “embedding of H”

τ ∗ ≡ H
Hη

HT τ T

into it. More generally, we call for any endofunctor H and idealized monad
S a natural transformation σ∗ : H −→ S ideal if it factors through the ideal

7
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σ : S ′ S as follows

H
σ∗

(σ∗)′

S

S ′

σ

For an idealized monad S we define the notion of a guarded equation arrow
as a morphism e that factors

X
e S(X + Y )

S ′(X + Y ) + Y .

[σX+Y ,ηX+Y ·inr]

Definition 2.14 An idealized monad S is called completely iterative if every
guarded equation arrow has a unique solution.

Remark 2.15 In [AAMV] a completely iterative monad is required to be
ideal. Observe however, that this is an uneccessary restriction. In fact, all of
the proofs of [AAMV] use only properties of idealized monads.

The following is the main result of [AAMV].

Theorem 2.16 For any iteratable endofunctor H, the monad T is the free

completely iterative monad on H. More precisely, for all completely itera-

tive monads S and ideal transformations λ : H −→ S there exists a unique

idealized-monad morphism λ : T −→ S such that λ · τ ∗ = λ:

H
τ∗

∀λ

T

∃!λ

S .

Remark 2.17

(i) Since the inclusion of the ideal σ : S ′ S is a monomorphism, the last
condition is equivalent to stating that

H
Hη

λ′

HT

λ
′

S ′

commutes, where λ
′
: HT −→ S ′ is the restriction of λ to the ideal of T .

(ii) Categorically, the statement of the theorem says that every iteratable
functor H in [A, A] has a universal arrow w. r. t. the forgetful functor

U : CIM(A) −→ [A, A]

of the category CIM(A) of all completely iterative monads and idealized-
monad morphisms. Beware! The functor U assigns to every completely

8
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iterative monad S its ideal S ′, not the underlying functor S. This choice
of U corresponds to the requirement that λ : H −→ S be an ideal trans-
formation.

The above result states that any iteratable endofunctor admits a free com-
pletely iterative monad. However, the obvious question whether these are the
only endofunctors with this property remains unanswered in [AAMV]. We
will present this answer in the next section.

3 Iteratability is neccessary

We have seen above that any iteratable endofunctor admits a free completely
iterative monad. We shall prove in this section that endofunctors that admit
a free completely iterative monad are precisely the iteratable ones.

Throughout this section we shall denote by A a category with binary co-
products such that injections are monomorphic.

Theorem 3.1 Every endofunctor generating a free completely iterative mo-

nad is iteratable.

Remark 3.2 More detailed, suppose that H is an endofuntor on A and

σ∗ : H −→ S

is a free completely iterative monad on H (where σ∗ is an ideal transforma-
tion), then H is iteratable and for all objects X of A, SX is a final coalgebra
of H( ) + X.

Before we proceed with the proof of this theorem, let us prove two auxilliary
results. First we establish that for any natural transformation H −→ S, where
H is any endofunctor and S any monad on A, one can easily obtain an ideal
monad S̃ and an ideal transformation H −→ S̃ as follows.

Definition 3.3 Let (S, η, µ) be a monad on A and let

σ∗ : H −→ S

be a natural transformation from an endofuntor H on A. Define (S̃, η̃, µ̃) as
follows:

(i) S̃ = HS + Id

(ii) η̃ ≡ inr : Id −→ HS + Id

9
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(iii) µ̃ ≡ S̃2 = (HS + Id)2 = HS(HS + Id) + HS + Id

HS(σ∗S+Id)+HS+Id

HS(S2 + Id) + HS + Id

HS[µ,η]+HS+Id

HS2 + HS + Id

[Hµ,inl]+Id

HS + Id = S̃

Lemma 3.4 The triple (S̃, η̃, µ̃) is an ideal monad.

Proof. Once we have established that S̃ is a monad, it is obvious that it is
ideal: Note that for S̃ ′ = HS we have

µ̃′ ≡ S̃ ′S̃ = HS(HS + Id)
HS(σ∗S+Id)

HS(S2 + Id)
HS[µ,η]

HS2 Hµ
HS = S̃ ′.

Hence, it is sufficient to show that η̃ and µ̃ satisfy the three axioms of a
monad.

(i) µ̃ · η̃
S̃

= 1
S̃
: This is obvious since

HS + Id inr HS(HS + Id) + HS + Id
µ̃

HS + Id ≡ 1HS+Id .

(ii) µ̃ · S̃η̃ = 1S̃: Observe that

S̃η̃ ≡ HS + Id
HSinr+inr

HS(HS + Id) + HS + Id .

We compose this with µ̃ and consider the components of the coproduct
HS + Id separately. On the right-hand component we obviously obtain
inr : Id −→ HS + Id . For the left-hand one we drop H and consider the
resulting commutative diagram

S
Sinr

Sinr

Sη

S(HS + Id)

S(σ∗S+Id)

S(S2 + Id)

S[µ,η]

S2

µ

S.

(iii) µ̃·S̃µ̃ = µ̃·µ̃S̃: This is a straightforward and not particularly enlightening
chase through rather huge diagrams. Since it only involves naturality and
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the equation µ · Sµ = µ · µS, we leave this as an easy exercise for the
Reader.

2

Lemma 3.5 If S in Definition 3.3 above is a completely iterative monad and

σ∗ : H −→ S is an ideal transformation, then S̃ is completely iterative, too.

Proof. We have to show that for each guarded equation morphism e : X −→
S̃(X + Y ) with a factorization

X
e

f

HS(X + Y ) + X + Y

HS(X + Y ) + Y

[inl,inr]

we have a unique solution e† : X −→ S̃Y . We define a guarded equation
arrow e : X −→ S(X + Y ) as follows

e ≡ X
f

HS(X + Y ) + Y
σ∗S+η

S2(X + Y ) + SY
[µ,Sinr]

S(X + Y ).

In order to see that e is indeed guarded, use that S is an idealized monad and
that σ∗ is an ideal transformation.

We solve e to obtain a unique arrow e† : X −→ SY such that the outer
shape of the following diagram

X

f

e†

(II)

SY

HSY + Y
σ∗S+Y

S2Y + Y

[µ,η]

HS(X + Y ) + Y

σ∗S+η

HS[e†,ηY ]+Y

(I)

HS2 + Y
σ∗S2+Y

Hµ+Y

S3Y + Y

Sµ+Y

S3Y +η

S2(X + Y ) + SY

[µ,Sinr]

S2[e†,ηY ]+SY
S3Y + SY

[µS,Sη]

S(X + Y )
S[e†,ηY ]

S2Y

µY

(2)

commutes. To see that square (I) commutes consider the components of the
coproduct HS(X + Y ) + Y separately. The left-hand component commutes
by naturality of σ∗, whereas the right-hand one obviously does. Hence, region
(II) commutes since all other parts of the above Diagram (2) clearly do.

We define

e† ≡ X
f

HS(X + Y ) + Y
HS[e†,ηY ]+Y

HS2Y + Y
Hµ+Y

HSY + Y = S̃Y,

and check that this yields a solution for e. Indeed, consider the following

11
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diagram:

X
f

f

HS(X + Y ) + Y
HS[e†,ηY ]+Y

HS2Y + Y
Hµ+Y

HSY + Y = S̃Y

HS2Y + HSY + Y

[Hµ,inl]+Y

HS(S2Y + Y ) + HSY + Y

HS[µ,η]+HSY +Y

HS(X + Y ) + Y

[inl,inr]

HS[e†,inr]+inr
HS(HSY + Y ) + HSY + Y

HS(σ∗S+Y )+HSY +Y

S̃(X + Y )
S̃[e†,η̃Y ]

S̃2(Y )

µ̃Y

It obviously commutes, except perhaps the upper middle part. We consider
its components separately. The right-hand component is the identity on Y .
For the left-hand one notice that the last arrow is Hµ on both paths. We
show that the rest is already commutative, in fact, even if we drop HS. That
is, we consider the resulting diagram:

X + Y
[e†,ηY ]

f+Y

SY

S2Y + Y

[µ,η]

HS(X + Y ) + Y + Y
HS[e†,ηY ]+Y +Y

HS2Y + Y + Y [Hµ+Y,inr]
HSY + Y

σ∗S+Y

This is obviously commutative. Indeed, the right-hand component is ηY and
the left-hand one is region (II) of diagram (2). This concludes the proof of the
existence of a solution for e.

As for the unicity of solutions, consider any h : X −→ S̃Y such that the
following diagram

X
h

f

HSY + Y S̃Y

HS2Y + HSY + Y

[Hµ,inl]+Y

HS(S2Y + Y ) + HSY + Y

HS[µ,η]+HSY +Y

HS(X + Y ) + Y
HS[h,inr]+inr

[inl,inr]

HS(HSY + Y ) + HSY + Y

HS(σ∗S+Y )+HSY +Y

S̃(X + Y )
S̃[h,η̃Y ] S̃2Y

µ̃Y

(3)

12
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commutes.

Below we will show that

X h HSY + Y
σ∗S+Y

S2Y + Y
[µ,η]

SY(4)

solves e. But then it is not difficult to show that e† = h. In fact, we start
with the definition of the solution e†

e† = (HµY + Y ) · (HS[e†, ηY ] + Y ) · f,

then substitute (4) for e† to obtain

(HµY + Y ) · (HS [[µY , ηY ] · (σ∗
SY + Y ) · h, ηY ] + Y ) · f,(5)

and finally, we use the equation

ηY = [µY , ηY ] · (σ∗
SY + Y ) · inr.(6)

in order to see that (5) is the same as

(HµY + Y ) · (HS[µY , ηY ] + Y ) · (HS(σ∗
SY + Y ) + Y ) · (HS[h, inr] + Y ) · f,

which according to the upper left-hand part of Diagram (3) is just h.

Let us complete our proof by showing that the arrow (4) solves e. In fact,
the following diagram

X
h

f

HSY + Y
σ∗S+Y

S2Y + Y
[µ,η]

SY

HS2Y + Y

Hµ+Y

σ∗S2+Y
S3Y + Y

SµY +Y

S3Y +ηY

HS(S2Y + Y ) + Y

HS[µ,η]+Y

HS(X + Y ) + Y
HS[h,inr]+Y

σ∗S+ηY

HS(HSY + Y ) + Y

HS(σ∗S+Y )+Y

(I)

S2(X + Y ) + SY

[µ,Sinr]

S2[[µY ,ηY ]·(σ∗
SY

+Y )·h,ηY ]+SY
S3Y + SY

[µSY ,SηY ]

S(X + Y )
S[[µY ,ηY ]·(σ∗

SY
+Y )·h,ηY ]

S2Y

µY

commutes. The upper left-hand square is just the upper left-hand square of
Diagram (3). For the inner part (I), consider the components of the coproduct
HS(X + Y ) + Y separately. The right-hand components obviously commute,
for the left-hand ones use naturality of σ∗ and Equation (6). All other parts
clearly commute. 2

Proof of Theorem 3.1. Suppose that (S, η, µ) is a free completely iterative
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monad on H, i. e., there exists a universal ideal transformation

σ∗ : H −→ S.

By Lemma 3.4, S̃ = HS + Id is an ideal monad, and by Lemma 3.5 it is com-
pletely iterative. Then by the universal property we have a unique idealized-
monad morphism α : S −→ HS + Id such that the following diagram

H
σ∗

Hη

S

αHS

inl

HS + Id

(7)

commutes.

Note that for all objects Y of A the arrows

αY : SY −→ HSY + Y

define a coalgebra structure for H( ) + Y on SY . We shall establish below
that α is an isomorphism with an inverse given by the natural transformation

β ≡ HS + Id
σ∗S+Y

S2 + Id
[µ,η]

S.

In order to establish that (SY, αY ) is a final coalgebra suppose that γ :
A −→ HA + Y is any coalgebra of H( ) + Y . Then

γ ≡ A
γ

HA + Y
σ∗+η

SA + SY
[Sinl,Sinr]

S(A + Y )

is a guarded equation arrow (since σ∗ is ideal, i. e., it factors through σ : S ′ −→
S) whose solution γ† : A −→ SY yields the desired unique homomorphism of
coalgebras. Indeed, consider the following diagram:

A
γ

x

HA + Y
σ∗+η

Hx+Y

SA + SY
[Sinl,Sinr]

[Sx,SηY ]

Sx+SY

S(A + Y )

S[x,ηY ]

HSY + Y

σ∗
SY

+η

βY =α−1

Y

S2Y + SY

[µ,SY ]

SY S2YµY

Suppose we put γ† in place of x in the diagram. Then the outer square
commutes, and we conclude that the upper left-hand part commutes, since all
other parts obviously do. This shows that γ† is a coalgebra homomorphism.

14
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Conversely, put any coalgebra homomorphism h : (A, γ) −→ (SY, αY ) in
place of x. Then the upper left-hand part commutes, and therefore the whole
diagram does. But then h = γ†, by the uniqueness of solutions. This concludes
the proof.

Finally, we show that β is the inverse of α.

(i) β · α = 1S: We will first show that β : HS + Id −→ S is an idealized-
monad morphism. In fact, once we know it is a monad morphism, it
is easily established that it is ideal. To see this, consider the following
commutative diagram:

HS
inl

(σ∗)′S
σ∗S

HS + Id

σ∗S+Id

S ′S
σS

µ′

S2 inl

µ

S2 + id

[µ,η]

S ′
σ S

Let us show that β is a monad homomorphism. We clearly have

β · η̃ = [µ, η] · (σS + Id) · inr

= [µ, η] · inr

= η.

Hence, it suffices to prove that the following square

S̃2
µ̃

S̃β

S̃

βS̃S
βS

S2
µ S

is commutative. We apply the definition of (S̃, η̃, µ̃) and consider the
components of the coproduct

S̃2 = (HS + Id)2 = HS(HS + Id) + HS + Id

separately. For the right-hand component HS + Id we obtain

β · µ̃ · inr = β (inr = η̃S̃)

= µ · ηS · β (µ · ηS = 1S)

= µ · βS · η̃S · β (since β · η̃ = η)

= µ · βS · S̃β · inr (naturality of η̃).

15
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For the left-hand component we obtain the following commutative dia-
gram

HS(HS + Id)
HS(σ∗S+Y )

HS(σ∗S+Id)

HS(S2 + Id)
HS[µ,η]

HS2 Hµ
HS

σ∗S

HS(S2 + Id)

HS[µ,η]

HS2

σ∗S2

S3

µS

Sµ
S2

µ

S2
µ S .

Now β ·α is an idealized-monad morphism such that β ·α ·σ∗ = σ∗. In
fact, the following diagram

H
σ∗

σ∗ Hη

S

αS

Sη

HS
inl

σ∗S

S2
inl

µ

HS + Id

σ∗S+Id

βS2 + Id

[µ,η]

S

commutes. Therefore, by the freeness of S on H, we have β · α = 1S, as
desired.

(ii) α · β = 1HS+Id : We check this on the components of HS + Id . For the
right-hand component we obtain

α · β · inr = α · [µ, η] · (σ∗S + Id) · inr (definition of β)

= α · η

= inr (α is a monad morphism),

16
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For the left-hand component we have

α · β · inl = α · [µ, η] · (σ∗S + Id) · inl (definition of β)

= α · µ · σ∗S

= µ̃ · S̃α · αS · σ∗S (α is a monad morphism)

= µ̃ · S̃α · inl · HηS (α · σ∗ = inl · Hη, see (7)).

We analyze the last expression further and obtain the following com-
mutative diagram:

HS

HηS

HS

inl

HS2

inl HSα

HS2

Hµ

HS2 + S

S̃α=HSα+α

HS(HS + Id)

inl

HS(σ∗S+Id)

HSβ

HS(S2 + Id)

HS[µ,η]

S̃2
µ̃ S̃ = HS + Id

Note that the inner triangle commutes since β · α = 1S, and the other
parts obviously commute. Thus we have shown that

α · β = [inl, inr] = 1HS+Id

as required.
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THE CATEGORY THEORETIC SOLUTION OF RECURSIVE PROGRAM SCHEMES

STEFAN MILIUS AND LAWRENCE S. MOSS

Abstract. This paper provides a general account of the notion of recursive program schemes, studying both
uninterpreted and interpreted solutions. It can be regarded as the category-theoretic version of the classical
area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories
with “enough final coalgebras” we show how to formulate, solve, and study recursive program schemes.
Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes
the previous approaches which do use this extra structure by isolating the key concepts needed to study
substitution in infinite trees, including second-order substitution. As special cases of our interpreted solutions
we obtain the usual denotational semantics using complete partial orders, and the one using complete metric
spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related
to recursive program schemes. For example, the classical Cantor two-thirds set falls out as an interpreted
solution (in our sense) of a recursive program scheme.
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1. Introduction

The theory of recursive program schemes is a topic at the heart of semantics. One takes a system of
equations such as

ϕ(x) ≈ F (x, ϕ(Gx))
ψ(x) ≈ F (ϕ(Gx), GGx)

(1.1)

where F and G are given functions and where ϕ and ψ are defined in terms of them by (1.1). The problems
are: to give some sort of semantics to schemes, and to say what it means to solve a scheme. Actually, we
should distinguish between interpreted schemes, and uninterpreted schemes.

An interpreted scheme is one which comes with an algebra with operations for all the given operation
symbols. Here is the standard example in the subject. Let Σ be the signature of given operation symbols
with a constant one, one unary symbol pred, a binary symbol ∗ and a ternary one ifzero. The interpretation
we have in mind is the natural numbers where ifzeroN(k, n,m) returns m if k is 0 and n otherwise, and all
other operations are obvious. The signature Φ of the recursively defined operations consists just of one unary
symbol f . Consider the recursive program scheme

f(n) ≈ ifzero(n, one, f(pred(n)) ∗ n)) . (1.2)

Then (1.2) is a recursive program scheme defining the factorial function.
This paper presents a generalization of the classical theory based on Elgot algebras and final coalgebras.

The point in a nutshell is that knowing that the infinite trees are the final coalgebra of a functor on sets
leads to a purely algebraic account of first-order substitution and (co-)recursion, as shown in [AAMV, Mo1].
One does not need to assume any metric or order to study infinite trees: the finality principle is sufficient.
In this paper we show that corecursion allows us to give an uninterpreted semantics to a scheme; i. e., we
show how to solve a scheme in final coalgebras.

For our interpreted semantics we work with Elgot algebras, a simple and fundamental notion introduced
in [AMV3]. We show how to give an interpreted solution to recursive program schemes in arbitrary Elgot
algebras. We believe that our results in this area generalize and extend the previous work on this topic.
Furthermore, we claim that our abstract categorical approach allows a unified view of several well-known
approaches to the semantics of implicit recursive function definitions. Our method for obtaining interpreted
solutions easily specializes to the usual denotational semantics using complete partial orders. As a second
application we show how to solve recursive program schemes in complete metric spaces. For example, there
is a unique contracting f : [0, 1] −→ [0, 1] such that

f(x) =
1

4

(
x+ f

(
1

2
sinx

))
. (1.3)

Concerning sets of real numbers, recall that the Cantor set c is the unique non-empty closed c ⊆ [0, 1] such
that

c =
1

3
c ∪

(
2

3
+

1

3
c

)
, (1.4)

where 1
3c denotes the set { 1

3x | x ∈ c } as usual.
Finally, our theory also encompasses examples of recursive program schemes and their solutions which

cannot be treated with the classical theory; in this paper we present recursive definitions of operations
satisfying equations like commutativity. Other examples are recursive program scheme solutions in non-
wellfounded sets (solving x = { { y | y ⊆ x finite } }). We will present the applications of our results to
non-wellfounded sets in a future paper.

Our purpose in this paper is to isolate general principles which imply the existence and uniqueness results
for uninterpreted solutions of systems such as (1.1) and interpreted schemes such as (1.2–1.4).

1.1. Several Semantics. There are several semantics for recursive program schemes, and it is worth men-
tioning a bit about them, both to situate our work and also because we shall be interested in showing that
one can recover different flavors of semantics from our more general approach.

1.1.1. Operational Semantics. This gives semantics to interpreted schemes only. Solutions are defined by
rewriting. In our factorial example, the semantics of (1.2) would be as follows: to compute the solution
f †(n) for a natural number n start with the term f(n), substitute it by its right-hand side in the scheme
and evaluate this term as much as possible. If the evaluated right-hand side still contains f replace it again
by its right-hand side and then evaluate the whole term, and so on. If after finitely many steps this process
returns a natural number we have computed f †(n); otherwise we declare f †(n) to be undefined. (Of course
there are important and subtle points to be considered here pertaining to issues like call by name and call by
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value interpretations of function symbols, and also about the overall strategy of rewriting.) In the factorial
example the described process always stops. But in general this may not be the case.

1.1.2. Denotational Semantics. Again this provides semantics for interpreted schemes only. The algebra that
comes as the interpretation of the given functions is a complete partial order A with continuous operations
for all given operation symbols. A system like (1.1) gives then rise to a continuous function R on a function
space. In our factorial example from (1.2) one would consider the natural numbers as a flat cpo and R
assigns to a continuous function f on that cpo the function

Rf(n) =





⊥ if n = ⊥
1 if n = 0

f(n− 1) · n else
(1.5)

The semantics of the given scheme is then the least fixed point of R. More generally, denotational semantics
provides a continuous operation ϕA on A for each newly defined operation symbol ϕ of a given recursive
program scheme.

