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Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server ( infinite set )

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)
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Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.
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Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Previous Approach: (Hausmann, Milius, Schröder ’21)

Bar-µTL ERNNA
doubly exponential

blowup
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∠∠∠ Previous Approach: (Hausmann, Milius, Schröder ’21)

Bar-µTL ERNNA
doubly exponential

blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

Example of a Bar-µTL formula (over closed bar strings)

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

interpreted as
‘consumes the letter’
(modulo α-equiv.)

formulae are
interpreted over
finite bar strings

(w |= ϕ)

‘recursion’ interpreted as
‘string is empty’

∠∠ a ba |= ϕ ∠∠ aa a |= ϕ ∠∠ aa ba 6|= ϕ

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Theorem (Expressive Equivalence )

RANAs and Bar-µTL formulae are expressively equivalent.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

pu
sh

m
od
el
ch
ec
kin
g

to
RA
NA

le
ve
l

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Theorem (Expressive Equivalence )

RANAs and Bar-µTL formulae are expressively equivalent.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

b

a

b

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(b)

q2

∧

∨

>

b

a

a

b

b

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

c

a

c

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(c)

q2

∧

∨

>

c

a

a

c

c

a

d

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8



De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible?

bar string
w

q1( a , b , d , e ) q1(b , c , e , f )

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation )

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.
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Finite Representability

RANA ERNNA
doubly exponential

blowup

push model checking to RANAs

∠∠∠ With ERNNAs, model checking was done on the level of classical

automata:

ERNNA
≈←−−−−→ NFA with a >-state

∠∠∠ To push model checking back to RANAs, we saw a similar ‘equivalence’:

Theorem ( Finitisation )

Every RANA has a non-emptiness equivalent classical AFA with exponentially

many states.
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Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.
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Conclusion & Future Work

∠∠∠ We looked at a variant of alternating automata for data languages with

inherent name binding, and found many interesting properties:

Alternating Automaton

RANA

De-Alternation

ERNNAs

Finitisation

classical AFAs

Decidable

Inclusion Problem

Decidable

Universality Problem

Decidable

Non-Emptiness Problem

Logic

Bar-µTL

∠∠∠ Some remaining problems:

Improve Local Freshness Complexity

Residuality/Learning RANAs

Extension to ω-Words
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Questions?
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