
Alternating Nominal Automata

with Name Allocation

23rd June 2025

Florian Frank, Daniel Hausmann, Stefan Milius,

Lutz Schröder and Henning Urbat

40th Annual ACM/IEEE Symposium on Logic in Computer Science; Singapore

Chair for Computer Science 8 (Theoretical Computer Science)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any representative without bars.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Previous Approach: (Hausmann, Milius, Schröder ’21)

Bar-µTL ERNNA
doubly exponential

blowup

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Previous Approach: (Hausmann, Milius, Schröder ’21)

Bar-µTL ERNNA
doubly exponential

blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Previous Approach: (Hausmann, Milius, Schröder ’21)

Bar-µTL ERNNA
doubly exponential

blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

Example of a Bar-µTL formula (over closed bar strings)

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

interpreted as
‘consumes the letter’
(modulo α-equiv.)

formulae are
interpreted over
finite bar strings

(w |= ϕ)

‘recursion’ interpreted as
‘string is empty’

∠∠ a ba |= ϕ ∠∠ aa a |= ϕ ∠∠ aa ba 6|= ϕ

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Theorem (Expressive Equivalence)

RANAs and Bar-µTL formulae are expressively equivalent.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL ERNNA
doubly exponential

blowup

RANA

no
blowup

doubly
exponential
blowup

pu
sh

m
od
el
ch
ec
kin
g

to
RA
NA

le
ve
l

non-deterministic
automata

with>-states

linear-time
fixed-point

logic

alternating
automaton
model

inherently
non-guessing

uses the
Fisher-Ladner

closure

Theorem (Expressive Equivalence)

RANAs and Bar-µTL formulae are expressively equivalent.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 3 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

b

a

b

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(b)

q2

∧

∨

>

b

a

a

b

b

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

c

a

c

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(c)

q2

∧

∨

>

c

a

a

c

c

a

d

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

Alternation For Bar Languages

Motivation

Remove de-alternation from model checking fixed-point logics over bar strings.

∠∠∠ Our Approach:

Bar-µTL RANA
no blowup

linear-time
fixed-point

logic

alternating
automaton
model

uses the
Fisher-Ladner

closure

ϕ = µX .(♦ a(♦ a> ∨ ♦aX ∨ ε) ∧ ♦ a>)

q0

q1(a)

q2

∧

∨

>
a

a

a

a

Is w = bb c db accepted?

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Alternation) 4 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible?

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible? (remove specific register values)

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

same
‘control state’

same no. of
‘filled registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible? (remove specific register values)

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

same
‘control state’

same no. of
‘filled registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible? (remove specific register values)

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

same
‘control state’

same no. of
‘filled registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible? (remove specific register values)

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

same
‘control state’

same no. of
‘filled registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

De-Alternation

Idea

Restrict classical ‘power-set construction’ to sets of a fixed size.

∠∠∠ How is this possible? (remove specific register values)

bar string
w

q1(a , b , d , e) q1(b , c , e , f)

is accepted byis accepted by

unique
register values
are irrelevant

 Iteratively, this results in at most singly exponentially many states.

Theorem (De-Alternation)

RANAs can be de-alternated to ERNNAs with a doubly exponential blowup.

same
‘control state’

same no. of
‘filled registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (De-Alternation) 5 / 8

Finite Representability

RANA ERNNA
doubly exponential

blowup

push model checking to RANAs

∠∠∠ With ERNNAs, model checking was done on the level of classical

automata:

ERNNA
≈←−−−−→ NFA with a >-state

∠∠∠ To push model checking back to RANAs, we saw a similar ‘equivalence’:

Theorem (Finitisation)

Every RANA has a non-emptiness equivalent classical AFA with exponentially

many states.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 6 / 8

Finite Representability

RANA ERNNA
doubly exponential

blowup

push model checking to RANAs

∠∠∠ With ERNNAs, model checking was done on the level of classical

automata:

ERNNA
≈←−−−−→ NFA with a >-state

∠∠∠ To push model checking back to RANAs, we saw a similar ‘equivalence’:

Theorem (Finitisation)

Every RANA has a non-emptiness equivalent classical AFA with exponentially

many states.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 6 / 8

Finite Representability

RANA ERNNA
doubly exponential

blowup

push model checking to RANAs

∠∠∠ With ERNNAs, model checking was done on the level of classical

automata:

ERNNA
≈←−−−−→ NFA with a >-state

∠∠∠ To push model checking back to RANAs, we saw a similar ‘equivalence’:

Theorem (Finitisation)

Every RANA has a non-emptiness equivalent classical AFA with exponentially

many states. in the no. of ‘registers’

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 6 / 8

Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 7 / 8

Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 7 / 8

Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 7 / 8

Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.

complement of LB

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 7 / 8

Decidability Problems

RANA AFA
exponential blowup

(no. of registers)

∠∠∠ Non-Emptiness Problem: (decidable in EXPSPACE)

Solve via reduction to classical AFA problem.

∠∠∠ Universality Problem: (decidable in EXPSPACE)

Check complement for (non-)emptiness.

∠∠∠ Inclusion Problem: (decidable in EXPSPACE)

Use well-known equivalence: LA ⊆ LB iff LA ∩ comp(LB) = ∅.

What about data languages?

For data languages, the inclusion problem is decidable in 2EXPSPACE.

There is seemingly a need for de-alternation.

complement of LB

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Finitisation & Model-Checking) 7 / 8

Conclusion & Future Work

∠∠∠ We looked at a variant of alternating automata for data languages with

inherent name binding, and found many interesting properties:

Alternating Automaton

RANA

De-Alternation

ERNNAs

Finitisation

classical AFAs

Decidable

Inclusion Problem

Decidable

Universality Problem

Decidable

Non-Emptiness Problem

Logic

Bar-µTL

∠∠∠ Some remaining problems:

Improve Local Freshness Complexity

Residuality/Learning RANAs

Extension to ω-Words

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Conclusion) 8 / 8

Questions?

References

Hausmann, Daniel, Stefan Milius, Lutz Schröder. ‘A Linear-Time

Nominal µ-Calculus with Name Allocation’. 46th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2021).

Ed. by Filippo Bonchi, Simon J. Puglisi. Vol. 202. LIPIcs. Dagstuhl, Germany:

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 58:1–58:18. ISBN:

978-3-95977-201-3. DOI: 10.4230/LIPIcs.MFCS.2021.58. URL:
https://drops.dagstuhl.de/opus/volltexte/2021/14498.
Schröder, Lutz, Dexter Kozen, Stefan Milius, Thorsten Wißmann.

‘Nominal Automata with Name Binding’. Proc. 20th International

Conference on Foundations of Software Science and Computation Structures,

(FOSSACS 2017). Vol. 10203. Lect. Notes Comput. Sci. 2017, pp. 124–142.

Frank et al. | LICS’25 | Alternating Nominal Automata with Name Allocation (Appendix) ∞

https://doi.org/10.4230/LIPIcs.MFCS.2021.58
https://drops.dagstuhl.de/opus/volltexte/2021/14498

	Motivation
	Alternation
	De-Alternation
	Finitisation & Model-Checking
	Conclusion
	Appendix
	References