It is true but by no means obvious that the operational and denotational semantics agree in the appropriate
sense. Thus there is a matter of semantic equivalence to be investigated. This was one of the primary
starting points of the original theory of recursive program schemes, see [C, G, N]. In any case, there are
two general themes that are raised by this matter of equivalence. First, one sees that the very definition of
the denotational semantics requires order-theoretic methods. From our point of view, one must ask whether
this is really necessary. One of the themes of work in coalgebra is that for some semantic problems, order-
theoretic methods may be replaced by purely algebraic ones. This is a theme in some of the recent work
in coalgebra that is relevant to our study. The reason is that coalgebra is often about semantics spaces for
infinite behaviors of one type or another, and these are studied using universal properties (typically finality)
instead of the extra structure coming from a cpo or complete metric space. The second general theme is
what we might call recovery of one semantics by another. The first instance of this is the recovery of the
operational semantics by the denotational semantics. One therefore feels that the denotational semantics is
getting at something deeper. (At the same time, the very real subtle points of operational semantics are not
easy to address with the methods of denotational semantics, so there is a loss as well.)

1.1.3. Algebraic Semantics. This considers uninterpreted recursive program schemes; i. e., where no inter-
pretation is given. It is then an issue in this approach to make sure that one can recover the denotational
and operational semantics inside the algebraic semantics. But first, one must say what a solution to (1.1)
should be. Normally, one considers for a signature Σ and a set X of generators the set TΣX of all finite
and infinite Σ-trees over X , i. e., ordered and rooted trees labelled so that an inner node with n children,
n > 0, is labelled by an n-ary operation symbol from Σ, and leaves are labelled by a constant symbol or
a variable of X . Then one defines an appropriate notion of second-order substitution whereby Σ-trees may
be substituted for operation symbols in Γ-trees for another signature Γ. In general, a recursive program
scheme is given by two signatures Σ (of given operations) and Φ (of recursively defined operation), and a set
of formal equations providing for each n-ary operation ϕ from Φ on the left-hand side a (Σ + Φ)-tree over n
syntactic variables on the right-hand side of the equation. A solution for such a recursive program scheme
then assigns to each n-ary operation symbol ϕ from Φ a Σ-tree ϕ†(x1, . . . , xn) in n syntactic variables which
is equal to the Σ-tree obtained by second-order substituting the solutions in the right-hand side of the formal
equation defining ϕ.

As an example, consider the signature Σ with a binary operation symbol F and a unary symbol G. One
might want to define new operations ϕ and ψ recursively as in (1.1) above. Notice that the system is guarded,
or in Greibach normal form: the right-hand sides start with a symbol from Σ. One key opening result of
algebraic semantics is that a unique solution exists for guarded systems among Σ-trees. For instance, for the
above system (1.1) the solution consists of the Σ-trees

ϕ†(x) =

F

x F

Gx F

GGx

����
////

����
////

����

ψ†(x) =

F

F GGx

Gx F

GGx

����
////

����
////

����

(1.6)
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This solution can in general be obtained as follows: the given scheme expands to a system of equations with
recursion variables for each (Σ + Φ)-tree t. This system gives to each recursion variable t where t is just a
syntactic variable that variable itself, and otherwise the right-hand side of the system is given by replacing
all appearances of symbols of Φ by their right-hand sides in the given scheme. For example, from (1.1) we
obtain the equations

x ≈ x ϕ(Gx) ≈ F (Gx,ϕ(GGx))

ϕ(x) ≈ F (x, ϕ(Gx)) F (x, ϕ(Gx)) ≈ F (x, F (Gx,ϕ(GGx)))

ψ(x) ≈ F (ϕ(Gx), GGx) GGx ≈ G(Gx)

ϕ(ψ(x)) ≈ F (F (ϕ(Gx,GGx)), ϕ(G(F (ϕ(Gx), GGx))))
...

(1.7)

and so on. Notice that each tree (here written as terms) on the right-hand side is a Σ-tree which is either
just a syntactic variable or flat ; i. e., one operation symbol from Σ with recursion variables. The solution of
ϕ is now just the tree unfolding of the recursion variable ϕ(x) and similarly for ψ.

At this point, we have explained how we solve recursive program schemes in the algebraic semantics. But
much has been omitted. For example, we gave no general account of why any solution method works, or
even, why the above trees solve the given scheme.

The standard approach views infinite trees as either the completion of the finite trees, considered as a
metric space, or else as the ideal completion of the set of finite trees. Second-order substitution is defined and
studied using one of those methods, and using this one can say what it means to solve a recursive program
scheme. We shall show in this paper that all of this can be done more generally and conceptually much nicer
by considering Σ-trees as final coalgebras. More precisely, the algebra TΣX of all Σ-trees over X is the final
coalgebra for the functor HΣ( ) + X , where HΣ is the polynomial endofunctors on sets associated to the
signature Σ. It is the universal property of those final coalgebras, for any set X , which allows us to give a
semantics to recursive program schemes.

1.1.4. Category Theoretic Semantics. As the title of our paper suggests, our goal is to propose a category-
theoretic semantics of program schemes. The idea is to be even deeper than the algebraic semantics, and
to therefore obtain results that are more general. Our theory is based on notions from category theory
(monads, Eilenberg-Moore algebras) and coalgebra (finality, solution theorems, Elgot algebras). The overall
assumptions are weak: there must be finite coproducts, and all functors we deal with must have “enough
final coalgebras”. More precisely, we work in a category A with finite coproducts and with functors H :
A −→ A such that for all objects X a final coalgebra TX of H( ) +X exists. We shall introduce and study
recursive program schemes in this setting. In particular, we are able to prove the existence and uniqueness of
interpreted and uninterpreted solutions to schemes. The price we pay for working in such a general setting is
that our theory takes somewhat more effort to build. But this is not excessive, and perhaps our categorical
proofs reveal more conceptual clarity than the classical ones.

Further, the issue of semantic recovery is quite interesting in our study. As we mentioned, we can recover
the key aspects of the algebraic semantics in our approach. It follows that we can recover the other semantics
as well. We shall interpret schemes in Elgot algebras. One of the key examples is the algebra TΣX of all
Σ-trees over X ; and indeed, it appears that the fact that this is a free Elgot algebra on X implies all of the
structural properties that are of interest when studying recursion. But in addition, there are many other
interesting examples of Elgot algebras. As it happens, continuous algebras are Elgot algebras. We shall
show that our general results on solving recursive program schemes in Elgot algebras directly specializes
to least fixed-point recursion in continuous algebras. This yields the usual application of recursive program
scheme solutions for the semantics of functional programs such as (1.2). Furthermore, algebras on complete
metric spaces with contracting operations are Elgot algebras, and so our results specialize to the unique
fixed-point recursion in completely metrized algebras provided by Banach’s fixed-point theorem. This yields
applications such as the ones in (1.3) and (1.4) above.

Related Work. The classical theory of recursive program schemes is compactly presented by Guessarian [G].
There one finds results on uninterpreted solutions of program schemes and interpreted ones in continuous
algebras.

The first categorical accounts of infinite trees as monads of final coalgebras appear independently at
almost at the same time in work of the second author [Mo1], in Ghani et al. [GLMP1, GLMP2], and in Aczel
et al. [AAV]. Furthermore, in [Mo1] and in [AAV, AAMV] it is shown how solutions of formal recursive
equations can be studied with coalgebraic methods. And in [AAMV] and [Mi1] of the first author the



THE CATEGORY THEORETIC SOLUTION OF RECURSIVE PROGRAM SCHEMES 5

monad of final coalgebras is characterized as the free completely iterative monad, generalizing and extending
results of Elgot et al. [E, EBT]. Hence, from [AAMV, Mi1] it also follows how to generalize second-order
substitution of infinite trees (see Courcelle [C]) to final coalgebras. The types of recursive equations studied
in [Mo1, AAMV] did not go as far as program schemes. It is thus an important test problem for coalgebra
to see if work on solving systems of equations can extend to (un)interpreted recursive program schemes. We
are pleased that this paper reports a success in this matter.

Ghani et al. [GLM] obtained a general solution theorem with the aim of providing a categorical treatment
of uninterpreted program scheme solutions. Part of our proof for the solution theorem for uninterpreted
schemes is inspired by their proof of the same fact. However, the notion of recursive program scheme in [GLM]
is different from ours, and more importantly, our presentation of recursive program scheme solutions as fixed
points with respect to to (generalized) second-order substitution as presented in [AAMV] is new here.

Complete metric spaces as a basis for the semantics of recursive program schemes have been studied for
example by Arnold and Nivat [AN]. Bloom [Bl] studied interpreted solutions of recursive program schemes
in so-called contraction theories. The semantics of recursively defined data types as fixed points of functors
on the category of complete metric spaces has been investigated by Adámek and Reitermann [ARe] and by
America and Rutten [ARu]. We build on this with our treatment of self-similar objects. These have also
recently been studied in a categorical framework by Leinster, see [L1, L2, L3]. The example in this paper
uses standard results on complete metric spaces, see, e.g. [B]. We are not aware of any work on recursive
program schemes that even mentions connections to examples like self-similar sets in mathematics, let alone
develops the connection.

Finally, some of the results of this paper have appeared in our extended abstract [MM]. However, most of
the technical details and all of the proofs were omitted. This full version explains our theory in much more
detail and provides full proofs of all results.

Contents. The paper is structured as follows: Section 2 contains a brief summary of the definitions
concerning monads. It also states the overall assumptions that we make in the rest of the paper. Section 3
presents the notions of completely iterative algebra and Elgot algebra, following [AMV3]. Except for the
Section 3.3, none of the results in this section is new here. But the paper as a whole would not make much
sense to someone unfamiliar with completely iterative algebras and Elgot algebras. So we have included
sketches of proofs in this section. The completely iterative monads of Section 4 are also not original here.
But the properties of them developed in Section 5 are new. These are needed for the work on uninterpreted
schemes (Section 6) and then interpreted schemes (Section 7). These are the heart of the paper.

2. Background: Iteratable Functors and Monads

This section contains most of the background which we need and also connects that background with
recursive program schemes. Before reviewing monads in Section 2.2 we should mention the main base
categories of interest in this paper, and our overall assumptions on those categories and endofunctors on
them.

2.1. Iteratable Functors. Throughout this paper we assume that a category A with finite coproducts
(having monomorphic injections) is given. In addition, all endofunctors H on A we consider are assumed
to be iteratable [sic]: for each object X , the functor H( ) + X has a final coalgebra. We denote for an
iteratable endofunctor H on A by

T(H)X

the final coalgebra of H( ) + X . Whenever confusion is unlikely we will drop the parenthetical (H) and
simply write T for T(H). By the Lambek Lemma [L], the structure morphism of the final coalgebra is an
isomorphism, and consequently, TX is a coproduct of HTX and X with injections

ηHX : X −→ TX “injection of variables”
τHX : HTX −→ TX “TX is an H-algebra”

Again, the superscripts will be dropped if confusion is unlikely.
Having coproduct injections that are monomorphic is a mere technicality and could even be totally avoided,

see [Mi2], Sections 4 and 5. However, this assumption simplifies our presentation.
More serious is the assumption of iteratability. In one sense, this is a mild assumption: experience shows

most endofunctors of interest are iteratable.

Example 2.1. We recall that ordinary signatures of function symbols Σ (as in universal algebra) give
functors on Set. This is one of the central examples in this paper because it will allow us to recover the
classical algebraic semantics from our category-theoretic one. A signature may be regarded as a functor
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Σ : N −→ Set, where N is the discrete category with natural numbers as objects. For each n, write Σn for
Σ(n); this is the set of function symbols of arity n in Σ. There is no requirement that different numbers
should give disjoint sets of function symbols of those arities. Given any signature Σ there is an associated
polynomial endofunctor (henceforth called a signature functor)

HΣX = Σ0 + Σ1 ×X + Σ2 ×X2 + · · · (2.1)

on Set. When we need to refer to elements of HΣX , we shall use the notation (f, ~x) for a generic element of
HΣX ; n is understood in this notation, f ∈ Σn, and ~x is an n-tuple of elements of X . Also observe that on

morphisms k : X −→ Y the action of HΣ is given by HΣk(f, ~x) = (f,
−→
kx).

Signature functors HΣ of Set are iteratable. In fact, consider the set

TΣX

of finite and infinite Σ-labelled trees with variables from the set X . That is, ordered and rooted trees labelled
so that a node with n children, n > 0, is labelled by an operation symbol from Σn, and leaves are labelled
by constant symbols or variables (elements of X + Σ0).

This set TΣX is the carrier of a final coalgebra for HΣ( ) +X . The coalgebra structure is the inverse of
tree tupling paired with the obvious injection ηX : X −→ TΣX which regards each variable as a one-point
tree.

So at this point we have seen signature functors on Set as an examples of iteratable functors. Unfortunately,
we must admit that iteratability is not a very nice notion with respect to closure properties of functors—for
example, iteratable functors need not be closed under coproducts or composition. The main examples of
base categories A in this paper are Set, CPO and CMS. In these categories there are stronger yet much nicer
conditions that ensure iteratability.

Examples 2.2. (i) Accessible endofunctors of Set. Let λ be a regular cardinal. An endofunctor H of
the category Set of sets and functions is called λ-accessible it it preserves λ-filtered colimits. It is
shown in [AP], Proposition 5.2, that λ-accessible functors are precisely those endofunctors where for
each set X any element x ∈ HX lies in the image of Hm : HY −→ HX for some subset Y ↪−→ X
of cardinality less than λ. As usual, we call an endofunctor H finitary if it is ω-accessible and
we call H accessible if it is λ-accessible for some regular cardinal λ. Any accessible endofunctor is
iteratable, see [Ba]. In particular, signature functors are finitary, whence iteratable (as we already
know).

(ii) CPO is the category of ω-complete partial orders, i. e., partially ordered sets with joins of all increas-
ing ω-chains (but not necessarily with a least element ⊥). Morphisms of CPO are the continuous
functions (preserving joins of all ω-chains). Hence the morphisms are monotone (preserve the order).
Notice that coproducts in CPO are disjoint unions with elements of different summands incompat-
ible. CPO is understood to be enriched in the obvious way. For given cpo’s X and Y , the hom-set
CPO(X,Y ) is a cpo in the pointwise order. An endofunctor H on CPO is locally continuous if it
preserves the extra structure just noted, i. e., each derived function CPO(X,Y ) −→ CPO(HX,HY )
is continuous. Observe that not all locally continuous functors need be iteratable. For a counterex-
ample consider the endofunctor assigning to a cpo X the powerset of the set of order components
of X . This is a locally continuous endofunctor but it does not have a final coalgebra. However, any
accessible endofunctor H on CPO has a final coalgebra, see [Ba], and moreover, H is iteratable.

(iii) Finally, CMS is the category of complete metric spaces with distances measured in the interval [0, 1]
together with non-expanding maps f : X −→ Y ; i. e., dY (fx, fy) ≤ dX(x, y) for all x, y ∈ X . A
stronger condition is that f be ε-contracting : for some ε < 1 such that dY (fx, fy) ≤ ε · dX(x, y)
for x, y ∈ X . Again, CMS is understood to be enriched. For complete metric spaces (X, dX ) and
(Y, dY ) the hom-set CMS(X,Y ) is a complete metric space with the metric given by

dX,Y (f, g) = sup
x∈X

dY (f(x), g(x)) .

Recall that a functor H on CMS is called ε-contracting if there exists a constant ε < 1 such that
each derived function CMS(X,Y ) −→ CMS(HX,HY ) is an ε-contracting map; i. e.,

dHX,HY (Hf,Hg) ≤ ε · dX,Y (f, g)

for all non-expanding maps f, g : X −→ Y . Contracting functors on CMS are iteratable, see [ARe].
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Construction 2.3. Let H be an endofunctor of Set. We recall here that a final coalgebra T for H can (if it
exists) be constructed as a limit of an (op-)chain. Let us define by transfinite induction the following chain
indexed by all ordinal numbers:

Initial step: T0 = 1, t1,0 ≡ H1
! //1 ,

Isolated step: Ti+1 = HTi, ti+1,j+1 ≡ HTi
Hti,j

//HTj

Limit step: Tj = lim
i<j

Ti with limit cone tj,i : Tj −→ Ti, i < j,

where the connecting map tj+1,j is uniquely determined by the commutativity of the squares

Ti+1 = HTi

ti+1,i

��

HTj = Tj+1
Htj ,i

oo

tj+1,j

��

Ti Tj
tj,i

oo

i < j .

This chain it said to converge if ti+1,i is an isomorphism for some ordinal number i.

It has been proved by Adámek and Koubek [AK] that an endofunctor H has a final coalgebra iff the above
chain converges; moreover, if i is an ordinal number such that ti+1,i is invertible, then t−1

i+1,i : Ti −→ HTi is
a final coalgebra for H . For many set endofunctors one can give a bound for the number of steps it will take
until the above final coalgebra chain Ti converges. The following result has been established by Worrell [W].

Theorem 2.4. For a λ-accessible endofunctor H of Set the final coalgebra chain Ti converges after λ · 2
steps and (Tλ·2, t

−1
λ·2+1,λ·2) is a final coalgebra for H.

In particular, for a finitary endofunctor a final coalgebra is obtained after ω+ω steps. For some functors
one can further improve on this bound. For endofunctors preserving limits of countable op-chains the final
coalgebra chain converges after countably many steps so that (Tω, t

−1
ω+1,ω) is a final coalgebra. For example,

each signature functor HΣ of Set preserves limits of op-chains.

Examples 2.5. We mention additional examples of iteratable endofunctors H with their final coalgebras
TX on the categories of interest.

(i) A functor H : Set −→ Set is finitary (i. e., it preserves filtered colimits) iff it is a quotient of some
polynomial functor HΣ, see [AT], III.4.3. The latter means that we have a natural transformation
ε : HΣ −→ H with epimorphic components εX . These components are fully described by their
kernel equivalence whose pairs can be presented in the form of so-called basic equations

σ(x1, . . . , xn) = ρ(y1, . . . , ym)

for σ ∈ Σn, ρ ∈ Σm and (σ, ~x), (ρ, ~y) ∈ HΣX for some set X including all xi and yj . Adámek
and Milius [AM] have proved that the final coalgebra TX of H( ) + X is given by the quotient
TΣX/∼X where ∼X is the following congruence: for every Σ-tree t denote by ∂nt the finite tree
obtained by cutting t at level n and labelling all leaves at that level by some symbol ⊥ not from
Σ. Then we have s ∼X t for two Σ-trees s and t iff for all n < ω, ∂ns can be obtained from ∂nt
by finitely many applications of the basic equations describing the kernel of εX . For example, the
functor H which assigns to a set X the set { {x, y } | x, y ∈ X } of unordered pairs of X is a quotient
of HΣX = X ×X expressing one binary operation b where εX is presented by commutativity of b;
i. e., by the basic equation b(x, y) = b(y, x). And TX is the coalgebra of all unordered binary trees
with leaves labelled in the set X .

(ii) Consider the finite power set functor Pf : Set −→ Set. Under the Anti-Foundation Axiom (AFA), its
final coalgebra is the set HF1 of hereditarily finite sets; see [BM]. Analogously, the final coalgebra
of Pf( ) +X is the set HF1(X) of hereditarily finite sets generated from the set X . Even without
AFA, the final coalgebra of Pf may be described as in Worrell [W]; it is the coalgebra formed by
all strongly extensional trees; i. e., unordered trees so that for every node the subtrees defined by
any two different children are not bisimilar. Analogously, the final coalgebra of Pf( ) + X is the
coalgebra of all strongly extensional trees where some leaves have a label from the set X .

(iii) The (unbounded) power set functor P : Set −→ Set does not have a final coalgebra, whence it is not
iteratable. However, moving to the category of classes and functions between them, the power set
functor turns out to be iteratable, see e. g. [AMV3]. Indeed, some of the machinery that comes from
iteratable functors turns out to have a surprisingly set-theoretic interpretation when specialized to
this setting; see [Mo3].
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(iv) In our applications, the key point is that certain Set endofunctors lift to (iteratable) endofunctors
on CPO. And we need to know that those liftings are locally continuous. In fact, let H be an
iteratable Set functor with a locally continuous lifting H ′ on CPO; i. e., a functor H ′ so that for the
forgetful functor U : CPO −→ Set we have a commutative square

CPO
H′ //

U

��

CPO

U

��

Set
H

// Set

Then H ′ is iteratable, and moreover, the final coalgebra functor T(H ′) is a lifting of T(H):

CPO
T(H′)

//

U

��

CPO

U

��

Set
T(H)

// Set

(2.2)

To see this, first recall that for any set X the final coalgebra T(H)X is obtained from the final
coalgebra chain Ti of H( ) +X , see Construction 2.3. In fact, T(H)X is the coalgebra (Tj , t

−1
j+1,j)

for the smallest ordinal number j for which tj+1,j is invertible. As CPO is a complete category we
can define for any endofunctor H ′ of CPO a final coalgebra chain T ′i in precisely the same way as
in 2.3. Since the forgetful functor U preserves limits, it follows that for a cpo X the final coalgebra
chain of H ′( ) + X has the Ti as underlying sets. However, in CPO the continuous map tj+1,j

might not be invertible. But since the chain of underlying sets converges at index j we know that
for all ordinal numbers k the connecting maps tj+k,j : Tj+k −→ Tj are monomorphisms of CPO.
Moreover, all cpos Tj+k have (up to isomorphism) the same underlying set Tj and therefore the
partial orders on the Tj+k, k ≥ 0, form a decreasing chain of subsets of Tj × Tj . This implies that
the final coalgebra chain has to converge at some index j + k, k ≤ card(Tj × Tj). By standard
arguments it follows that the cpo Tj+k is the final coalgebra of H ′( ) +X . Thus, we may choose
T(H ′)X = Tj equipped with the cpo structure given by its subcpo Tj+k, whence the square (2.2)
commutes as desired.

For example, every signature functor HΣ has a locally continuous and iteratable lifting H ′. This
lift is the functor

H ′X = Σ0 + Σ1 ×X + Σ2 ×X2 + · · ·
on CPO. Here each Σn is a discrete ordered set, + is the coproduct of CPO (a lift of the coproduct
of Set) and × the usual product. It should be noted that even if X has a least element, H ′X almost
never has one. Finally, T(H ′)X is the Σ-tree algebra TΣX with the order induced by the order of
the cpo X—we describe this order in more detail later in Example 7.13(i).

(v) Let H : Set −→ Set have a contracting lifting H ′ on CMS; i. e.,

CMS
H′ //

U

��

CMS

U

��

Set
H

// Set

for U : CMS −→ Set the forgetful functor. Then H is iteratable and U · T(H ′) = T(H) · U . In
fact, this follows from the results of [ARe] since U preserves limits. Any polynomial functor H on
Set has a contracting lifting to CMS. For HX = Xn, define H ′(X, d) = (X, 1

2dmax) (where dmax is

the maximum metric) which is a contracting functor with ε = 1
2 . And coproducts of 1

2 -contracting

liftings are 1
2 -contracting liftings of coproducts. The final coalgebra T(H ′)X is the Σ-tree algebra

TΣX equipped with a suitable complete metric. We will provide details of this metric later, see
Remark 7.15.

2.2. Monads. A monad on a category A is a triple (T, µ, η) consisting of a functor T : A −→ A, and natural
transformations µ : TT −→ T , and η : Id −→ T , satisfying the unit laws µ · Tη = µ · ηT = id , and the



THE CATEGORY THEORETIC SOLUTION OF RECURSIVE PROGRAM SCHEMES 9

associative law µ · Tµ = µ · µT :

T
Tη

//

BBBBBBBB

BBBBBBBB TT

µ

��

T
ηT

oo

||||||||

||||||||

T

TTT
Tµ

//

µT

��

TT

µ

��

TT µ
// T

For a functor H : A −→ A and a natural transformation α : F −→ G we use the usual notations Hα and αH
to denote the natural transformations with components H(αX) and αHX , respectively. Also it is customary
to write just T for the monad in lieu of the triple, and we will follow this convention.

Let (S, η, µ) and (T, η′, µ′) be monads on the same category A. A morphism of monads ϕ from S to T is
a natural transformation ϕ : S −→ T such that ϕ · η = η′, and ϕ · µ = µ′ · (ϕ ∗ ϕ):

IdA

η′
!!BBBBBBBB

η
// S

ϕ

��

T

SS
µ

//

ϕ∗ϕ
��

S

ϕ

��

TT
µ′

// T

This operation ∗ here is the parallel composition of natural transformations. In general, if α : F −→ G and
β : H −→ K are natural transformations, α ∗ β : FH −→ GK is αK · Fβ = Gβ · αH .

FH
Fβ

//

αH

��

α∗β
FFF

""FFF

FK

αK

��

GH
Gβ

// GK

We will denote by
Mon(A)

the category of monads on A and their morphisms.

Example 2.6. Let HΣ be a signature functor on Set. We already know how to define an object assignment
TΣ. In fact, TΣ is a functor. We also have a natural transformation η : Id −→ TΣ which for each set
X regards the elements of X as elements of TΣX . We additionally define a natural transformation µX :
TΣ(TΣX) −→ TΣX , the operation which takes trees over trees over X into trees over X in the obvious way.
In this way, we have a monad (TΣ, µ, η) on Set.

Example 2.7. Let H be iteratable on a category A. It has been shown in the previous work [AAMV, Mi2]
that the object assignment T (assigning to each object X the final coalgebra for H( ) +X) gives rise to a
monad on A. This monad is characterized by a universal property—it is the free completely iterative monad
on H . We will discuss this in detail later in Sections 3.4 and 4 below.

2.3. Recursive Program Schemes. We shall now explain how to capture recursive program schemes in a
category-theoretic way. In order to do this we use a well-known adjunction between the category of signatures
and the category of endofunctors of Set. For two categories A and B we denote by

[A,B]

the category of functors from A to B.
Let Σ be a signature, i. e., Σ : N −→ Set is a functor where N is regarded as a discrete category. Let

J : N −→ Set be the functor which maps a natural number n to the set { 0, . . . , n − 1 }. Recall that the
functor ( ) ·J : [Set, Set] −→ [N, Set] of restriction to N has a left-adjoint LanJ( ), i. e. the functor assigning
to a signature its left Kan extension along J . Since N is a discrete category, the usual coend formula for
computing left Kan extensions, see e. g. [ML], Theorem X.4.1, specializes to the coproduct in (2.1) above.
That is, LanJ(Σ) is the signature functor HΣ. By virtue of the adjunction LanJ ( ) a ( ) · J there is for
any signature Σ and any endofunctor G of Set a bijection between natural transformations Σ −→ G · J
and natural transformation HΣ −→ G, and this bijection is natural in Σ and G. In fact, for any natural
transformation α : Σ −→ G · J , i. e., a family of maps αn : Σn −→ G{ 0, . . . , n − 1 }, we obtain a natural
transformation β : HΣ −→ G as follows. The component βX maps an element (f, ~x) of HΣX to Gs(αn(f)),
where we consider the n-tuple ~x as a function s : Jn −→ X . Conversely, given β : HΣ −→ G define α by
αn(f) = βJn(f, in), where in is the n-tuple (0, . . . , n− 1). It is easy to see that the two constructions yield
natural transformations, are mutually inverse and natural in Σ and G.
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We shall now use the above bijective correspondence to express recursive program schemes as natural
transformations. Suppose we have a signature Σ of given operation symbols. Let Φ be a signature of new
operation symbols. Classically a recursive program scheme (or shortly, RPS ) gives for each operation symbol
f ∈ Φn a term tf over Σ + Φ in n variables. We thus have a system of formal equations

f(x1, . . . , xn) ≈ tf (x1, . . . , xn), f ∈ Φn, n ∈ N . (2.3)

Now observe that the names of the variables in (2.3) do not matter. More precisely, regarding Φ an a functor
from N to Set, any RPS as in (2.3) gives rise to a natural transformation

Φ −→ TΣ+Φ · J . (2.4)

The formulation in (2.4) insures that in each equation of an RPS such as 2.3, if the symbol on the left side
is n-ary, then the variables that can appear on the right are the n elements of { 0, . . . , n− 1 }. Notice as well
that our formulation extends the classical notion of RPS in the sense that by taking TΣ+Φ we allow infinite
trees on the right-hand sides. Furthermore, we will generalize this notion of RPS.

The natural transformation in (2.4) corresponds to a unique natural transformation

HΦ −→ TΣ+Φ . (2.5)

as explained above. The point is that the formulation in (2.5) is more useful to us than the one in (2.4)
because (2.5) involves a natural transformations between endofunctors on one and the same category.

Now notice that TΣ+Φ = T(HΣ + HΦ), where HΣ and HΦ denote the signature functors. With this in
mind, we can rewrite (2.5), and we see that recursive program schemes correspond to natural transformations
of the following form:

HΦ −→ T(HΣ +HΦ) .

This explains the work we have done so far.
To summarize: we abstract away from signatures and sets and study the uninterpreted and the interpreted

semantics of recursive program schemes considered as natural transformations of the form

V −→ T(H + V ),

where H , V and H +V are iteratable endofunctors on the category A. Now to say what a solution of such a
recursive program scheme is we first need to have a notion of (generalized) second-order substitution, see [C]
for the classical notion. It turns out that the universal property of the free completely iterative monads
T(H) readily yields this desired generalization. And this is the reason we are interested in monads in this
paper.

Example 2.8. Let Σ contain a unary operation symbol G and a binary one F . The signature Φ of recursively
defined operations contains two unary symbols ϕ and ψ. Consider the recursive program scheme (1.1). The
signature functor expressing the givens is HΣ = X + (X ×X) and the recursively defined operations Φ are
expressed by HΦX = X +X . Thus, the scheme (1.1) gives a natural transformation HΦ −→ T(HΣ +HΦ).
Similarly, the RPS (1.2) defining the factorial function with the signature Σ of givens and the signature Φ
containing only the unary operation symbol f gives rise to a natural transformation HΦ −→ T(HΣ +HΦ),
where HΣX = 1 +X +X ×X and HΦX = X .

2.4. Eilenberg-Moore Algebras. Recall that if (F,G, η, ε) is an adjunction, we get the associated monad
on the domain of F by taking T = GF , µ = GεF , and η from the adjunction. We also need a converse of
this result. Given a monad T on A, the Eilenberg-Moore category AT of T has as objects the (monadic)
T -algebras: these are morphisms α : TA −→ A such that the diagrams below commute:

A
ηA //

BBBBBBBB

BBBBBBBB TA

α

��

A

and

TTA
µA

//

Tα

��

TA

α

��

TA α
// A .

A morphism from α : TA −→ A to β : TB −→ B is a morphism h : A −→ B in A such that the square

TA
α //

Th

��

A

h

��

TB
β

// B

commutes. We usually write T -algebras using the notation of pairs, as in (A,α).
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The relation between this construction and monads is that for any monad T , there is an adjunction
(F T , UT , η, ε) from A to AT to which T is associated. Here F T is the functor taking A to the free T -algebra
µA : TTA −→ TA; UT : AT −→ A is the forgetful functor taking the T -algebra α : TA −→ A to its carrier
A; and in the same notation, ε(A,α) is α itself, taken to be a morphism of T -algebras, see [ML], Section VI.2.

3. Completely Iterative Algebras and Complete Elgot algebras

For interpreted solutions of recursive program schemes we need a suitable notion of algebras which can
serve as interpretation of the givens. By a “suitable algebra” we mean, of course, one in which recursive
program schemes have a solution. For example, for the recursive program scheme in (1.1) we are interested
in those Σ-algebras, Σ a signature with a binary symbol F and a unary one G, in which we can obtain
two new operations ϕA, ψA on A so that the formal equations of (1.1) become valid identities in A. In the
classical theory one works with continuous algebras; i. e., algebras carried by a cpo such that all operations
are continuous maps. Alternatively, one can work with algebras carried by a complete metric space such
that all operations are contracting maps. In both of these approaches one imposes extra structure on the
algebra in a way that makes it possible to obtain the semantics of a recursive definition as a join (or limit,
respectively) of finite approximations.

When analyzing the two above types of algebras it turns out that they share a crucial feature that allows for
the solution of recursive program schemes: these algebras induce an evaluation of all Σ-trees. More precisely,
we consider a Σ-algebra A with a canonical map TΣA −→ A providing for each Σ-tree over A its evaluation
in A. It seems to us that in order to be able to obtain solutions of recursive program schemes in a Σ-algebra
the minimal requirement is the existence of such an evaluation map turning A into an Eilenberg-Moore
algebra of the monad TΣ, see Example 2.6. More generally, we work here with complete Elgot algebras for an
iteratable endofunctor H , which turn out to be precisely the Eilenberg-Moore algebras for the monad T(H),
see [AMV3]. An important subclass of all complete Elgot algebras are completely iterative algebras [Mi2].
One of our main results (Theorem 7.3(ii)) states that recursive program schemes have unique solutions in
completely iterative algebras.

Let us begin by explaining the notion of completely iterative algebra with an example. Let Σ be a
signature, and let Y be any set. We think of Y as a set of parameters. The Σ-algebra TΣY of all (finite and
infinite) Σ-trees over Y allows for the unique solution of flat systems of equations, i. e., systems of formal
equations

xi ≈ ti i ∈ I, (3.1)

with (recursion) variables from a set X = {xi | i ∈ I }, where either ti ∈ TΣY is a Σ-tree with no recursion
variables or else ti = σ(x1, . . . , xn), σ ∈ Σn, x1, . . . , xn ∈ X , is a flat Σ-tree.

We have already begun in this paper to use the standard practice of using ≈ in a system to denote formal
equations (recursive specifications of functions or other objects). We use = to denote actual identity (see
just below for an example). Flat systems have a unique solution: there exists a unique tuple xi

†, i ∈ I , of
trees in TΣY such that the identities

xi
† = ti[xi := xi

† ]i∈I

hold. For example, let Σ consist of a binary operation symbol ∗ and a unary one s. The following flat system
of equations

x0 ≈
∗

x1 x2

����
////

x1 ≈
s

x0

x2 ≈
∗

y0 y1

����
////

with variables X = {x1, x2, x3 } and parameters Y = { y0, y1 } has as its unique solution the following trees
in TΣY :

x0
† =

∗

s ∗

∗ y0 y1

s ∗

y0 y1

�����
////

����
////

�����

�����
////

����
////

x1
† =

s

x0
†

�������

/////// x2
† =

∗

y0 y1
����

////
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Observe that to give a flat system of equations is the same as to give a mapping e : X −→ HΣX + TΣY and
a solution is the same as a mapping e† : X −→ TΣY such that the following square

X

e

��

e† // TΣY

HΣX + TΣY
HΣe

†+TΣY

// HΣTΣY + TΣY

[τ,TΣY ]

OO

commutes, where τ denotes the tree-tupling map. (We adopt the convention of denoting in a commutative
diagram the identity on an object by that object itself.)

3.1. Completely Iterative Algebras. The example above suggests the following definition, originally
studied in [Mi2].

Definition 3.1. Let H : A −→ A be an endofunctor. By a flat equation morphism in an object A (of
parameters) we mean a morphism

e : X −→ HX +A .

Let a : HA −→ A be an H-algebra. We say that s : X −→ A is a solution of e in A if the square below
commutes:

X

e

��

s // A

HX +A
Hs+A

// HA+A

[α,A]

OO

(3.2)

We call A a completely iterative algebra (or cia, for short) if every flat equation morphism in A has a
unique solution.

Observe that we have no restriction on our objects of variables. (That is, in the case of Set, we do not
require that the set of variables be finite.) Imposing this restriction weakens the notion to what [AMV1]
calls an iterative algebra. It will be essential in this paper to consider equation morphisms whose domain is
not finite.

Examples 3.2.

(i) Let Pf be the finite power set functor on Set, and assume the Anti-Foundation Axiom. Let HF1 be
the set of hereditarily finite sets. Let τ be the inclusion of Pf(HF1) into HF1. This map τ turns
HF1 into a cia with respect to Pf .

(ii) Consider the subalgebra HF1/2 of sets whose transitive closure is finite, then the complete iterativity
is lost. Only finite systems can be solved in this setting. For more on this example and the last, see
Section 18.1 of [BM].

(iii) Final coalgebras. In [Mi2] it is proved that for a final H-coalgebra α : T −→ HT the inverse
τ : HT −→ T of the structure map yields a cia. Analogously, for every object Y of A a final
coalgebra TY of H( ) + Y yields a cia, see Theorem 3.12 below. This generalizes the first example
and the examples TΣY of all Σ-trees over a set Y .

(iv) Let H be a contracting endofunctor on the category CMS of complete metric spaces, see Exam-
ple 2.2(iii). Then any non-empty H-algebra (A,α) is completely iterative. In fact, given any flat
equation morphism e : X −→ HX + A in CMS, it is not difficult to prove that the assignment
s 7−→ α · (Hs + A) · e is a contracting function of CMS(X,A), see [AMV3]. Then, by Banach’s
Fixed Point Theorem, there exists a unique fixed point of that contracting function, viz. a unique
solution e† of e. Notice that e† is obtained as a limit of a Cauchy sequence. In fact, choose some
element a ∈ A and define the Cauchy sequence (e†n)n∈N in CMS(X,A) by recursion as follows: let

e†0 = consta, and given e†n define e†n+1 by the commutativity of the square

X

e

��

e†n+1
// A

HX +A
He†n+A

// HA+A

[α,A]

OO

(3.3)
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(v) Non-empty compact subsets form cias. Let (X, d) be a complete metric space. Consider the set
C(X) of all non-empty compact subspaces of X together with the so-called Hausdorff metric h; for
two compact subsets A and B of X the distance h(A,B) is the smallest number r such that B
can be covered by open balls of radius r around each point of A, and vice versa, A can be covered
by such open balls around each point of B. In symbols, h(A,B) = max{ d(A → B), d(B → A) },
where d(A→ B) = maxa∈A minb∈B d(a, b). It is well-known that (C(X), h) forms a complete metric
space; see, e.g. [B]. Furthermore, if fi : X −→ X , i = 1, . . . , n, are contractions of the space X with
contraction factors ci, i = 1, . . . , n, then it is easy to show that the map

αX : C(X)n −→ C(X) (Ai)i=1,...,n 7−→
n⋃

i=1

fi[Ai]

is a contraction with contraction factor c = maxi ci (the product C(X)n is, of course, equipped
with the maximum metric). In other words, given the fi, we obtain on C(X) the structure αX
of an H-algebra of the contracting endofunctor H(X, d) = (Xn, c · dmax). Thus, if there exists a
non-empty compact subset of X , then (C(X), αX ) is a cia.

As an illustration we show that the Cantor “middle third” set s may be obtained via the cia
structure on a certain space. Recall that s is the unique non-empty closed subset of the interval
I = [0, 1] which satisfies s = 1

3s ∪ ( 2
3 + 1

3s). (We write 1
3s to mean { x3 | x ∈ s }, of course.) So

let (X, d) be the Euclidean interval I = [0, 1] and consider the 1
3 -contracting functions f(x) = 1

3x

and g(x) = 1
3x + 2

3 on I . Then αI : C(I) × C(I) −→ C(I) with αI(A,B) = f [A] ∪ g[B] gives the

structure of a cia on C(I) of the functor H(X, d) = (X × X, 1
3 · dmax), which is a lifting of the

signature functor HΣX = X ×X of Set expressing one binary operation symbol α. Now consider
the formal equation

x ≈ α(x, x) .

It gives rise to a flat equation morphism e : 1 −→ H1 +C(I) which maps the element of the trivial
one point space 1 to the element of H1 = 1. The unique solution e† : 1 −→ C(I) picks a non-empty
closed set s satisfying s = α(s, s) = f [s] ∪ g[s], i. e., e† picks the Cantor set.

(vi) Continuing with our last point, for each non-empty closed t ∈ C(I), there is a unique s = s(t)
with s = α(s, t). The argument is just as above. But the work we have done does not show that
the map t 7−→ s(t) is continuous. For this, we would have to study a recursive program scheme
ϕ(x) ≈ α(ϕ(x), x) and solve this in (C(I), αI ) in the appropriate sense. Our work later in the paper
does exactly this, and it follows that the solution to ϕ(x) ≈ α(ϕ(x), x) in the given algebra is the
continuous function t 7−→ s(t).

(vii) Suppose that H : Set −→ Set has a lifting to a contracting endofunctor H ′ on CMS, see Exam-
ple 2.5(vi). Let α : HA −→ A be an H-algebra. If there exists a complete metric, say d, on A such
that α is a nonexpanding map H ′(A, d) −→ (A, d), then A is a completely iterative algebra: to every
equation morphism e : X −→ HX+A assign the unique solution of e : (X, d0) −→ H ′(X, d0)+(A, d),
where d0 is the discrete metric on X ; i. e., d(x, x′) = 1 iff x 6= x′.

3.2. Complete Elgot Algebras. In many settings, one studies a fixed point operation on a structure like a
complete partial order. And in such settings, one typically does not have unique fixed points. So completely
iterative algebras are not the unifying concept capturing precisely what is needed to solve recursive program
schemes. Instead, we shall need a weakening of the notion of a cia.

Remark 3.3. We will need two operations in the statement of Definition 3.4 below. The first operation
formalizes the renaming of parameters in a flat equation morphism. More precisely, for a flat equation
morphism e : X −→ HX +A and a morphism h : A −→ B we define

h • e ≡ X
e //HX +A

HX+h
//HX +B .

The second operation allows us to combine two flat equation morphisms where the parameters of the first
are the variables of the second into one “simultaneous” flat equation morphism. More precisely, given two
flat equation morphisms e : X −→ HX + Y and f : Y −→ HY +A we define

f e ≡ X + Y
[e,inr]

//HX + Y
HX+f

//HX +HY +A
can+A

//H(X + Y ) +A .

Definition 3.4. A complete Elgot algebra is a triple (A, a, ( )†), where (A, a) is an H-algebra, and ( )†

assigns to every flat equation morphism e with parameters in A a solution e† : X −→ A such that the
following two laws hold:
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Functoriality. Solutions respect renaming of variables. Given two flat equation morphisms e and f with
parameters in A and a morphism h of equations between them; i. e., the square

X

h

��

e // HX +A

Hh+A

��

Y
f

// HY +A

commutes. We then have

e† = f † · h .
Compositionality. Simultaneous recursion may be performed sequentially. For all flat equation morphisms
e : X −→ HX+Y and f : Y −→ HY +A, the solution of the combined equation morphism f e is obtained
by first solving f and then solving e “plugging in” f † for the parameters:

(f † • e)† = (f e)
† · inl .

Definition 3.5. A homomorphism h from an Elgot algebra (A, a, ( )†) to an Elgot algebra (B, b, ( )‡)
(for the same functor H) is a morphism h : A −→ B that preserves solutions, i. e., for every flat equation
morphism e : X −→ HX +A we have a commutative triangle

X
e†

~~~~~~~~~
(h•e)‡

!!BBBBBBBB

A
h

// B .

Proposition 3.6. [AMV3] Every homomorphism h : (A, a, ( )
†
) −→ (B, b, ( )

‡
) of Elgot algebras is a

homomorphism of H-algebras; i. e., the square

HA
a //

Hh

��

A

h

��

HB
b

// B

commutes. The converse is false in general. If, however, A and B are cias, then any H-algebra morphism
is a homomorphism of Elgot algebras.

Proof. We sketch the argument of the first statement, omitting some of the details. First, consider the flat
equation morphism

eA ≡ HA+A
Hinr+A

//H(HA+ A) +A .

Its solution is e†A = [a,A] : HA+A −→ A as one easily establishes using the commutativity of Diagram 3.2

for e†A. Similarly, we have eB : HB + B −→ H(HB + B) + B with e‡B = [b, B]. Now consider h as in our

proposition. Then the equation (h • eA)
‡

= h · e†A holds. Furthermore, Hh + h : HA + A −→ HB + B is

a morphism of equations from h • eA to eB , thus Functoriality yields (h • eA)
‡

= e‡B · (Hh + h). Now one
readily performs the computation

[h · a, h] = h · e†A = (h • eA)
‡

= e‡B · (Hh+ h) = [b ·Hh, h] .

The desired equation h · a = b ·Hh follows from the left-hand component. �

Remark 3.7.

(i) In [AMV3] there is also a notion of a non-complete Elgot algebra. Since we will only be interested
in using complete Elgot algebras we will henceforth understand by an Elgot algebra a complete one.

(ii) The axioms of Elgot algebras are inspired by the axioms of iteration theories of Bloom and Ésik [BE].
In fact, the two laws above are essentially “flat” versions of the commutative identities and the left
pairing identity (also known as Bekić-Scott law) from [BE].

One justification for the above axioms is that Elgot algebras turn out to be the Eilenberg-Moore
category of the monad T , see Subsection 3.5. We shall mention this result at the end of this section.
Applied to a signature functor HΣ on Set, that means a Σ-algebra A is an Elgot algebra precisely
if there exists a canonical map TΣA −→ A evaluating all Σ-trees in A.
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(iii) Notice, that flat equation morphisms are precisely the coalgebras of the functor H( ) + A. Thus,

the Functoriality above states that ( )
†

is a functor from the category of flat equation morphisms
to the comma category A/A.

Examples 3.8. We present some examples of Elgot algebras. None but the first are in general cias.

(i) Completely iterative algebras are Elgot algebras. It is proved in [AMV3] that for a cia the as-
signment of the unique solution to any flat equation morphism satisfies the Functoriality and the
Compositionality.

(ii) Continuous algebras. Let H be a locally continuous endofunctor on CPO, see Example 2.2(ii). It is
shown in [AMV3] that any H-algebra (A, a) with a least element ⊥ is an Elgot algebra when to a
flat equation morphism e : X −→ HX + A the least solution e† is assigned. More precisely, define

e† as the join of the following increasing ω-chain in CPO(X,A): e†0 is the constant function ⊥; and

given e†n let e†n+1 = [a,A] · (He†n +A) · e, so that Diagram (3.3) commutes.
(iii) Suppose that H : Set −→ Set is a functor with a locally continuous lifting H ′ : CPO −→ CPO.

An H-algebra α : HA −→ A is called CPO-enrichable if there exists a complete partial order v on
A such that A becomes a continuous algebra α : H ′(A,v) −→ (A,v) with a least element. Any
CPO-enrichable algebra A is an Elgot algebra: to every equation morphism e : X −→ HX +A, let
≤ be the discrete order on X , consider ê : (X,≤) −→ H ′(X,≤) + (A,v) defined in the obvious way,
and assign Uê† : X −→ A, where ê† is from part (ii), and U : CPO −→ Set is the forgetful functor.

(iv) Every complete lattice A is an Elgot algebra of the endofunctor HX = X×X of Set. In fact, taking
binary joins yields an H-algebra structure ∨ : A×A −→ A. Furthermore, observe that the algebra
TA of all binary trees over A has an evaluation α : TA −→ A mapping every binary tree in TA
to the join of its leaf labels. For any flat equation morphism e : X −→ X ×X + A form the flat

equation morphism ηA • e : X −→ X ×X + TA take its unique solution (ηA • e)† : X −→ TA and

let e∗ = α · (ηA • e)†. Then (A, a, ( )∗) is an Elgot algebra for H , see [AMV3], Example 3.9. Notice
that this is usually not a cia since the formal equation x ≈ x ∨ x has in general many different
solutions in a complete lattice.

3.3. Computation Tree Elgot Algebras. In this section we present Elgot algebras for a signature that
uses undefined elements and also conditionals. Let Σ be a signature, and let H = HΣ be the associated
endofunctor on Set. Let (A, a) be any HΣ-algebra, and let ↑ be any element of A. We shall define an Elgot
algebra structure on A related to the natural computation tree semantics of recursive definitions, where
solutions are obtained by rewriting. The idea is that ↑ is our “scapegoat” for ungrounded definitions.

We shall assume that the algebra A interprets the function symbols in Σ in a strict fashion: if any
argument ai is ↑, then the overall value gA(a1, . . . , an) is ↑ as well. Conversely, if gA(a1, . . . , an) = ↑, we
require that (n ≥ 1 and) some ai is ↑. We make this assumption for all function symbols g except for the
conditional symbol ifzero ∈ Σ3. We make a different assumption on ifzero. For this, fix an element 0 ∈ A
other than ↑. We want

ifzeroA(x, y, z) =





y if x = 0
z if x 6= 0 and x 6= ↑
↑ otherwise

(3.4)

To summarize, in this section we work with algebras of signature functors on Set which come with
designated objects ↑ and 0 satisfying the assumptions above.

We shall work with partial functions and we use some notation which is standard. For partial functions
p, q : X −⇀ A, p(x)↑ means that p is not defined on x, and we write p(x)↓ if p is defined on x. Finally,
p(x) ' p(y) means that if either p(x) or q(y) is defined, then so is the other; and in this case, the values are
the same.

Definition 3.9. Let e : X −→ HX + A be a flat equation morphism in A. We define a partial function
ê : X −⇀A as follows:

(i) If e(x) = a and a 6= ↑, then ê(x) ' a .
(ii) If e(x) = g(x1, . . . , xk), g 6= ifzero, and for each i, ê(x) ' ai, then ê(x) ' gA(a1, . . . , ak).

(iii) If e(x) = ifzero(y, z, w) and ê(y) ' 0, then ê(x) ' ê(z).
(iv) If e(x) = ifzero(y, z, w) and ê(y)↓ but ê(y) 6' 0, then ê(x) ' ê(w).

We call ê the computation function corresponding to e.

We intend this to be a definition of a partial function by recursion, so that we may prove facts about ê
by induction. Here is a first example, one which will be important in Proposition 3.10 below: if ê(x)↓, then
ê(x) 6= ↑.
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Now that we have ê, we define e†(x) to be ê(x) if ê is defined; if it is not, we set e†(x) = ↑. (Note that
e†(x) = ↑ iff ê(x)↑.)

In the statement of the result below, we also mention the main way that one obtains structures which
satisfy the standing hypotheses of this section.

Proposition 3.10. Let A0 = (A0, a0) be any HΣ-algebra, let 0 ∈ A0, let ↑ /∈ A0, and let A = A0 ∪ { ↑ }.
Let A = (A, a) be defined in terms of this data by extending a0 to the function a : HΣA −→ A strictly on all

function symbols except ifzero, and with ifzeroA given by (3.4). Let ( )
†

be as above. Then (A, a, ( )
†
) is an

Elgot algebra.

Proof. Clearly the assumption of this section hold for the algebra A. These assumptions ensure that A is
CPO-enrichable. In fact, equip A with the flat cpo structure with the least element ↑. Then all operations on
A are easily checked to be monotone, whence continuous; thus, a : HΣA −→ A is a continuous algebra. By
Example 3.8(iii), we obtain an Elgot algebra (A, a, ( )∗). We will prove that for any flat equation morphism
e : X −→ HX+A the least solution e∗ agrees with the map e† given by the computation function ê. To this
end recall first that the set Par(X,A) of partial functions from X to A is a cpo with the order given by f v g
if for all x ∈ X , f(x)↓ implies g(x)↓ and f(x) = g(x). Now observe that the definition of ê by recursion
means that ê is the join of an increasing chain in Par(X,A). In fact, let ê0 be the everywhere undefined
function and given ên define ên+1 as follows: in the clauses (i)–(iv) in Definition 3.9 replace the term ê(x)
by ên+1(x) and replace all occurrences of ê on right-hand sides of defining equations by ên. Clearly, (ên)n<ω
is an increasing chain in Par(X,A) whose join is ê.

Now recall from Example 3.8(ii) that e∗ is the join of the chain e∗n in CPO(X,A), where X is discretely
ordered. We shall show by induction that for every x ∈ X the equation

e∗n(x) =

{
ên(x) if ên(x)↓
↑ else

(3.5)

holds. The base case is obvious. For the induction step we proceed by case analysis. If e(x) = a, then
e∗n+1(x) = a and so (3.5) holds. The second case is e(x) = g(x1, . . . , xk), g 6= ifzero. We have e∗n+1(x) =
gA(e∗n(x1), . . . , e∗n(xk)). By our assumptions, this equals ↑ precisely if at least one of the e∗n(xj) is ↑, which
in turn holds if and only if ên(xk)↑ for some j; and equivalently, ên+1(x)↑. Otherwise all ên(xj) are defined
and by induction hypothesis we get

e∗n+1(x) = gA(e∗n(x1), . . . , e∗n(xk)) = gA(ên(x1), . . . , ên(xk)) = ên+1(x) .

Thirdly, assume that e(x) = ifzero(y, z, w). Then similarly as before we have

e∗n+1(x) = ifzero(e∗n(y), e∗n(z), e∗n(w)) .

We obtain e∗n+1(x) = ↑ whenever e∗n(y) = ↑. But this happens precisely if ên(y)↑, which implies that
ên+1(x)↑. Now if e∗n(y) 6= ↑, then we have equivalently that ên(y)↓. We treat here only the case that ên(y) =
0; the remaining case is similar. In our present case it follows that e∗n+1(x) = e∗n(z) and ên+1(x) ' ên(z).
Therefore, by the induction hypothesis, the desired equation (3.5) holds.

Finally, from (3.5) we conclude that for the least fixed points e∗ and ê we have

e∗(x) =

{
ê(x) if ê(x)↓
↑ else.

Thus, we get e∗ = e† which completes the proof. �
Definition 3.11. Let HΣ : Set −→ Set be a signature functor, let A0 = (A0, a0) be any HΣ-algebra as in

the hypothesis of Proposition 3.10. We call the Elgot algebra (A, a, ( )†) the computation tree Elgot algebra
induced by A0.

We shall study the interpreted solutions of recursive program schemes in computation tree Elgot algebras
in Section 7.1.

3.4. Dramatis Personae. As we mentioned already the classical theory of recursive program schemes rests
on the fact that in any continuous algebra A all Σ-trees over A can be evaluated; i. e., there is a canonical
map TΣA −→ A. In a suitable category of cpos the structures TΣX play the rôle of free algebras. The
freeness is used to define maps out of those algebras. In our setting, the Σ-trees are the final coalgebra.
So in order to generalize the classical theory, we need a setting in which the final coalgebras TY are free
algebras. The following result gives such a setting. It is fundamental for the rest of the paper and collects the
results of Theorems 2.8 and 2.10 of [Mi2] and Theorem 5.6 of [AMV3]. We sketch a proof for the convenience
of the reader.



THE CATEGORY THEORETIC SOLUTION OF RECURSIVE PROGRAM SCHEMES 17

Theorem 3.12. Let H be any endofunctor of A. The following are equivalent:

(i) TY is a final coalgebra of H( ) + Y ,
(ii) TY is a free completely iterative H-algebra on Y , and

(iii) TY is a free (complete) Elgot H-algebra on Y .

In more detail: if (TY, αY ) is a final coalgebra for H( ) + Y , the inverse [τY , ηY ] : HTY + Y −→ Y
of αY gives a cia for H, which as an Elgot algebra is free on Y . Conversely, given a free Elgot H-algebra

(TY, τY , ( )†) with a universal arrow ηY : Y −→ TY , then this is a cia, whence a free cia on Y , and [τY , ηY ]
is an isomorphism whose inverse is the structure map of a final coalgebra for H( ) + Y .

Sketch of Proof. Suppose first that (TY, αY ) is a final coalgebra for H( ) + Y . Let [τY , ηY ] be the inverse
of αY . Then τY : HTY −→ TY is a completely iterative algebra for H , and therefore an Elgot algebra. In
fact, for any flat equation morphism e : X −→ HX + TY , form the following coalgebra

c ≡ X + TY
[e,inr]

//HX + TY
HX+αY //HX +HTY + Y

can+Y
//H(X + TY ) + Y

and define

e† ≡ X
inl //X + TY

h //TY ,

where h is the unique homomorphism from the coalgebra (X + TY, c) to the final one. It is not difficult to
prove that e† is the unique solution of e.

Furthermore, (TY, τY , ( )
†
) is a free Elgot algebra on Y . For any Elgot algebra (A, a, ( )

‡
) and any

morphism m : Y −→ A form the equation morphism

m • αY ≡ TY
αY //HTY + Y

HTY+m
//HTY +A

It is shown in Theorem 5.8 of [AMV3] that the solution h = (m • αY )
‡

yields the unique homomorphism
h : TY −→ A of Elgot algebras such that h · ηY = m.

Now conversely, assume that (TY, τY , ( )
†
) is a free Elgot algebra on Y with a universal arrow ηY : Y −→

TY . It can be shown that [τY , ηY ] is an isomorphism, see Lemma 5.7 of [AMV3]. Denote by αY its inverse.
Then (TY, τY ) is a cia; i. e., for any flat equation morphism e : X −→ HX + TY the solution e† is unique.
In fact, suppose that s is any solution of e. It follows that s is a morphism of equations from e to the flat
equation morphism

f ≡ TY
αY //HTY + Y

HTY +ηY
//HTY + TY .

Thus, f † · s = e† by Functoriality of ( )†. Next one can show, using the Compositionality, that f † : TY −→
TY is a homomorphism of Elgot algebras satisfying f † · ηY = ηY . Thus, by the freeness of TY , f † = id .
This proves that (TY, τY ) is a cia, which implies that it is the free one on Y . It is not difficult to show that
this yields a final coalgebra of H( ) + Y . In fact, for any coalgebra c : C −→ HC + Y the unique solution
of the flat equation morphism ηY • c yields a unique homomorphism (C, c) −→ (TY, αY ) of coalgebras. �

Theorem 3.12 has an important consequence for our work. Recall that we assume H is iteratable, so
H( ) + Y does have a final coalgebra for all Y . The next result gives the dramatis personae for the rest of
the paper.

Theorem 3.13. There is a left adjoint to the forgetful functor from Alg†H, the category of Elgot algebras
and their homomorphisms, to the base category A

Alg†H
U

//⊥ A .
Loo

The left-adjoint L assigns to each object Y of A a free Elgot algebra (TY, τY , ( )
†
) on Y (equivalently,

(TY, αY ) where αY = [τY , ηY ]−1 is a final coalgebra of H( ) + Y ). The unit of the adjunction is η whose
components are given by the universal arrows ηY : Y −→ TY of the free Elgot algebras. The counit ε

gives for each Elgot algebra (A, a, ( )
‡
) the unique homomorphism ã : TA −→ A of Elgot algebras such that

ã · ηA = id . We have

ã = (αA)
‡

: TA −→ A , (3.6)

where αA : TA −→ HTA+A is considered as a flat equation morphism with parameters in A.
Moreover, we obtain additional structure:

(i) A monad (T(H), ηH , µH) on A such that for all objects Y of A,
(a) T(H)Y = TY is the carrier of a final coalgebra of H( ) + Y ;
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(b) µHY is the (unique) solution of αTY , considered as a flat equation morphism with parameters
in TY .

(ii) A natural transformation αH : T −→ HT + Id.
(iii) A natural transformation τH : HT −→ T such that [τH , ηH ] is the inverse of αH .
(iv) A “canonical embedding” κH of H into T :

κH ≡ H HηH
//HT

τH //T . (3.7)

Proof. It is obvious that the assignment of Y to a free Elgot algebra on Y yields a left-adjoint to U . This
adjunction gives rise to a monad (T(H), ηH , µH) on A which assigns to every object of A the underlying
object TY of a free Elgot algebra on Y , see Section 2.4. Thus item (a) follows from Theorem 3.12. The
monad multiplication µH is given by UεL, i. e., µHY : TTY −→ TY is the unique homomorphism of Elgot

algebras such that µHY · ηHTY = id . It follows from the proof of Theorem 3.12 that ã = (m • αA)
‡
, where

m is the identity on A. The special instance of this where A is the free Elgot algebra TY yields (b). The
functoriality of T implies that the algebra structures τY , and the coalgebra structures αY , Y in A, form
natural transformations. It follows from Theorem 3.12 that αH and [τH , ηH ] are mutually inverse. �

We call the monad (T(H), ηH , µH) the completely iterative monad generated by H . (The name comes
from an important property which we discuss in Section 4.) As always, we just write T(H), or even shorter
T to denote this monad, and we shall frequently drop the superscripts when dealing with the structure
coming from a single endofunctor H . (But as the reader will see later, we frequently do need to consider
the structures coming from two endofunctors. This is particularly pertinent in our study since in recursive
program schemes we usually have two signatures, hence two functors, see Section 2.3).

For any Elgot algebras (A, a, ( )
†
) for H we call the homomorphism ã : TA −→ A in (3.6) above the

evaluation morphism of that Elgot algebra. Theorem 3.14 below shows that Elgot algebras are equivalently
presented by their evaluation morphisms.

3.5. The Eilenberg-Moore Category of T(H).

Theorem 3.14. [AMV3] The category Alg†H of Elgot algebras is isomorphic to the Eilenberg-Moore category

AT of monadic T -algebras. More precisely, for any Elgot algebra A = (A, a, ( )
†
), the evaluation morphism

UεA = ã : TA −→ A is an Eilenberg-Moore algebra of T .
Conversely, for any Eilenberg-Moore algebra a : TA −→ A we obtain an Elgot algebra by using as structure

map the composite a · κA : HA −→ A, and by defining for a flat equation morphism e : X −→ HX +A the
solution e† = a · h, where h is the unique coalgebra homomorphism from (X, e) to (TA, αA):

X

h

��

e //GF
@Ae†

//

HX +A

Hh+A

��

TA αA
//

a

��

HTA+A

A

These two constructions extend to the level of morphisms, and they yield the desired isomorphism between
the two categories Alg†H and AT .

Corollary 3.15. The diagrams

HTT
τT //

Hµ

��

TT

µ

��

HT τ
// T

and

HT
τ //

κT

��

T

TT

µ

=={{{{{{{{

commute, and for every Elgot algebra (A, a, ( )
†
) the triangle

HA
a //

κA

��

A

TA

�

a

=={{{{{{{{
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commutes.

Proof. The lower triangle commutes because the two constructions of Theorem 3.14 are mutually inverse.
The special cases of this triangle for A = TY and a = τY yield the commutativity of the upper right-hand
triangle since µY = UεTY = τ̃Y . Finally, the upper left-hand square commutes since for each Y in A, µY is
a homomorphism of Elgot algebras, whence an H-algebra homomorphism by Proposition 3.6. �

4. Completely Iterative Monads

Before we can state a theorem providing solutions of (generalized) recursive program schemes, we need to
explain what a solution is. In the classical setting one introduces second-order substitution of all Σ-trees, i. e.,
substitution of trees for operation symbols, see [C]. We present a generalization of second-order substitution
to the final coalgebras given by T(H).

In fact, in [AAMV, Mi1] it is proved that the monad T(H) of Theorem 3.13 is characterized by an important
universal property—it is the free completely iterative monad on H . This freeness of T(H) specializes to
second-order substitution of Σ-trees, a fact we illustrate at the end of the current section.

Here we shall quickly recall those results of [AAMV] which we will need in the current paper. For
a well-motivated and more detailed exposition of the material presented here we refer the reader to one
of [AAMV, Mi2].

Example 4.1. We have seen in Section 3 that for a signature Σ, flat systems of formal equations have
unique solutions whose components are Σ-trees over a set of parameters. But it is also possible to uniquely
solve certain non-flat systems equations. More precisely, for a given signature Σ, consider a system of
equations (3.1) where each right-hand side ti, i ∈ I is any Σ-tree from TΣ(X + Y ) which is not just a single
variable from X . Such systems are called guarded. Guardedness suffices to ensure the existence of a unique
solution of the given system.

For example, let Σ consist of binary operations + and ∗ and a constant 1. The following system of
equations

x0 ≈ x1

y 1

����

////

////
����
∗

+

x1 ≈
x0 1

����

////

∗

with X = {x0, x1 } and Y = { y } is guarded. The solution is given by the following trees in TΣY :

x0
† =

+

∗ ∗

+ 1 y 1

∗ ∗

+ 1 y 1
...

oooo OOOO

����
////

����
////

�����
?????

����
////

����
////

x1
† =

∗

+
����

1

////

+

∗ �����

∗
?????

∗

+
����

1

//// ∗

y
����

1

////

...

Unique solutions of guarded equations can be obtained more generally for every monad T(H) of Theo-
rem 3.13 above. Before we state this result precisely we recall the notion of an ideal monad. It adds to an
arbitrary monad S enough structure to be able to speak of guarded equations for S.

Definition 4.2. By an ideal monad we mean a six-tuple

(S, η, µ, S′, ι, µ′)

consisting of a monad (S, η, µ), and a (right) ideal (S ′, µ′), which consists of a subfunctor ι : S ′ ↪−→ S, i. e.,
a monomorphism ι in the functor category [A,A], and a natural transformation µ′ : S′S −→ S′ such that
the following two conditions hold:

(i) S = S′ + Id with coproduct injections ι and η
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(ii) µ restricts to µ′ along ι, i.e., the square

S′S
µ′

//

ιS

��

S′

ι

��

SS µ
// S

commutes.

An ideal monad morphism from an ideal monad (S, ηS , µS , S′, ι, µ′S) to an ideal monad

(U, ηU , µU , U ′, ω, µ′U ) is a monad morphism m : (S, ηS , µS) −→ (U, ηU , µU ) which has a domain-codomain
restriction to the ideals. That is, there exists a natural transformation m′ : S′ −→ U ′ such that the square
below commutes:

S′
m′ //

ι

��

U ′

ω

��

S m
// U

For any endofunctor H and ideal monad S, a natural transformation σ : H −→ S is ideal if it factors
through the ideal ι : S′ ↪−→ S as follows:

H
σ //

σ′   
AAAAAAA S

S′

ι

OO

Example 4.3. Recall that the underlying functor of the monad T of Theorem 3.13 is a coproduct of HT
and Id . Taking for ι the left-hand coproduct injection τ : HT ↪−→ T and for µ′ the natural transformation
Hµ : HTT −→ HT we see that T is an ideal monad. Furthermore, since κ in (3.7) is τ ·Hη, κ : H −→ T is
an ideal natural transformation.

Definition 4.4. (i) For an ideal monad S on A an equation morphism is a morphism

e : X −→ S(X + Y ).

It is called guarded if it factors as follows:

X
e //

&&LLLLLL S(X + Y )

S′(X + Y ) + Y

[ιX+Y ,ηX+Y ·inr]

OO

(ii) A solution of an equation morphism e is a morphism e† : X −→ SY such that the following square

X
e† //

e

��

SY

S(X + Y )
S[e†,ηY ]

// SSY

µY

OO

commutes.
(iii) An ideal monad is called completely iterative provided that any guarded equation morphism has a

unique solution.

The first item of the following result is called the Parametric Corecursion Theorem in [Mo1] and the
Solution Theorem in [AAMV]. See also [Mi2] for an extension of this result to all cias. The second item is
the main result of [AAMV].

Theorem 4.5. For any iteratable endofunctor H,

(i) the ideal monad T = T(H) is completely iterative, and
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(ii) T is free on H. More precisely, for all completely iterative monads S and ideal natural transforma-
tions σ : H −→ S there exists a unique monad morphism σ : T −→ S such that σ · κH = σ:

H
κH //

∀σ
  BBBBBBBB T

∃!σ
��
�
�
�

S .

(4.1)

And the induced morphism σ is an ideal monad morphism.

In our work in the subsequent sections we shall often use the special case of Theorem 4.5 where the
completely iterative monad S is T(K) for some iteratable endofunctor K. For that special case we need the
following explicit description of the restriction of the monad morphism σ to the subfunctors HT(H) and
S′ = KT(K).

Lemma 4.6. If H and K are iteratable endofunctors and σ : H −→ T(K) is an ideal transformation, i. e.,
σ = τK · σ′, then for the unique induced ideal monad morphism σ the following is a commutative diagram:

HT(H)

τH

��

σ′∗σ // KT(K)T(K)
KµK

// KT(K)

τK

��

T(H)
σ

// T(K)

Proof. Consider the diagram

HT(H)

κH∗T(H)

��

GF
@AτH

//

σ′∗σ // KT(K)T(K)
KµK

//

τK∗T(K)

��

KT(K)

τK

��

T(H)T(H)
σ∗σ //

µH

��

T(K)T(K)

µK

&&NNNNNNNNNNN

T(H)
σ

// T(K)

It clearly commutes. The left-hand and right-hand parts commute by Corollary 3.15. The upper part
commutes by naturality and since σ ·κH = σ = τK ·σ′, and the lower one since σ is a monad morphism. �

For signature functors on Set, the freeness of T = T(HΣ) specializes to second-order substitution, i. e.,
substitution of (finite or infinite) trees for operation symbols. Second-order substitution is a key point in
the classical theory of recursive program schemes because the notion of an uninterpreted solution rests on
it. We believe that the connection of second-order substitution and any notion of freeness is new.

Example 4.7. Let Σ and Γ be signatures (considered as functors N −→ Set). Each symbol σ ∈ Σn is
considered as a flat tree in n variables. A second-order substitution gives an “implementation” to each such
σ as a Γ-tree in the same n variables. We model this by a natural transformation ` : Σ −→ TΓ · J , i. e., a
family or maps `n : Σn −→ TΓ{ 0, . . . n − 1 }, n ∈ N. As we have seen in Section 2.3, this gives rise to a
natural transformation λ : HΣ −→ TΓ. When infinite trees are involved there is usually the restriction to
so-called non-erasing substitutions; i. e., all Σ-symbols are assigned to trees which are not just single node
trees labelled by a variable. That means that λ is an ideal natural transformation. Thus, from Theorem 4.5
we get a monad morphism λ : TΣ −→ TΓ. For any set X of variables its action is that of second-order
substitution, i. e., λX replaces every Σ-symbol in a tree t from TΣX by its implementation according to λ.
More precisely, let t = σ(t1, . . . , tn) with σ ∈ Σn and let t′(x1, . . . xn) ∈ TΓX be the implementation of σ,
i. e., λX(σ(~x)) = t′(~x). Then we have

λX(t) = t′(λX(t1), . . . , λX(tn)).



22 STEFAN MILIUS AND LAWRENCE S. MOSS

For example, suppose that Σ consists of two binary symbols + and ∗ and a constant 1, and Γ consists of a
binary symbol b, a unary one u and a constant c. Furthermore, let λ be given by ` : Σ −→ TΓ · J as follows:

`0 : 1 7−→
u

c

`2 :

+'&%$ !"#0 '&%$ !"#1
����

////
7−→

b'&%$ !"#0 u'&%$ !"#1

����
////

∗'&%$ !"#0 '&%$ !"#1
����

////
7−→

b

u '&%$ !"#1'&%$ !"#0

����
////

and else `n is the unique map from the empty set. For the set Z = { z, z′ }, the second-order substitution
morphism λZ acts for example as follows:

∗

+ 1

z z′

����
////

����
//// 7−→

b

u u

b c

z u

z′

����
////

����
////

5. T(H) as Final Coalgebra among Monads

In this section we will state and prove some technical results which are essential for the proofs of our results
on uninterpreted and interpreted program schemes. The culmination of the work comes in Corollary 5.5.

We would like to mention that the results and proofs in Section 5.1 are inspired by the work of Ghani
et al. [GLM]. However, that paper does not work in the same category as we do. Our setting is slightly
more general, and perhaps, conceptually slightly clearer. We do not believe that any of our subsequent new
results in Sections 6 and 7 can be obtained by simply applying the work of [GLM].

We still assume that every functor H we consider is an iteratable endofunctor. Recall that for each object
Y , TY is a final coalgebra for the functor H( ) + Y on A.

We are going to prove a number of results that strengthen this. First, consider the functor category [A,A].
H may be regarded as a functor on this, by F 7−→ H · F . We also get a related functor H · + Id . For the
functor T , the value of this functor at T is H · T + Id . So the natural transformation αH : T −→ HT + Id
of Theorem 3.13(ii) may be regarded as a coalgebra structure for T . The proof of the following theorem is
straightforward and therefore left to the reader.

Theorem 5.1. (T, α) is a final coalgebra for H · + Id.

5.1. T Gives a Final Coalgebra as a Monad. We next consider the comma-category

H/Mon(A),

whose objects are given by pairs (S, σ : H −→ S), where S is a monad on A, and morphisms h : (S1, σ1) −→
(S2, σ2) are monad morphisms h : S1 −→ S2 such that h · σ1 = σ2. For example, one object of H/Mon(A)
is (T, κ), where κ = τ · Hη is the canonical natural transformation of Theorem 3.13(iv). We show that H
determines an endofunctor H on this category, and that (T, κ) is the underlying object of a final H-coalgebra.
We then extend this finality result by considering a subcategory of H/Mon(A). We slightly abuse notation
and denote by H/CIM(A) the category whose objects are the pairs (S, σ), where S is completely iterative
and σ is an ideal transformation; the morphisms in H/CIM(A) are given by the ideal monad morphisms,
see Definitions 4.2 and 4.4. Again, (T, κ) is an object in this category, and we show that H restricts to an
endofunctor on H/CIM(A), and that (T, κ) is once again a final coalgebra for H.

Let us begin by defining H on objects of H/Mon(A) as the assignment

H : (S, σ) 7−→ (HS + Id , inl ·Hη) ,

and for a morphism h : (S1, σ1) −→ (S2, σ2) we let H(h) = Hh+ Id .
Furthermore, notice that for any object (S, σ) of H/Mon(A) there is a natural transformation

ξ(S,σ) ≡ HS + Id
[µ·σS,η]

//S
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As it turns out, the ξ(S,σ) are the components of a natural transformation ξ : H −→ Id turning H into a
well-copointed endofunctor on H/Mon(A).

Lemma 5.2.

(i) H is an endofunctor of H/Mon(A);
(ii) ξ : H −→ Id is a natural transformation;

(iii) The functor H is well-copointed. That is, ξ : H −→ Id is a natural transformation with Hξ(S,σ) =
ξH(S,σ) for all objects (S, σ) of H/Mon(A).

Proof. (i) Given the object (S, σ) we define a natural transformation ν as

(HS + Id)2 = HS(HS + Id) +HS + Id

HS[µ·σS,η]+HS+Id

��

HSS +HS + Id

[Hµ,inl]+Id

��

HS + Id

It is easy to check that (HS + Id , inr, ν) is a monad, see [Mi1], Lemma 3.4. Together with the natural
transformation

H
Hη

//HS
inl //HS + Id

we obtain an object of H/Mon(A).
Now suppose that h : (S1, σ1) −→ (S2, σ2) is a morphism in H/Mon(A). We establish below that

H(h) = Hh+ Id is a monad morphism. Together with the commutativity of the diagram

H
Hη1

}}zzzzzzzz
Hη2

!!DDDDDDDD

HS1

inl

yysssssssss
Hh // HS2

inl

%%KKKKKKKKK

HS1 + Id
Hh+Id

// HS2 + Id

this establishes the action of H on morphisms. That H preserves identities and composition is obvious. Let
us check then that H(h) is a monad morphism. The unit law is the commutativity of the triangle

HS1 + Id
Hh+Id

// HS2 + Id

Id
inr

ffLLLLLL inr

88rrrrrr

Thus, to complete the proof of (i) we must check that the following square commutes:

(HS1 + Id)2

ν1

��

(Hh+Id)∗(Hh+Id)
// (HS2 + Id)2

ν2

��

HS1 + Id
Hh+Id

// HS2 + Id

Expanding by using the definition of νi, i = 1, 2, this is an essentially easy chase through some large diagrams
using only the monad laws for the Si as well as the fact that h is a morphism in H/Mon(A). For the sake
of brevity we leave this straightforward task to the reader.
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(ii) It is easy to prove that each component ξ(S,σ) is a monad morphism, see the proof of Theorem 3.1
in [Mi1]. Moreover, by the commutativity of the following diagram, we obtain a morphism in H/Mon(A):

H
σ //

Hη

��

S

Sη

��

HS

inl

��

σS // SS

inl

��

µ

&&LLLLLLLLLLL

HS + Id
σS+Id

// SS + Id
[µ,η]

// S

Finally, we check naturality of ξ. Suppose that h : (S1, σ1) −→ (S2, σ2) is a morphism in H/Mon(A).
Then, the following diagram commutes:

HS1 + Id

Hh+Id

��

σ1S1+Id
//

σ2S1+Id ))RRRRRRRRRRRRRR S1S1 + Id

hS1+Id

��

[µ1,η1]
// S1

h

��

ED��GF ξ(S1,σ1)

S2S1 + Id

S2h+Id

��

HS2 + Id
σ2S2+Id

// S2S2 + Id
[µ2,η2]

// S2BCOO@A
ξ(S2,σ2)

On the left we are using the naturality of σ2, on the right and in the triangle that h is a morphism of
H/Mon(A).

(iii) For any object (S, σ) we have by definition that

ξH(S,σ) ≡ [ν · inl ·Hη(HS + Id), inr] : H(HS + Id) + Id −→ HS + Id .

We show that this is the same as Hξ(S,σ) + Id .
We consider the components of the left-hand coproduct separately. Equality on the right-hand component

is obvious. For the left-hand one consider the following diagram:

H(HS + Id)
Hη(HS+Id )

//

Hξ

��

HS(HS + Id)

HSξ

��

inl // HS(HS + Id) +HS + Id = (HS + Id)2

HSξ+HS+Id

��

ED
BC ν

oo

HS
HηS

//

UUUUUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUUUUU HSS
inl //

Hµ

��

HSS +HS + Id

[Hµ,inl]+Id

��

HS
inl // HS + Id

The upper and right outer edges compose to yield the left-hand component of ξH(S,σ) and the left and lower
outer edges yield the left-hand component of Hξ(S,σ) + Id . The desired commutativity of the outer shape
follow since all inner parts of the diagram trivially commute. �
Lemma 5.3. Let ((S, σ), β) be an H-coalgebra with the structure β : (S, σ) −→ H(S, σ) in H/Mon(A).
Then

ξ(S,σ) : H(S, σ) −→ (S, σ)

is an H-coalgebra homomorphism.

Proof. It is clear that H(S, σ) = (HS + Id , inl ·Hη) is an H-coalgebra with the structure Hβ+ Id , and that
ξ(S,σ) is a morphism in H/Mon(A). From the naturality and well-copointedness of ξ, the following square

HS + Id

ξ

��

Hβ+Id
// H(HS + Id) + Id

Hξ+Id=H(ξ)=ξH(S,σ)

��

S
β

// HS + Id
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commutes; (see Lemma 5.2). �

Theorem 5.4. ((T, κ), α) is a final coalgebra for the functor H on H/Mon(A).

Proof. Recall that the coalgebra structure α : T −→ HT+Id is given by the inverse of [τ, η] : HT+Id −→ T .
It is clearly a morphism in H/Mon(A). Indeed, recall from Corollary 3.15 that τ = µ · κT . Hence,
[τ, η] = ξ(T,κ) and so α being an inverse of a monad morphism is itself a monad morphism, and clearly we
have α · κ = inl ·Hη.

Now suppose that β : (S, σ) −→ H(S, σ) is any H-coalgebra. So the natural transformation β : S −→
HS + Id is a monad morphism such that β · σ = inl · HηS . By Theorem 5.1, T is a final coalgebra on the
level of endofunctors. Thus there exists a unique natural transformation h : S −→ T such that the following
square commutes:

S
β

//

h

��

HS + Id

Hh+Id

��

T α
// HT + Id

(5.1)

Hence our only task is to show that h is a morphism in H/Mon(A). With an easy computation we establish
the unit law:

h · ηS = α−1 · (Hh+ Id) · β · ηS (by (5.1))

= [τ, η] · (Hh+ Id) · inr (since α−1 = [τ, η])

= [τ, η] · inr

= η (computation with inr)

and from this it follows that

h · σ = α−1 · (Hh+ Id) · β · σ (by (5.1))

= [τ, η] · (Hh+ Id) · inl ·HηS (since α−1 = [τ, η])

= τ ·Hh ·HηS (composition with inl)

= τ ·Hη (since h · ηS = η)

= κ (by (3.7)) .

Finally, we check that the following square commutes:

SS

h∗h
��

µS
// S

h

��

TT µ
// T

(5.2)

In order to do this we use that T is a final coalgebra for the functor H · + Id : [A,A] −→ [A,A], and
establish below that the arrows in square (5.2) are coalgebra homomorphisms. To do this, we need to first
specify the coalgebra structures on the objects in (5.2). For S and T , we of course use β and α, respectively.
For SS, we use the following coalgebra structure

SS
β∗β

//(HS + Id)2 = HS(HS + Id) +HS + Id
[HSξ,HηSS]+Id

//HSS + Id

It is easily established that µS : SS −→ S is a coalgebra homomorphism. Indeed, the following diagram
commutes:

SS
β∗β

//

µS

��

(HS + Id)2 = HS(HS + Id) +HS + Id
[HSξ,HηSS]+Id

//

ν

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY HSS + Id

HµS+Id

��

S
β

// HS + Id

The left-hand part commutes since β is a monad morphism and the right-hand one is the definition of ν
(use that HµS ·HηS = 1HS). Similarly, there is a coalgebra structure on TT such that µ : TT −→ T is a
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coalgebra homomorphism. Finally, we show that h ∗ h : SS −→ TT is a coalgebra homomorphism. In fact,
the following diagram commutes:

SS
β∗β

//

h∗h

��

(HS + Id)2 = HS(HS + Id) +HS + Id
[HSξ(S,σ) ,Hη

SS]+Id
//

(Hh+Id)2=Hh(Hh+Id)+Hh+Id

��

HSS + Id

H(h∗h)+Id

��

TT α∗α
// (HT + Id)2 = HT (HT + Id) +HT + Id

[HTξ(T,κ) ,HηT ]+Id
// HTT + Id

The left-hand square commutes trivially. We consider the right-hand one componentwise: The right-hand
component is obvious. For the middle one we remove H and obtain the following commutative square:

S
ηSS

//

h

��

SS

h∗h
��

T
ηT

// TT

Finally, for the left-hand component we remove H again to obtain

S(HS + Id)
Sξ(S,σ)

//

h∗(Hh+Id)

��

SS

h∗h
��

T (HT + Id)
Tξ(T,κ)

// TT

By naturality, it suffices to check that the square

HS + Id
ξ(S,σ)

//

Hh+Id

��

S

h

��

HT + Id
ξ(T,κ)

// T

commutes. Notice that we are not entitled to use naturality of ξ here, since we do not yet know that h is
a monad morphism. Instead, we invoke the finality of T and show that all arrows in the above square are
coalgebra homomorphisms for the functor H · +Id on [A,A]. Indeed, since h is a coalgebra homomorphism,
so is Hh+ Id , and the other two morphisms are coalgebra homomorphisms by Lemma 5.3. This completes
the proof. �

5.2. T Gives a Final Coalgebra as a Completely Iterative Monad. The next result is the main
technical tool for our treatment of recursive program schemes in Section 6 below. Recall that we denote
by H/CIM(A) the category whose objects are the pairs (S, σ), where S is completely iterative and σ is an
ideal natural transformation; the morphisms in H/CIM(A) are given by the ideal monad morphisms. So
H/CIM(A) is a subcategory of H/Mon(A). We show in Corollary 5.5 just below that ((T, κ), α) is a final
coalgebra for the same functor H that we have been working with. In the language of Theorem 5.4, the
main point of the corollary is that if β : S −→ HS + Id is an ideal monad morphism which is a coalgebra
for H from some completely iterative monad, then the morphism into T may be taken to be an ideal monad
morphism as well.

Corollary 5.5. H restricts to an endofunctor on H/CIM(A), and ((T, κ), α) is a final H-coalgebra in
H/CIM(A).

Proof. Lemma 3.5 of [Mi1] gives a result propagating the complete iterative structure of monads: for any
completely iterative monad S with ideal ι : S ′ ↪−→ S, and any natural transformation σ : H −→ S such
that σ = ι · σ′ for some σ′ : H −→ S′, the monad HS + Id is completely iterative, too. Moreover, for any
monad morphism h, H(h) = Hh+ Id is an ideal monad morphism. Hence, H restricts to an endofunctor on
H/CIM(A), which by abuse of notation we denote by H again.

Observe that (T, κ) lies in H/CIM(A) and that the coalgebra structure α = [τ, η]−1 is an ideal monad
morphism. Now suppose that β : (S, σ) −→ (HS+ Id , inl ·HηS) is an H-coalgebra, i. e., β is an ideal monad
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morphism between completely iterative monads such that the following square

H

σ

��

HηS
// HS

inl

��

S
β

// HS + Id

commutes. By Theorem 5.4, we obtain a unique coalgebra homomorphism h : (S, σ) −→ (T, κ) in
H/Mon(A). Our only task is to check that h is an ideal monad morphism, so that it is a morphism in
H/CIM(A). In fact, consider the following commutative diagram:

S′

ι

��

β′
// HS

inl

��

ED
Hh

��

S

h

��

β
// HS + Id

Hh+Id

��

T
[τ,η]−1

// HT + Id

HT

inl
eeJJJJJJJJJ@A

τ

OO

The middle square commutes since h is a coalgebra homomorphism, the upper one since β is an ideal monad
morphism. The two other parts are obvious. Hence the outer shape commutes, proving that Hh ·β ′ : S′ −→
HT is a restriction of h to the ideal S ′ of S. �

6. Uninterpreted Recursive Program Schemes

In the classical treatment of recursive program schemes one gives an uninterpreted semantics to systems
like (1.1) which are in Greibach normal form, i. e., every tree on the right-hand side of the system has as
its head symbol a symbol from the given signature Σ. The semantics assigns to each of the new operation
symbols a Σ-tree. These trees are obtained as the result of unfolding the recursive specification of the RPS.
We illustrated this with an example in (1.7) in the Introduction.

We have seen in Section 2 that Σ-trees are the carrier of a final coalgebra of the signature functor HΣ.
It is the universal property of this final coalgebra which allows one to give a semantics to the given RPS.
Using the technical tools developed in Section 5 we will now provide a conceptually easy and general way
to give an uninterpreted semantics to recursive program schemes considered more abstractly as natural
transformations, see our discussion in Section 2.3.

But before we do this, we need to say what a solution of an RPS should be. To do this we use the
universal property of the monads T(H) as presented in Section 4. It gives an abstract version of second-
order substitution.

Here are our central definitions, generalizing recursive program schemes from signatures to completely
iterative monads.

Definition 6.1. Let V and H be endofunctors on A. A recursive program scheme (or RPS, for short) is a
natural transformation

e : V //T(H + V ) .

We sometimes call V the variables, and H the givens.
The RPS e is called guarded if there exists a natural transformation

f : V −→ HT(H + V )
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such that the following diagram commutes:

V
e //

@Af

//

T(H + V )

(H + V )T(H + V )

τH+V

OO

HT(H + V )

inl∗T(H+V )

OO
(6.1)

A solution of e is an ideal natural transformation e† : V −→ T(H) such that the following triangle
commutes:

V
e† //

e

��

T(H)

T(H + V )

[κH ,e†]

99sssssssss
(6.2)

Remark 6.2. Recall that [κH , e†] is the unique ideal monad morphism extending σ = [κH , e†] : H + V −→
T(H). Observe that therefore it is important to require that e† be an ideal natural transformation since
otherwise σ is not defined.

Remark 6.3. (i) From Section 2.3, our definition is a generalization of the classical notion of RPS (to
the category theoretic setting), and it extends the classical work as well by allowing infinite trees
on the right-hand sides of equations.

(ii) Our notion of guardedness captures precisely the requirement that all right-hand sides of (2.3) have
their root labelled by a symbol from the givens Σ. In the classical treatment of RPS this is precisely
what is called Greibach normal form of an RPS, see [C].

(iii) Suppose that H = HΣ and V = HΦ are signature functors of Set, and consider the recursive
program scheme e : HΦ −→ T(HΣ +HΦ) as a set of formal equations as in (2.3). Then for any set

X of syntactic variables the X-component e†X : HΦX −→ TΣX of a solution assigns to any flat tree
(f, x1, . . . , xn) = (f, ~x) from HΦX a Σ-tree over X . The commutativity of the triangle (6.2) gives
the following property of solutions: apply to the right-hand side tf (~x) of f(~x) in the given RPS
the second-order substitution that replaces each operation symbol of Φ by its solution, and each

operation symbol of Σ by itself—this is the action of [κH , e†]X . The resulting tree in TΣX is the

same tree as e†X(f, ~x).

Example 6.4. Let us now present two classical RPS as well as an example of RPS which is not captured
with the classical setting.

(i) Recall from the Introduction the formal equations (1.1) and the ubiquitous (1.2) defining the fac-
torial function. As explained in Example 2.8 these give rise to recursive program schemes. Thus,
since both (1.1) and (1.2) are in Greibach normal form we obtain two guarded RPS’s in the sense
of Definition 6.1 above.

(ii) Sometimes one might wish to recursively define new operations from old ones where the new op-
erations should satisfy certain extra properties automatically. We demonstrate this with an RPS
recursively defining a new operation which is commutative. Suppose the signature Σ of givens con-
sists of a ternary symbol F and a unary one G. Let us assume that we want to require that F
satisfies the equation F (x, y, z) = F (y, x, z) in any interpretation. This is modelled by the endo-
functor HX = X3/∼+X where ∼ is the smallest equivalence on X3 with (x, y, z) ∼ (y, x, z). To
be an H-algebra is equivalent to being an algebra A with a unary operation GA and a ternary one
FA satisfying FA(x, y, z) = FA(y, x, z). Suppose that one wants to define a commutative binary
operation ϕ by the formal equation

ϕ(x, y) ≈ F (x, y, ϕ(Gx,Gy)) . (6.3)

To do it we express ϕ by the endofunctor V assigning to a set X the set { {x, y } | x, y ∈ X } of
unordered pairs of X . It is not difficult to see that the formal equation (6.3) gives rise to a guarded
RPS e : V −→ T(H+V ). In fact, to see the naturality use the description of the terminal coalgebra
T(H + V )Y given in [AM], see Example 2.5(i). Notice that in the classical setting we are unable to
demand that (the solution of) ϕ be a commutative operation at this stage: one would use general
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facts to obtain a unique solution, and then one would need to devise a special argument to verify
commutativity of that solution. Once again, our general theory insures that any solution of our
RPS will be commutative.

The main result of this section is the following theorem. Before we present its proof below let us illustrate
the result with a few examples.

Theorem 6.5. Every guarded recursive program scheme has a unique solution.

Examples 6.6. We present here the solutions of the RPS’s of Example 6.4.

(i) The unique solution of the RPS induced by the equations (1.1) is an ideal natural transformation
e† : HΦ −→ T(HΣ). Equivalently, we have a natural transformation Φ −→ TΣ · J , see Section 2.3.
That is, the solution e† is essentially given by two Σ-trees (one for each of the operation symbols ϕ
and ψ) over a singleton set, say {x }. It follows from the proof of Theorem 6.5 that those Σ-trees
are the ones given in (1.6), see Example 6.15 below.

Similarly, the unique solution of the RPS induced by the equation (1.2) is essentially given by
the Σ-tree over the set {n } below:

ifzero

n one ∗

ifzero n

pred(n) one ∗

ifzero pred(n)

pred(pred(n)) one ∗

ifzero pred(pred(n))

ttttttt
JJJJJJJ

ttttttt

JJJJJJJJ

tttttt
JJJJJJJ

ttttttt
JJJJJJJ

ooooooo

JJJJJJJ

ttttttt
JJJJJJJ

(6.4)

Notice that the nodes labelled by a term correspond to appropriately labelled finite subtrees.
(ii) We continue example 6.4(ii) and describe the uninterpreted solution of the guarded RPS e arising

from the formal equation (6.3) defining a commutative operation. The components of e†X : V X −→
T(H)X assign to an unordered pair {x, y } in V X the tree

F

{x, y }
����

F

?????

F

{Gx,Gy }
����

F

?????

F

{GGx,GGy }
����

where for every node labelled by F the order of the first two children cannot be distinguished; we
indicate this with set-brackets in the picture above.

Remark 6.7. Notice that in the classical setting not every recursive program scheme which has a unique
solution needs to be in Greibach normal form. For example, consider the system formed by the first equation
in (1.1) and by the equation ψ(x) ≈ ϕ(ψ(x)). This system gives rise to an unguarded RPS. Thus, Theorem 6.5
does not provide a solution of this RPS. However, the system is easily rewritten to an equivalent one in
Greibach normal form which gives a guarded RPS that we can uniquely solve using our Theorem 6.5.

The rest of this section is devoted to the proof of Theorem 6.5. We illustrate each crucial step with the
help of our examples. Before we turn to the proof of the main theorem we need to establish some preliminary
lemmas.
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Lemma 6.8. Let H and K be endofunctors on A. Suppose we have objects (S, σ) of H/Mon(A) and (R, ρ)
of K/Mon(A). Let n : H −→ K be a natural transformation and let m : S −→ R be a monad morphism
such that the following square

H
n //

σ

��

K

ρ

��

S m
// R

commutes. Then n ∗m+ Id : HS + Id −→ KR+ Id is a monad morphism such that the following square

H
n //

inl·HηS
��

K

inl·KηR
��

HS + Id
n∗m+Id

// KR+ Id

commutes.

Proof. Naturality and the unit law are clear, and the preservation of the monad multiplication is a straight-
forward diagram chasing argument which we leave to the reader. �
Lemma 6.9. Consider any guarded RPS e, see (6.1). There exists a unique (ideal) monad morphism

ê : T(H + V ) −→ T(H + V )

such that the following triangle commutes:

H + V
κH+V

//

[κH+V ·inl,e]
%%LLLLLLLLLL T(H + V )

�

e

��

T(H + V )

There is also a unique (ideal) monad morphism

e : T(H + V ) −→ HT(H + V ) + Id

such that the following diagram commutes:

H + V

[HηH+V ,f ]

��

κH+V
// T(H + V )

e

��

HT(H + V )
inl

// HT(H + V ) + Id

(6.5)

Proof. We get ê from Theorem 4.5. Indeed, it is easily checked that

[κH+V · inl, e] : H + V −→ T(H + V )

is an ideal natural transformation using that e is guarded. As for e, recall that H “embeds” into T(H + V )
via the natural transformation

H
inl //H + V

κH+V
//T(H + V ) .

Since κH+V is an ideal natural transformation so is this one. Hence, (T(H + V ), κH+V · inl) is an object of
H/CIM(A) and so it follows from Corollary 5.5 that HT(H + V ) + Id carries the structure of a completely
iterative monad. The natural transformation inl · [HηH+V , f ] : H + V −→ HT(H + V ) + Id , see (6.5), is
obviously ideal. Thus, we obtain e as desired from another application of Theorem 4.5. �
Remark 6.10. In the leading example of a classical RPS for given signatures, the formation of the morphism
e corresponds to the formation of a flat system of equations, where for every tree there is a recursion variable.
More precisely, suppose we have signatures Σ and Φ, and an RPS as in (2.3) which is in Greibach normal
form. The component of e at some set Z of syntactic variables can be seen as a set of formal equations.
Here is a description of eZ : For every tree t ∈ TΣ+ΦZ, we have a recursion variable t. And for each recursion
variable we have one formal equation:

t ≈ x if t is a single node tree with root label x ∈ Z, or
t ≈ σ(t1, . . . , tn) for some n ∈ N and some σ ∈ Σn otherwise,
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where the tree s = σ(t1, . . . , tn) is the result of the following second-order substitution applied to t: every
symbol of Φ is substituted by its right-hand side in the given RPS, and every symbol of Σ by itself. Since
the given RPS is guarded the head symbol of s is a symbol of Σ for all trees t.

Observe that forming the right-hand sides of this system corresponds to the application of one step of
Kleene’s computation rule, see [G].

Example 6.11. For the guarded RPS of (1.1) the flat system obtained from e for Z = {x } includes the
equations of the system (1.7) from the Introduction.

We also give a fragment of the flat system obtained as the extension of the RPS (1.2), see also Exam-
ple 6.4(i) . Here the set of syntactic variables is Z = {n} and the formal equations described by eZ include
the following ones:

f(n) ≈ ifzero(n, one, f(pred(n)) ∗ n)

n ≈ n

one ≈ one (6.6)

f(pred(n)) ∗ n ≈ ifzero(pred(n), one, f(pred(pred(n)))) ∗ n
f(pred(n)) ≈ ifzero(pred(n), one, f(pred(pred(n)) ∗ pred(n)))

...

Lemma 6.12. The following diagram commutes:

T(H + V )

@A�

e

//

e // HT(H + V ) + Id

inl∗T(H+V )+Id

��

(H + V )T(H + V ) + Id

[τH+V ,ηH+V ]

��

T(H + V )

Proof. By the first part of Lemma 6.9, it suffices to show that the composite in the above diagram is an ideal
monad morphism extending [κH+V · inl, e]. For the extension property, consider the following commutative
diagram, where we write T for T(H + V ):

H + V

κH+V

��

ED[κH+V ·inl,e]

��

[HηH+V ,f ]

''OOOOOOOOOOOO

HT

inl

��

inl∗T // (H + V )T

inl

��

τH+V

''OOOOOOOOOOOOO

T
e

// HT + Id
inl∗T+Id

// (H + V )T + Id
[τ,η]

// T

The left-hand part commutes by Lemma 6.9. For the left-hand component of the upper part notice that

τH+V · (inl ∗ T ) ·HηH+V = τH+V · (H + V )ηH+V · inl = κH+V · inl .

The right-hand component of this part commutes since e is guarded, see (6.1), and the remaining parts are
trivial.

We show that all parts of the lower edge in the above diagram are monad morphisms. For e, see Lemma 6.9.
For inl ∗ T + Id , apply Lemma 6.8 to n = inl and m = 1T . And the for the last part, [τ, η] = [µ · κT, η],
notice that it is the component at (T(H + V ), κH+V ) of the natural transformation ξ of Lemma 5.2 applied
to (H + V )/Mon(A). �
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Lemma 6.13. The following diagram

T(H + V )
αH+V

//

@A�

e

//

(H + V )T(H + V ) + Id

[κH+V ·inl,e]∗T(H+V )+Id

��

T(H + V )T(H + V ) + Id

[µH+V ,ηH+V ]

��

T(H + V )

commutes.

Proof. By the first part of Lemma 6.9, it suffices to show that the composite in the above diagram is an
ideal monad morphism extending [κH+V · inl, e]. Let us write λ for [κH+V · inl, e] and T for T(H + V ). Now
consider the following commutative diagram

H + V

κH+V

��

λ //

(H+V )η ((QQQQQQQQQQQQQ T

Tη

��

ED
id

��

(H + V )T

inl

��

λT // TT

inl

��

µ

%%KKKKKKKKKKKK

T
αH+V

// (H + V )T + Id
λT+Id

// TT + Id
[µ,η]

// T

which establishes the extension part. To see that the morphism of the lower edge is a monad morphism, recall
from Theorem 5.4 that αH+V is the structure map of a final coalgebra of a functor on (H + V )/Mon(A),
whence a monad morphism, and [µ · λT, η] is the component at (T, λ) of the natural transformation ξ, see
Lemma 5.2. �
Proof of Theorem 6.5. Consider e from Lemma 6.9. It is a coalgebra structure for the functor

H : H/CIM(A) −→ H/CIM(A)

In fact, e is a morphism in H/CIM(A); it is an ideal monad morphism and by (6.5) we have

e · κH+V · inl = inl · [HηH+V , f ] · inl = inl ·HηH+V . (6.7)

Now apply Corollary 5.5 to obtain a unique H-coalgebra homomorphism from the above coalgebra e to
the final one. In more detail, we obtain a unique ideal monad morphism h : T(H + V ) −→ T(H) such that
the following diagram commutes:

H
inl //

κH
))TTTTTTTTTTTTTTTTTTTT H + V

κH+V
// T(H + V )

e //

h

��

HT(H + V ) + Id

Hh+Id

��

T(H)
[τH ,ηH ]−1

// HT(H) + Id

(6.8)

Now let

e† ≡ V
inr //H + V

κH+V
//T(H + V )

h //T(H) . (6.9)

We shall prove that e† uniquely solves e.

(a) e† is a solution of e. Since h is an ideal monad morphism and κH+V is an ideal natural transformation,
we see that e† is an ideal natural transformation. Next observe that by definition we have

h = [κH , e†],

and we also get

e† = h · κH+V · inr (by (6.9))

= [τH , ηH ] · (Hh+ Id) · e · κH+V · inr (by (6.8)) (6.10)

= [τH , ηH ] · (Hh+ Id) · inl · f (by (6.5))

= τH ·Hh · f.
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Now we can conclude that the following diagram commutes:

V
e† //

e

��

f

!!CCCCCCCCCCCCCCCCCCCCC

(i)

T(H)

HT(H)

HηH∗T(H)

��

HT(H)

τH

::uuuuuuuuu

HT(H + V )

Hh

66lllllllllllll
HηH∗h

//

inl∗T(H+V )

��

HT(H)T(H)

HµH

88ppppppppppp

(ii)(H + V )T(H + V )

[HηH ,Hh·f ]∗h

66lllllllllllll

τH+V
vvmmmmmmmmmmmmm

T(H + V )
BC

h=[κH ,e†]

OO

(6.11)

Indeed, part (i) commutes by (6.10). For part (ii) observe first that from (3.7) and (6.10) we get the equation

[κH , e†] ≡ H + V
[HηH ,Hh·f ]

//HT(H)
τH //T(H) . (6.12)

Now apply Lemma 4.6 to H+V and H and σ = [κH , e†] using that (6.12) induces the ideal monad morphism

[κH , e†] = h. The other parts of (6.11) are obvious.

(b) Uniqueness of solutions. Suppose that s : V −→ T(H) is a solution of e. Since solutions are ideal natural
transformations by definition, there exists a natural transformation s′ : V −→ HT(H) such that s = τH · s′.
We shall show below that the ideal monad morphism h from (6.8) is equal to

[κH , s] : T(H + V ) −→ T(H) (6.13)

using coinduction, i. e., we show that [κH , s] is a coalgebra homomorphism. Then, since (T(H), κH) is a final

H-coalgebra, we can conclude that h = [κH , s] and therefore

e† = [κH , e†] · e = h · e = [κH , s] · e = s,

where the last equality holds since s is a solution of e.

For the coinduction argument, replace h in Diagram (6.8) by [κH , s] and check that the modified diagram
commutes. In fact, for the left-hand triangle we obtain:

[κH , s] · κH+V · inl = [κH , s] · inl = κH . (6.14)

To verify the modified version of the right-hand square of (6.8), use the freeness of the completely iterative
monad T(H + V ). Thus, it is sufficient that this diagram of ideal monad morphisms commutes when
precomposed with the universal arrow κH+V . Furthermore we consider the components of the coproduct

H+V separately. Let us write x as a short notation for [κH , s]. Then, for the left-hand coproduct component
we obtain the following equations:

[τH , ηH ] · (Hx+ Id) · e · κH+V · inl

= [τH , ηH ] · (Hx+ Id) · inl ·HηH+V (see (6.7))

= τH ·Hx ·HηH+V

= τH ·HηH (since x · ηH+V = ηH )

= κH (see (3.7))

= x · κH+V · inl (see (6.14))

In order to prove the right-hand component commutative we use a diagram similar to Diagram (6.11). Just
replace in (6.11) Hh · f by s′, all other occurrences of h by x, and e† by s. We prove that part (i) in this
modified diagram commutes. In fact, this follows from the fact that all other parts and the outward square
commute: the outward square commutes since s is a solution of e; part (ii) in the modified diagram commutes
by Lemma 4.6 again, and all other parts are clear. Thus, we proved that the following equation holds:

s = τH ·Hx · f. (6.15)
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From this we obtain the equations

[τH , ηH ] · (Hx+ Id) · e · κH+V · inr

= τH ·Hx · f (similar as in (6.10))

= s (by (6.15))

= x · κH+V · inr (since x = [κH , s]) .

This establishes that h from (6.9) is equal to (6.13). �

Remark 6.14. Recall that the formation of e corresponds, in the leading example of an RPS for given
signatures, to the formation of a flat system of equations, see Remark 6.10. Now the map hZ of (6.8) assigns
to every variable t ∈ TΣ+ΦZ of the flat system the Σ-tree given by unfolding the recursive specification given
by this flat system, i. e., hZ is the unique solution of the flat equation morphism eZ in the cia TΣZ.

Example 6.15. In equations (1.1) in the beginning of this paper, we introduced a guarded RPS as they
are classically presented. It induces an RPS (in our sense), as discussed in Example 6.4(i). The unique
solution of the flat equation morphism eZ corresponding to the flat system described in Example 6.11 is
hZ : TΣ+ΦZ −→ TΣZ (see also (1.7) from the Introduction). The definition of e† in (6.9) means that we only
consider the solution for the recursion variables ϕ(x) and ψ(x) in that system. These solutions are precisely

the Σ-trees described in Example 6.6(i).
Similarly, for the guarded RPS induced by (1.2) the solution is obtained by considering only the unique

solution for the variable f(x) of the flat system (6.6). Clearly, this yields the desired tree (6.4).

7. Interpreted Recursive Program Schemes

We have seen in the previous section that for every guarded recursive program scheme we can find a unique
uninterpreted solution. In practice, however, one is more interested in finding interpreted solutions. In the
classical treatment of recursive program schemes, this means that a recursive program scheme defining new
operation symbols of a signature Φ from given ones in a signature Σ comes together with some Σ-algebra
A. An interpreted solution of the recursive program scheme in question is, then, an operation on A for each
operation symbol in Φ such that the formal equations of the RPS become valid identities in A.

Of course, in general an algebra A will not admit interpreted solutions. We shall prove in this section that
any Elgot algebra (A, a, ( )∗) as defined in Section 3 admits an interpreted solution of any guarded recursive
program scheme. Moreover, if A is a completely iterative algebra, interpreted solutions are unique. We also
define the notion of a standard interpreted solution and prove that uninterpreted solutions and standard
interpreted ones are consistent with one another as expected. This is a fundamental result for algebraic
semantics.

We turn to applications after proving our main results. In Subsection 7.1 we study the computation tree
semantics of RPS’s arising from the computation tree Elgot algebras of Section 3.3. Then, in Subsection 7.2
we prove that in the category CPO our interpreted program scheme solutions agree with the usual deno-
tational semantics obtained by computing least fixed points. Similarly, we show in Subsection 7.3 for the
category of CMS that our solutions are the same as the ones computed using Banach’s Fixed Point The-
orem. Furthermore, we present new examples of recursive program scheme solutions pertaining to fractal
self-similarity. We are not aware of any previous work connecting recursion to implicitly defined sets.

Definition 7.1. Let (A, a, ( )∗) be an Elgot algebra for H and let e : V −→ T(H + V ) be an RPS. An

interpreted solution of e in A is a structure of a V -algebra e‡A : V A −→ A, such that

(i) the (H + V )-algebra [a, e‡A] : (H + V )A −→ A is the structure morphism of an Elgot algebra

(A, [a, e‡A], ( )+) for H + V ; and
(ii) the triangle below

V A

eA

��

e‡A // A

T(H + V )A
[̃a,e‡A]

88pppppppppppp
(7.1)

commutes, where the diagonal arrow denotes the evaluation morphism associated to the Elgot
algebra in (i), see Theorem 3.14.

Remark 7.2.
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(i) The subscript A in e‡A is only present to remind us of the codomain A. That is, e‡A is not a
component of any natural transformation.

(ii) Recall from Corollary 3.15 that the triangle

(H + V )A
κH+V
A //

[a,e‡A]
''OOOOOOOOOOOOO

T(H + V )A

[̃a,e‡A]

��

A

(7.2)

commutes. It follows that for an interpreted solution e‡A, we have

a = [̃a, e‡A] · κH+V
A · inl, (7.3)

(iii) In our leading example whereH = HΣ and V = HΦ are signature functors on Set, the commutativity
of (7.1) states precisely that an interpreted solution provides operations on A which turn the formal
equations of the given recursive program scheme into actual identities. More precisely, suppose

that e is a recursive program scheme given by formal equations (2.3). The interpreted solution e‡A
gives for each n-ary operation symbol f of the signature Φ an operation fA : An −→ A. And the
commutativity of (7.1) gives the following property of fA: take for any ~a ∈ An the right-hand side
tf (~a) in the given recursive program scheme, then evaluate tf (~a) in A using the given operations

for Σ and the ones provided by e‡A for Φ on A—this is the action of [̃a, e‡A]. The resulting element
of A is the same as fA(~a).

(iv) The requirement that [a, e‡A] be the structure morphism of an Elgot algebra may seem odd at

first. However, we need to assume this in order to be able to use [̃a, e‡A] in (7.1). Furthermore,
the requirement has a clear practical advantage: operations defined recursively by means of an
interpreted solution of an RPS may be used in subsequent recursive definitions. For example, for

the signature functors on Set as in (iii) above the Elgot algebra with structure map [a, e‡A] has
operations for all operation symbols of Σ + Φ. Thus, it can be used as an interpretation of givens
for any further recursive program scheme with signature Σ + Φ of givens.

Theorem 7.3. Let (A, a, ( )∗) be an Elgot algebra for H and let e : V −→ T(H + V ) be a guarded RPS.
Then the following hold:

(i) there exists an interpreted solution e‡A of e in A,

(ii) if A is a completely iterative algebra, then e‡A is the unique interpreted solution of e in A.

We will present the proof after a technical lemma. It follows from the proof of Theorem 7.3 that unin-
terpreted solutions correspond to certain interpreted ones in a canonical way. We shall make this precise at
the end of this subsection, and prove what could be called “Fundamental Theorem of Algebraic Semantics”.

Lemma 7.4. Let (A, a, ( )∗) be an Elgot algebra, let e be a guarded RPS, and let ê be as in Lemma 6.9.
Then the following are in one-to-one correspondence:

(i) the interpreted solutions e‡A of e in A.
(ii) the evaluation morphisms β : T(H + V )A −→ A such that the two diagrams

HA
inlA //

a

++VVVVVVVVVVVVVVVVVVVVVVVVVV (H + V )A
κH+V
A // T(H + V )A

β

��

A

(7.4)

T(H + V )A
�

eA //

β
''PPPPPPPPPPPPP

T(H + V )A

β

��

A

(7.5)

commute.

In more detail, if e‡A is an interpreted solution of e in A, then the evaluation morphism β = [̃a, e‡A] has the

properties of (ii). And if β makes the diagrams in (ii) commute, then β ·κH+V
A · inr is an interpreted solution

to e in A. Finally, these two operations are mutually inverse.
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Proof. Let us write T as a short notation for T(H + V ) and λ for [κH+V · inl, e] : H + V −→ T .

(i) ⇒ (ii): As in our statement, take the evaluation morphism β = [̃a, e‡A]. Then (7.4) is (7.3). For (7.5),
consider the following commutative diagram

TA

β

��

αH+V
A

// (H + V )TA+A

(H+V )β+A

��

λTA+A
// TTA+A

[µA,ηA]
//

Tβ+A

��

TA

β

��

ED ��GF �

eA

TA+A
[β,A]

&&MMMMMMMMMMMM

A@AOO BC
id

(H + V )A+A
[a,e‡A,A]

oo
[[a,e‡A],A]

//

λA+A

55llllllllllllll
A

The upper part commutes by Lemma 6.13, the right-hand part commutes since β is an Eilenberg-Moore
algebra structure, and the left-hand part commutes since β is given as the solution of αH+V

A in the Elgot

algebra (A, [a, e‡A], ( )+), see Theorem 3.13. For the middle part simply use the naturality of λ. The lowest
part is obvious. Finally, for the commutativity of the lower triangle it suffices to show that the equation

β · λA = [a, e‡A]

holds. We consider the components separately: the left-hand one is (7.3), and the right-hand one is the
triangle (7.1). Thus, the outer shape of the above diagram commutes, viz. the desired triangle (7.5).

(ii) ⇒ (i): Define

e‡A ≡ V A
inr //(H + V )A

κH+V
A //T(H + V )A

β
//A . (7.6)

It follows from the commutativity of (7.4) and Theorem 3.14 that [a, e‡A] = β · κH+V
A is the structure map

of an Elgot algebra for H + V on A so that the equation β = [̃a, e‡A] holds. For Diagram (7.1) consider the
following commutative diagram:

V A

@AeA

//

inr

%%KKKKKKKKK
e‡A // A

(H + V )A
κH+V
A //

λA
%%JJJJJJJJJ TA

β

>>}}}}}}}}

�

eA

��

TA

BC β=[̃a,e‡A]

OO

The inner triangle commutes due to the definition of ê, see Lemma 6.9, the right-hand one due to (7.5), and
the other two parts are clear. Thus, the outer shape commutes, so we have (7.1).

Finally, we check that the operations of going from interpreted solutions e‡A to evaluation morphisms β
are mutually inverse. In fact, we have

[̃a, e‡A] · κH+V
A · inr = e‡A

by the commutativity of the right-hand component of Diagram (7.2). And for the interpreted solution

e‡A defined by (7.6), we have already seen above that the equation β = [̃a, e‡A] holds. This completes the
proof. �

Remark 7.5. Lemma 7.4 above states that interpreted solutions correspond to suitable evaluation mor-
phisms β such that the diagrams (7.4) and (7.5) commute. In particular, if H = HΣ and V = HΦ are
signature functors on Set, the existence of β means that all trees over the signature Σ + Φ can be evaluated
in A. The commutativity of (7.4) states that for trees in TΣ+ΦA operation symbols of Σ are interpreted
according to the given Σ-algebra structure a, while the commutativity of (7.5) states that the operation
symbols of Φ are interpreted by operations that satisfy the equations given by the recursive program scheme
e.
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Proof of Theorem 7.3. (i) Given an Elgot algebra (A, a, ( )∗) and a guarded recursive program scheme e :
V −→ T(H + V ) consider e : T(H + V ) −→ H · T(H + V ) + Id from Lemma 6.9. Its component at A yields
a flat equation morphism

g ≡ T(H + V )A −→ HT(H + V )A+A , (7.7)

with respect to (A, a, ( )∗) and we take its solution

β ≡ T(H + V )A
g∗

//A (7.8)

By Lemma 7.4, it suffices to prove that β is an evaluation morphism such that the diagrams (7.4) and (7.5)
commute. We first check that β is the structure of an Eilenberg-Moore algebra for T(H + V ), hence an
evaluation morphism. To this end we first establish the equation

β = ã · hA , (7.9)

where h : T(H + V ) −→ T(H) is the monad morphism that we obtain from the recursive program scheme

e. (See (6.8). It is also useful to recall that h = [κH , e†].) Recall that ã = (αA)∗, see Theorem 3.13, and
that hA is a homomorphism of (H( ) + A)-coalgebras, see Diagram (6.8). Thus, by the Functoriality of
( )∗, we obtain g∗ = (αA)∗ · hA, i. e., the desired equation (7.9). Now since h : T(H + V ) −→ T(H) is a
monad morphism, and ã is the structure morphism of an Eilenberg-Moore algebra for T(H), β = ã · hA is
an Eilenberg-Moore algebra for T(H +V ). In fact, this follows from a general fact from category theory, see
e. g. Proposition 4.5.9 in [Bo].

We check that the diagrams (7.4) and (7.5) commute. Let us use T as a short notation for T(H +V ) and
T ′ for T(H). In order to see that (7.4) commutes, consider the following commutative diagram

HA
inlA //

κHA
**UUUUUUUUUUUUUUUUUUUUU

a

%%KKKKKKKKKKKKKKKKKKKKKKKKK (H + V )A
κH+V
A // TA

hA

��

ED
BC β

oo

T ′A
�

a

��

A

The upper part commutes due to the left-hand triangle of (6.8), the lower triangle by Corollary 3.15, and
the right-hand part is (7.9).

To see that (7.5) commutes, consider the following diagram

T

h

��

e // HT + Id

Hh+Id

��

inl∗T+Id
//

κH∗h+Id

##GGGGGGGGGGGGGGGGGGGGG

(i)

(H + V )T + Id

κT+Id

��

[τ,η]
// T

h

��

ED��GF �

e

TT + Id

[µ,η]

66mmmmmmmmmmmmmmm

h∗h+Id

��

T ′T ′ + Id
[µ,η]

((QQQQQQQQQQQQQQ

T ′@AOO BC
id

HT ′ + Id
[τ,η]

oo
[τ,η]

// T ′

(7.10)

All of its inner parts commute. The upper part is Lemma 6.12, for the left-hand square, see (6.8), and for
the right-hand part use that h is a monad morphism. That part (i) commutes follows from commutativity
of the left-hand triangle of (6.8) and naturality. The remaining inner part commutes due to Corollary 3.15:
µ · κT = τ . Thus, the outer shape of diagram (7.10) commutes. We obtain the equations

β · êA = ã · hA · êA (see (7.9))

= ã · hA (see (7.10))

= β (see (7.9))

This completes the proof of part (i).
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(ii) Let (A, a, ( )∗) be a cia. We show that the solution e‡A defined in (i) is unique. By Lemma 7.4, it suffices
to prove that any evaluation morphism β : T(H + V )A −→ A for which diagrams (7.4) and (7.5) commute
is a solution of g, see (7.7). To this end consider the following diagram, where we write T = T(H + V ) for
short once more:

TA

β

��

eA=g
// HTA+A

Hβ+A

��

inlTA+A
// (H + V )TA+A

(H+V )β+A

��

κTA+A ((RRRRRRRRRRRRR
[τA,ηA]

// TA

β

��

ED��GF �

eA

TTA+A
[µA,ηA]

99rrrrrrrrrr

Tβ+A

��

(H + V )A+A
κA+A

// TA+A

[β,A]
%%LLLLLLLLLLL

A@AOO BC
id

HA+A
[a,A]

oo
[a,A]

//

inlA+A

66lllllllllllll
A

Its outer shape commutes due to (7.5), the right-hand part since β is an Eilenberg-Moore algebra structure,
the upper-right triangle follows from Corollary 3.15, and the lower right-hand part follows from (7.4). Thus,
since all other parts are obviously commutative, the left-hand inner square commutes. But this shows that
β is a solution of g, see (7.7). By the uniqueness of solutions, we have β = g∗. �

Definition 7.6. For any guarded RPS e and any Elgot algebra (A, a, ( )∗), let e‡A be the interpreted solution
obtained from the proofs of Theorem 7.3 and Lemma 7.4 as stated below

e‡A ≡ V A
inr //(H + V )A

κH+V
A //T(H + V )A

g∗
//A ,

where g is the flat equation morphism of (7.7). We call this the standard interpreted solution of e in A.

Finally, we prove the “Fundamental Theorem of Algebraic Semantics”, which establishes that uninter-
preted and interpreted solutions are connected in the “proper way”.

Theorem 7.7. Let (A, a, ( )∗) be an Elgot algebra and consider its evaluation morphism ã : T(H)A −→ A.

Let e be any guarded recursive program scheme, let e‡A : V A −→ A be the standard interpreted solution of
e in A of Theorem 7.3, and let e† : V −→ T(H) be the (uninterpreted) solution of Theorem 6.5. Then the
triangle

V A
(e†)A

//

e‡A ##HHHHHHHHHH T(H)A

�

a

��

A

(7.11)

commutes.
Furthermore, the standard interpreted solution e‡A is uniquely determined by the commutativity of the

above triangle.

Remark 7.8. Notice that (e†)A is the component at A of the natural transformation e†. And once again,

e‡A is not the component at A of any natural transformation but merely a morphism from V A to A.

Proof. In fact, we have the commutative diagram

V A
e†A //

eA
%%KKKKKKKKKK

@Ae‡A

//

T(H)A

�

a

��

T(H + V )A
[κH ,e†]A

88qqqqqqqqqq

[̃a,e‡A]
&&NNNNNNNNNNNN

A
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The lower left part commutes due to the definition of an interpreted solution, see (7.1); the top triangle is
the definition of an uninterpreted solution, see (6.2); and the triangle on the right commutes by (7.9) since

h = [κH , e†] and β = [̃a, e‡A]. The overall outside is what we want.

It is obvious that e‡A is uniquely determined by the commutativity of the triangle (7.11) as neither ã nor

e† depend on e‡A. �
7.1. Interpreted Solutions in Computation Tree Elgot Algebras. In this section, we work through
some details concerning the factorial example of equation (1.2), repeated as

f(n) ≈ ifzero(n, one, f(pred(n) ∗ n))

and studied further in Example 6.4(i). Recall that we work with the signature Σ containing a constant one,
one unary symbol pred, a binary symbol ∗ and a ternary one ifzero. Let HΣ be the associated endofunctor
on Set. Let ↑ be an object which is not a natural number, and let N↑ be the HΣ-algebra with carrier
{0, 1, 2, . . .} ∪ {↑} and whose operations are the strict extensions of the standard operations. (For example
↑ ∗ 3 = ↑ in this algebra.)

We shall use the computation tree Elgot algebra structure (N↑, a, ( )∗) from Section 3.3. That structure
used a particular element of the carrier set in connection with the conditional ifzero, and in our structure
we take 0. Before looking at the interpreted solution to the factorial RPS, it might be useful to spell out
the associated evaluation morphism ã : T(HΣ)N↑ −→ N↑. Let t be a finite or infinite Σ-tree over N↑; so the
leaves of t might be labelled with natural number or ↑, but not with formal variables. Here is a pertinent
example:

ifzero

1 one ∗

ifzero 1

pred(1) one ∗

ifzero pred(1)

pred(pred(1)) one ∗

ifzero pred(pred(1))

ttttttt
JJJJJJJ

ttttttt

JJJJJJJJ

tttttt
JJJJJJJ

ttttttt
JJJJJJJ

ooooooo

JJJJJJJ

ttttttt
JJJJJJJ

We got this by taking the uninterpreted solution of our RPS, as depicted in (6.4), and then substituting the
number 1 for the formal variable n. Note that the nodes labelled ifzero have three children. Here is how we
define ã(t). We look for a finite subtree u of t with the property that if a node belongs to u and is labelled
by a function symbol other than ifzero, then all its children belong to u as well; and if the node is labeled by
ifzero, then either the first and second children belong to u, or else the first and third children do. For such
a finite subtree u, we can evaluate the nodes in a bottom-up fashion using the HΣ-algebra structure. We
require that for a conditional node x, the first child evaluates to 0 (from our Elgot algebra structure) iff the
second child is in u. If such a finite u exists, then we can read off an element of N↑. This element is ã(t). If
no finite u exists, we set ã(t) = ↑. Returning to our example above, the finite subtree would be

ifzero

1 ∗

ifzero 1

pred(1) one

ttttttt
JJJJJJJ

ttttttt

JJJJJJJJ

tttttt

And for our example tree t, ã(t) = 1.
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We are now in a position to discuss the interpreted solution of our RPS. Recall that the signature Φ of
recursively defined symbols contains only the unary symbol f . The corresponding signature functor is HΦ,
and HΦ(N↑) is the set {f(0), f(1), . . .} ∪ {f(↑)}. The RPS itself is a natural transformation e : HΦ −→
T(HΣ +HΦ). The uninterpreted solution is the natural transformation e† : HΦ −→ T(HΣ) corresponding to

the tree shown in (6.4). We are concerned here with the interpreted solution e‡N↑ : HΦ(N↑) −→ N↑ of our

RPS. In light of the Fundamental Theorem 7.7, this is ã · (e†)N↑ . We show by an easy induction on n ∈ N
that this interpreted solution takes f(n) to n!, and that it takes f(↑) to ↑.

We could also establish this same result directly, without Theorem 7.7. To do this, we follow the proof
of Theorem 7.3. We turn our RPS e into a related natural transformation e : T(HΣ +HΦ) −→ HΣT(HΣ +
HΦ) + Id . Then eN↑ is a flat equation morphism in the Elgot algebra N↑, and its solution is the interpreted
solution of our RPS. Here is a fragment of eN↑ :

f(0) ≈ ifzero(0, one, f(pred(0)) ∗ 0)

f(1) ≈ ifzero(1, one, f(pred(1)) ∗ 1)

f(pred(1)) ∗ 1 ≈ ifzero(pred(1), one, f(pred(pred(1)))) ∗ 1

f(pred(1)) ≈ ifzero(pred(1), one, f(pred(pred(1)) ∗ pred(1)))

pred(1) ≈ pred(1)

one ≈ 1

One can see that for each natural number n, the solution to this flat equation morphism assigns to f(n) the
number n!.

7.2. Interpreted Solutions in CPO. We shall show in this subsection that if we have A = CPO as our
base category, then interpreted solutions of guarded RPSs e in an Elgot algebra (A, a, ( )∗) are given as least
fixed points of a continuous operator on a function space. In this way we recover denotational semantics
from our categorical interpreted semantics of recursive program schemes.

Example 7.9. We study the RPS of equation (1.2) as formalized in Example 6.4(i). As we know, the
intended interpreted solution is the factorial function on the natural numbers N.

This time we turn the natural numbers into an object of CPO so as to obtain a suitable Elgot algebra
in which we can find an interpreted solution of (1.2). Let N⊥ be the flat CPO obtained from the discretely
ordered N by adding a bottom element ⊥, i. e., x ≤ y iff x = ⊥ or x = y. We equip N⊥ with the strict
operations oneN⊥ , predN⊥ , and ∗N⊥ . These are all strict and hence continuous. In addition, we use the
continuous function

ifzeroN⊥(n, x, y) =




⊥ if n = ⊥
x if n = 0
y else

Indeed, this is what we saw in (3.4) for the computation tree semantics, except we write ⊥ for ↑. Hence
we have a continuous Σ-algebra with ⊥. Therefore N⊥ is an Elgot algebra for HΣ : Set −→ Set, see
Example 3.8(iii).

The standard interpreted solution e‡N⊥ : HΦN⊥ −→ N⊥ will certainly be some function or other on N⊥.
But how do we know that this function is the desired factorial function? Usually one would simply regard
the RPS (1.2) itself as a continuous function R on CPO(N⊥,N⊥) acting as

f( ) 7−→ ifzeroN⊥( , 1, f(predN( ) ∗N⊥ ) , ) ;

i. e., R is the operator described in (1.5) in the introduction. That means that we interpret all the operation
symbols of Σ in the algebra N⊥. The usual denotational semantics assigns to the formal equation (1.2) with
the interpretation in N⊥ the least fixed point of R. Clearly this yields the desired factorial function. And it
is not difficult to work out that the least fixed point of R coincided with the standard interpreted solution

e‡N⊥ obtained from Theorem 7.3. We shall do this shortly in greater generality.

In general, any recursive program scheme can be turned into a continuous operator R on the function
space CPO(V A,A). Theorem 7.10 below shows that the least fixed point of R is the same as the interpreted
solution obtained from Theorem 7.3.
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We assume throughout this subsection that H , V and H + V are locally continuous (and, as always,
iteratable) endofunctors of CPO. We also consider a fixed guarded RPS e : V −→ T(H + V ), and an H-
algebra (A, a) with a least element ⊥. By Example 3.8(ii), we know that this carries the structure of an
Elgot algebra (A, a, ( )∗), where ( )∗ assigns to every flat equation morphism a least solution. As before,
we will use the notation ã : T(H)A −→ A for the induced evaluation morphism. Furthermore, for any
continuous map f : V A −→ A we have an Elgot algebra on A with structure [a, f ] : (H + V )A −→ A. Due
to Corollary 3.15, its evaluation morphism satisfies the equation

[̃a, f ] · κH+V
A = [a, f ] . (7.12)

Theorem 7.10. The following function R on CPO(V A,A)

f 7−→ V A
eA //T(H + V )A

[̃a,f ]
//A (7.13)

is continuous. Its least fixed point is the standard interpreted solution e‡A : V A −→ A of Theorem 7.3.

Proof. (i) To see the continuity of R is suffices to prove that the function

(̃ ) : CPO(HA,A) −→ CPO(T(H)A,A)

is continuous. Let us write T for T(H). Recall that for any continuous map a : HA −→ A, the evaluation
morphism ã is the least solution of the flat equation morphism αA : TA −→ HTA+ A, i. e., ã is the least
fixed point of the continuous function

F (a,−) : CPO(TA,A) −→ CPO(TA,A) f 7−→ [a,A] · (Hf +A) · αA .

Observe that F is continuous in the first argument a, and so F is a continuous function on the product
CPO(HA,A) × CPO(TA,A). It follows from standard arguments that taking the least fixed point in the
second argument yields a continuous map CPO(HA,A) −→ CPO(TA,A). But this is precisely the desired

one (̃ ).

(ii) We prove that e‡A is the least fixed point of R. Notice that the least fixed point of R is the join t of
the following increasing chain in CPO(V A,A):

t0 = const⊥ : V A −→ A, ti+1 ≡ V A
eA //T(H + V )A

[̃a,ti]
//A, for i ≥ 0.

Furthermore, recall that the interpreted solution e‡A is defined by (7.6) as

e‡A ≡ β · κH+V
A · inr ,

where β = g∗ is the least solution of the flat equation morphism g which is obtained from the component at
A of the H-coalgebra e, see Lemma 6.9 and Theorem 7.3. By Example 3.8(ii), the solution β of g is the join
of the chain

β0 = const⊥, βi+1 = [a,A] ·H(βi +A) · g, for i ≥ 0.

Observe that e‡A is a fixed point of R, see (7.1). Thus, we have t v e‡A. To show the reverse inequality we
will prove by induction on i the inequalities

βi v [̃a, t] , i ∈ N . (7.14)

This implies that β v [̃a, t] and therefore

e‡A = β · κH+V
A · inr v [̃a, t] · κH+V

A · inr = t ,

where the last equality follows from (7.12).
We complete the proof with the induction proof to establish (7.14). The base case is clear. For the

induction step we write T for T(H + V ) and γ as a short notation for [̃a, t] and we consider the following
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diagram

TA

βi+1

��

g=eA
// HTA+A

inlTA+A
//

Hβi+A

��

Hγ+A

��

v

(H + V )TA+A
[τ,η]

//

(H+V )γ+A

��

TA

γ

��

ED ��GF �

eA

(H + V )A+A

[a,t,A]

((PPPPPPPPPPPPPP

A@AOO BC
id

HA+A
[a,A]

oo
inlA+A

55kkkkkkkkkkkkkk

[a,A]
// A

Its upper part commutes due to Lemma 6.12, the left-hand part is the definition of βi+1, and the inequal-

ity follows from the induction hypothesis. For the right-hand part recall that γ = [̃a, t] : TA −→ A is a
homomorphism of Elgot algebras, see Theorem 3.13. Hence, γ is an algebra homomorphism by Proposi-
tion 3.6. Finally, the remaining parts of the above diagram clearly commute. Thus we obtain the inequality
βi+1 v γ · êA. Finally, since t is a fixed point of R it is an interpreted solution of e in A. By Lemma 7.4, it
follows that γ · êA = γ, and this establishes the desired inequality. �
Remark 7.11. The result of Theorem 7.10 implies a concrete formula

e‡A =
⊔

n<ω

e‡n

for the interpreted solution of the guarded RPS e in the continuous algebra A. In fact, the least fixed point
of R is the join of the ascending chain

⊥ v R(⊥) v R2(⊥) v · · ·
where ⊥ = const⊥ is the least element of CPO(VA,A). Thus, with e‡0 = const⊥ and

e‡n+1 ≡ VA
eA //T(H + V )A

[̃a,e‡n]
//A

we obtain the above formula for e‡A.

Remark 7.12. Suppose that H , V and H + V are iteratable endofunctors of Set, which have locally
continuous liftings H ′ and V ′ to CPO. Then we have a commutative square

CPO

U

��

T(H′+V ′)
// CPO

U

��

Set
T(H+V )

// Set

see Example 2.5(iv). Furthermore, assume that the guarded RPS e : V −→ T(H+V ) has a lifting e′ : V ′ −→
T(H ′ + V ′); i. e., a natural transformation e′ such that U ∗ e′ = e ∗ U . Now consider any CPO-enrichable
H-algebra (A, a) as an Elgot algebra, see Example 3.8(iii). Then we can apply Theorem 7.10 to obtain the

standard interpreted solution e‡A of e in the algebra A as a least fixed point of the above function R of (7.13).

Example 7.13.

(i) Suppose we have signatures Σ and Φ. Then the signature functors HΣ and HΦ have locally continu-
ous liftings H ′Σ and H ′Φ. Since the lifting of HΣ +HΦ is a lifting of HΣ+Φ we know that T(H ′Σ +H ′Φ)
assigns to any cpo X the algebra TΣ+ΦX with the cpo structure induced by X , see Example 2.5(v).
More precisely, to compare a tree t to a tree s replace all leaves labelled by a variable from X by
a leaf labelled by some extra symbol ? to obtain relabelled trees t′ and s′. Then t is less than
s iff t′ and s′ are isomorphic as labelled trees, and for any leaf of t labelled by a variable x the
corresponding leaf in s is labelled by a variable y with x v y in X .

Now consider any system as in (2.3) which is in Greibach normal form, and form the associated
guarded RPS e : HΦ −→ TΣ+Φ. Then e has a lifting e′ : H ′Φ −→ T(H ′Σ + H ′Φ). In fact, for any
cpo X the component e′X = eX : HΦX −→ TΣ+ΦX is a continuous map since the order in HΦX
is given similarly as for TΣ+ΦX on the level of variables only: (f, ~x) v (g, ~y) holds for elements of
HΦX if f = g ∈ Φn and xi v yi, i = 1, . . . , n, holds in X .
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Let (A, a) be a CPO-enrichable HΣ-algebra; i. e., a continuous Σ-algebra with a least element ⊥.
We wish to consider the continuous function R on CPO(HΦA,A) which assigns to any continuous

algebra structure ϕ : HΦA −→ A the algebra structure R(ϕ) = [̃a, ϕ] · e′A. The structure R(ϕ) :

HΦA −→ A gives to each n-ary operation symbol f of Φ the operation tfA : An −→ A which
is obtained as follows: take the term tf provided by the right-hand side of f in our given RPS,
then interpret all operation symbols of Σ in tf according to the given algebraic structure a and all

operation symbols of Φ according to ϕ; the action of tfA is evaluation of that interpreted term.

Theorem 7.10 states that the standard interpreted solution e‡A of e in the algebra A can be

obtained by taking the least fixed point of R; in other words the standard interpreted solution e‡A
gives the usual denotational semantics.

(ii) Apply the previous example to the RPS of Example 6.4(i). Then Theorem 7.10 states that the
interpreted solution of the RPS (1.2) in the Elgot algebra N⊥ is obtained as the least fixed point of
the function R of Example 7.9. That is, the standard interpreted solution gives the desired factorial
function.

(iii) Recall the guarded RPS e : V −→ T(H + V ) from Example 6.4(ii) whose uninterpreted solution we
have described in Example 6.6(ii). Consider again the algebra N⊥ together with the following two
operations:

FN⊥(x, y, z) =

{
x if x = y
z else

GN⊥(x) =

{
bx2 c if x ∈ N
⊥ x = ⊥ (7.15)

Since the first operation obviously satisfies FN⊥ (x, y, z) = FN⊥(y, x, z) we have defined anH-algebra.
It is not difficult to check that the set functor H has a locally continuous lifting H ′ to CPO and that
N⊥ is a continuous H ′-algebra. In fact, the existence of the lifting H ′ follows from the fact that the
unordered pair functor V : Set −→ Set can be lifted to CPO; the lifting assigns to a cpo (X,≤) the
set of unordered pairs with the following order: {x, y } v {x′, y′ } iff either x ≤ x′ and y ≤ y′, or
x ≤ y′ and y ≤ x. Thus, we have defined an Elgot algebra for H : Set −→ Set, see Example 3.8(iii).

The standard interpreted solution e‡N⊥ : VN⊥ −→ N⊥ is given by one commutative binary operation

ϕN⊥ on N⊥. We leave it to the reader to verify that for natural numbers n and m, ϕN⊥(n,m) is the
natural number represented by the greatest common prefix in the binary representation of n and m,
e. g., ϕN⊥(12, 13) = 6. Notice that we do not have to prove separately that ϕN⊥ is commutative. In
Example 6.4(ii) we have encoded that extra property directly into the RPS e so that any solution
must be commutative.

(iv) Least fixed points are RPS solutions. Let A be a poset with joins of all subsets which are at most
countable, and let f : A −→ A be a function preserving joins of ascending chains. Take f and
binary joins to obtain an algebra structure on A of the signature functor HΣX = X + X × X
expressing a binary operation symbol F and a unary one G. Obviously, this functor has a lifting
H ′ : CPO −→ CPO and A is a CPO-enrichable algebra, i. e., A is an Elgot algebra. Turn the
formal equations (1.1) into a recursive program scheme e : HΦ −→ T(HΣ + HΦ) as demonstrated
in Section 2.3. The RPS e has a lifting e′ : V ′ −→ T(H ′ + V ′), where V ′ denotes the lifting of HΦ.

The standard interpreted solution e‡A : V ′A −→ A gives two continuous functions ϕA and ψA on A.
Clearly, we have ϕA(a) =

∨
n∈N f

n(a), and in particular ϕA(⊥) is the least fixed point of f .

7.3. Interpreted Solutions in CMS. Recall the category CMS of complete metric spaces from Exam-
ple 2.2(iii), and let H,V : CMS −→ CMS be contracting endofunctors. We shall show in this subsection
that for any guarded RPS e : V −→ T(H + V ) we can find a unique interpreted solution in any non-empty
H-algebra A. More precisely, assume that we have such a guarded RPS e, and let (A, a) be a non-empty
H-algebra. Then A is a cia, and, in particular it carries the structure of an Elgot algebra. Notice that for
any non-expanding map f : V A −→ A we obtain an algebra structure [a, f ] : (H +V )A −→ A, thus we have
the evaluation morphism

[̃a, f ] : T(H + V )A −→ A .

As in CPO, the RPS e induces a function R on CMS(V A,A), see (7.13). The standard procedure for obtaining
an interpreted solution would be to prove that R is a contracting map, and then invoke Banach’s Fixed Point
theorem to obtain a unique fixed point of R. Here we simply apply Theorem 7.3. Notice, however, that we
cannot completely avoid Banach’s Fixed Point theorem: it is used in the proof that final coalgebras exist for
contracting functors, see [ARe].
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Corollary 7.14. The unique interpreted solution e‡A : V A −→ A of e in A as obtained in Theorem 7.3 is
the unique fixed point of the function R on CMS(V A,A) defined by (7.13).

Proof. In fact, being a fixed point of R is equivalent to being an interpreted solution of e in the cia A, whose
unique existence we have by Theorem 7.3. �

Remark 7.15. Let HΣ be a signature functor on Set and denote by H ′ a lifting to CMS as described in
Example 3.2(v). For a complete metric space Y the final coalgebra T(H ′)Y of H ′( ) + Y is the set TΣY
of all Σ-trees over Y equipped with a suitable complete metric. This metric can be described as follows.
Recall from [ARe] that T(H ′)Y is obtained as Tω after ω steps of the final coalgebra chain for H ′( ) + Y ,
see Construction 2.3. That means the metric on TΣY is the smallest metric such that all projections
tω,i : TΣY = Tω −→ Ti are non-expanding. We illustrate this with an example adapted from [ARe]. Let
HΣX = X ×X be the functor expressing one binary operation symbol ∗. Then we can represent T0 = 1 by
a single node tree labelled with ⊥ and Ti+1 = Ti×Ti+Y by trees which are either single node trees labelled
in Y , or which are composed by joining two trees from Ti with a root labelled by ∗:

T0 : ⊥

T1 : y,

∗

⊥ ⊥
����

////

T2 : y,

∗

y y′
����

////
,

∗

y ∗

⊥ ⊥

����
////

����
//// ,

∗

∗ y

⊥ ⊥

////

����

����
//// ,

∗

∗ ∗

⊥ ⊥ ⊥ ⊥

////

����

����
))))

����
))))

...

The distance on T1 is that of Y for single node trees and 1 otherwise. The distance on T2 is again that of
Y between single node trees, and 1 between single node trees and all other trees. Furthermore, the distance
between trees of different shapes is 1

2 , and finally, dT2(y ∗ y′, z ∗ z′) = 1
2 max{ dY (y, z), dY (y′, z′) } as well as

dT2(y ∗ t, y′ ∗ t) = dT2(t ∗ y, t ∗ y′) = 1
2dY (y, y′), where t = ⊥∗⊥, etc. In general, the distance on Ti+1 is that

of Y between single node trees, it is 1 between single node trees and trees of height at least 1, and otherwise
we have dTi+1(s ∗ t, s′ ∗ t′) = 1

2 max{ dTi(s, s′), dTi(t, t′) }. For the metric on TΣY , we have

dTΣY (s1, s2) = sup
i<ω

dTi(tω,i(s1), tω,i(s2)).

This is the smallest metric for which the projections are non-expanding. (One may also verify directly that
this definition gives a complete metric space structure and that H ′( ) + Y preserves the limit, so that we
indeed have a final coalgebra.) Finally notice that the metric of TΣY depends on the choice of the lifting H ′.
For example, if we lift the functor HΣ as H ′(X, d) = (X2, 1

3dmax), the factor 1
2 would have to be replaced

by 1
3 systematically.

Example 7.16.

(i) Consider the endofunctor H ′ : CMS −→ CMS obtained by lifting the signature functor HΣX =
X × X + X expressing a binary operation F and a unary one G as described in Example 2.5(v).

The Euclidean interval I = [0, 1] together with the operations F (x, y) = x+y
4 and G(x) = sin(x)

2
is an H ′-algebra, whence a cia. Use only the first equation in (1.1) to obtain a guarded RPS
e : Id −→ T(HΣ+Id) where Id expresses the unary operation symbol ϕ. Let V ′ be contracting lifting
of Id with a contraction factor of ε = 1

2 . Then e gives rise to a guarded RPS e′ : V ′ −→ T(H ′+V ′)
in CMS. The unique interpreted solution of e′ in I consists of a function ϕI : I −→ I satisfying
ϕI(x) = 1

4 (x+ ϕI(
1
2 sinx)), that is, ϕI is the unique function f satisfying (1.3).

(ii) Self-similar sets are solutions of interpreted program schemes. Recall from Example 3.2(v) that for
any complete metric space (X, d) we obtain the complete metric space (C(X), h) of all non-empty
compact subspaces of X with the Hausdorff metric. Furthermore, contractive mappings of X yield
structures of cias on C(X). Now consider the functor H ′ on CMS with H(X, d) = (X3, 1

3dmax),
where dmax is the maximum metric. It is a lifting of the signature functor HΣ on Set expressing one
ternary operation α. Let A = [0, 1]× [0, 1], be equipped with the usual Euclidean metric. Consider
the contracting maps f(x, y) = ( 1

3x,
1
3y), g(x, y) = ( 1

3x + 1
3 ,

1
3y), and h(x, y) = ( 1

3x + 2
3 ,

1
3y) of A.
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Then it follows that αA : C(A)3 −→ C(A) with α(D,E, F ) = f [D] ∪ g[E] ∪ h[F ] is a 1
3 -contracting

map, whence a structure of an H ′-algebra. The formal equation

ϕ(x) ≈ α(ϕ(x), x, ϕ(x))

gives rise to a guarded RPS e : Id −→ T(HΣ+Id), where the identity functor expresses the operation
ϕ. If we take the lifting of Id to CMS which is given by V ′(X, d) = (X, 1

3d), then e gives rise to
a natural transformation e′ : V ′ −→ T(H ′ + V ′). Its interpreted solution in the algebra C(A) is
a 1

3 -contracting map ϕA : C(A) −→ C(A) which maps a non-empty compact subspace U of A to

a space of the following form: ϕA(U) has three parts, the middle one is a copy of U scaled by 1
3 ,

and the left-hand and right-hand one look like copies of the whole space ϕA(U) scaled by 1
3 . For

example, we have the assignment

0 1

1

ϕA7−→

1

1
3

0

(iii) Coming back to Example 3.2(vi) let us consider (C(I), αI ), where I = [0, 1] is the Euclidean interval,
C(I) is the set of all non-empty closed subsets of I , and αI is the structure of a cia arising from
f(x) = 1

3x and g(x) = 1
3x+ 2

3 as described is Example 3.2(v). The formal equation

ϕ(x) ≈ α(ϕ(x), x)

gives similarly as in (i) above a guarded RPS e : Id −→ T(HΣ + Id), where HΣX = X × X
now expresses the binary operation α. Again, we have liftings V ′(X, d) = (X, 1

3d) and H ′(X, d) =

(X2, 1
3dmax) of Id and HΣ, respectively. So the RPS e lifts to the guarded RPS e′ : V ′ −→ T(H ′+V ′)

in CMS. Its unique interpreted solution is given by the 1
3 -contracting map ϕI : C(I) −→ C(I)

satisfying ϕI(t) = αI(ϕI (t), t) = f [ϕI(t)] ∪ g[t] for every non-empty closed subset t of the interval
I .

8. Conclusions and Future Work

We have presented a general and conceptually clear way of treating the uninterpreted and the interpreted
semantics of recursive program schemes in a category theoretic setting. For this we have used recent results
on complete Elgot algebras and results from the theory of coalgebras. We have shown that our theory readily
specializes to the classical setting yielding denotational semantics using complete partial orders or complete
metric spaces. We have presented new applications of recursive program scheme solutions including fractal
self-similarity and also applications which cannot be handled by the classical methods; defining operations
satisfying equations like commutativity. Another new application, recursively defined functions on non-
wellfounded sets, will be treated in a future paper.

Now one must go forward in reinventing algebraic semantics with category theoretic methods. We strongly
suspect that there is much to be said about the relation of our work to operational semantics. We have
not investigated higher-order recursive program schemes using our tools, and it would be good to know
whether our approach applies in that area as well. The paper [MU] addresses variable binding and infinite
terms coalgebraically, and this may well be relevant. Back to the classical theory, one of the main goals
of the original theory is to serve as a foundation for program equivalence. It is not difficult to prove the
soundness of fold/unfold transformations in an algebraic way using our semantics; this was done in [Mo2]
for uninterpreted schemes. We study the equational properties of our very general formulation of recursion
in [MM2]. One would like more results of this type. The equivalence of interpreted schemes in the natural
numbers is undecidable, and so one naturally wants to study the equivalence of interpreted schemes in classes
of interpretations. The classical theory proposes classes of interpretations, many of which are defined on
ordered algebras, see [G]. It would be good to revisit this part of the classical theory to see whether Elgot
algebras suggest tractable classes of interpretations.

Another path of future research is the study of algebraic trees with categorical methods. In the setting
of trees over a signature Σ the solutions of recursive program schemes form the theory of algebraic trees, a
subtheory of the theory of all trees on Σ. Moreover, algebraic trees are closed under second-order substitution
and they form an iterative theory in the sense of Elgot [E]. Similar results should be possible to obtain in
our generalized categorical setting. First promising steps in the direction of categorically studying algebraic
trees have been taken in [AMV4].
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[AMV3] J. Adámek, S. Milius and J. Velebil, Elgot Algebras, preprint, 2005, available at the URL

http://www.iti.cs.tu-bs.de/~milius, extended abstract to appear in Electron. Notes Theor. Comput. Sci.
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[AT] J. Adámek and V. Trnková, Automata and Algebras in Categories. Kluwer Academic Publishers, 1990.
[ARu] P. America and J. J. M. M. Rutten, Solving Reflexive Domain Equations in a Category of Complete Metric Spaces,

J. Comput. System Sci. 39 (1989), 343–375.
[AN] A. Arnold and M. Nivat, The metric space of infinite trees. Algebraic and topological properties, Fund. Inform. III,

no. 4 (1980), 445–476.
[B] M. F. Barnsley, Fractals Everywhere, Academic Press 1988.
[Ba] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci. 114 (1993), 299–315.
[BM] J. Barwise and L. S. Moss, Vicious Circles, CSLI Publications, Stanford, 1996.
[Bl] S. L. Bloom, All Solutions of a System of Recursion Equations in Infinite Trees and Other Contraction Theories,

J. Comput. System Sci. 27 (1983), 225–255.
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