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Introduction: Operational semantics,

and our concern about it



Operational Semantics

Operational semantics is a way to formally specify how a programming

language must behave.

Specification is given by a set of inference rules for reduction of well-formed

terms.

It is often apposed to denotational semantics, roughly analogous to proof

theory and model theory for a logic.

It is suitable by nature to implement.
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Example

xCL Combinatory logic: A modest (abstract) programming language.

▶ Syntax:

Λ ::= I | K | K′(Λ) | S | S′(Λ) | S′′(Λ,Λ) | Λ ◦ Λ

▶Operational semantics:

I t→ t K t→ K′(t) K′(p) t→ p S t→ S′(t)

S′(p) t→ S′′(p, t) S′′(p, q) t→ (pt)(qt)
p → p′

pq → p′q
p q→ p′

pq → p′

3 34
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Example

In classic CL withβ-reduction:

SKII →β (KI)(II) →β KII →β I

Or

SKII →β SI

Or ...

In xCL:

SKII → S′(K)II → S′′(K, I)I → (KI)(II) → K′(I)(II) → I

4 34
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Reasoning on Operational Semantics

Rigorous mathematical reasoning on programs is sometimes more

favorable than empirical testing.

It can be done by reasoning on operational meaning of the language that the

program is written in1.

For example, operational semantics is suitable for reasoning about program

equivalence.

1Plotkin, "A Structural Approach to Operational Semantics", 1981
5 34
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Contextual Equivalence

Contexual Equivalence

Terms p and q are equivalent (p ∼ q) iff for all contexts C

v ↓ ⇒ C[p] →⋆ v ⇔ C[q] →⋆ v

It is a fundamental question that when the above equivalence hold (and

therefore useful in many cases).

Easier to check if we have proved the following property (compositionality):

p ∼ q ⇒ C[p] ∼ C[q]

6 34
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Stating a Problem

Similar things that often happen in reasoning on operational semantics:

1. Doing these proofs are laborious tasks.

2. Usually done by using sophisticated techniques (Logical Relations and

Howe’s Method).

3. Proofs are often boilerplate.

4. Proofs are often brittle.

The 3rd point looks somehow promising!

We may be able to prove more general statements that cover proofs for

different cases.

7 34
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Rule Formats, GSOS, and HO-GSOS



Rule Formats

A rule format is a formal pattern for creating inference rules.

They can also be seen like functions with parameters like, reducing terms,

number of premises, ... to an specific set of inference rules.

Maybe we can

1. create a sufficiently general rule format,

2. prove important properties about it.

Now one can define operational semantics (fit in the format) for a language

with already proved features.

8 34
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GSOS

One of these rule formats is called GSOS2.

GSOS Rule Format

A rule is in GSOS format if it is in the following form:

{xi
a→ ya

ij}
1≤i≤m,a∈Ai
1≤j≤na

i
{xi

b
̸→}1≤i≤m

b∈Bi

f (x1, . . . , xm)
c→ t

where:
f is an operation of arity m,
All xi, ya

ij are distinct variables,
t is a term built over all the variables xi, ya

ij,
There is a set L of labels containing c and including all the sets Ai and Bi.

2Bloom, Istrail, Meyer,"Bisimulation Can’t be Traced", 1990
9 34
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Categorical Expression

Rule formats seem to be intricate creatures.

Category theory seems to be a suitable language to talk about rule formats.

Syntax of a language can be expressed by an endofunctorΣ. For example, for

a set of operators of a language Σ̄:

Σ : Set → Set,ΣX = ⨿
f∈Σ̄

Xar(f )

Another functor extracted from the operational semantics named behavior

functor B takes part in the categorical explanation. For example:

B : Set → Set, BX = Pfin(X)L

10 34
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Categorical Explanation (Continue)

We call a set of GSOS rules a GSOS specification.

Every GSOS specification corresponds to a natural transformation ρ of the

following form3:

ρX = ⨿
f∈Σ̄

(X × Pfin(X)L)ar(f ) → Pfin(Σ
∗X)L

which is a categorical expression of a set consisting of rules of the following

form:

{xi
a→ ya

ij}
1≤i≤m,a∈Ai
1≤j≤na

i
{xi

b
̸→}1≤i≤m

b∈Bi

f (x1, . . . , xm)
c→ t

3Turi and Plotkin, "Towards Mathematical Operational Semantics", 1997
11 34
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Categorical Expression (Continue)

GSOS specifications are instances of natural transformations of the following

form called GSOS law:

ρ : Σ(Id × B) ⇒ BΣ∗

GSOS law is parametric to two functorsΣ and B.

Different B can lead to creation of different rule formats!

After setting B, the functorΣ can be set based on the language under study.

Based on this, a categorical framework has been built to ease the reasoning

on GSOS specifications.

12 34
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Shortcoming

Also the correspondences has lead to study of different flavors of GSOS rule

formats.4

But it does not support "higher order behavior" i.e. passing programs as

values to other programs.

For example:
p q→ p′

pq → p′

Ditto for untypedλ-calculus.

4Klin, "Bialgebras for structural operational semantics: An introduction", 2011
13 34
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HO-GSOS

Recently, the limitation has been solved by inventing HO-GSOS rule format5.

The rule format is roughly the same:

(xj → yj)j∈W (xi
z→ yz

i )i∈{1,...,m}\W,z∈{x,x1,...,xm}

f (x1, . . . , xm)
x→ t

And any term (instead of set of labels) can be a label for a transition.

And HO-GSOS law:

ρ(X, Y) = Σ(X × B(X, Y)) → B(X,Σ∗(X + Y))

And a categorical framework...

5Goncharov, Milius, Schröder, Tsampas, and Urbat, "Towards Higher-Order Mathematical

Operational Semantics", 2023
14 34
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Operational Methods in the Abstract

Logical relations:
▶ "Logical Predicates in Higher-Order Mathematical Operational

Semantics", Goncharov, Santamaria, Schröder, Tsampas, and Urbat, 2024
▶ "Bialgebraic Reasoning on Higher-Order Program Equivalence",

Goncharov, Milius, Tsampas, Urbat, 2024

Howe’s method:
▶ "Weak similarity in higher-order mathematical operational semantics",

Urbat, Tsampas, Goncharov, Milius, Schröder, 2023

It is interesting! But still there are ways to make it better.

15 34
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Small-step vs Big-step

Among different ways to classify operational semantics, we have:

Small-step VS Big-step

Small-step describes every step.

For a complete picture, steps must be composed.

Big-step describes all possible sequential reductions at once.

No judgment for divergent terms.

HO-GSOS is not suitable for expressing big-step semantics.

Inability to specify transitively closed relations.

16 34
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Translation from Small-step to Big-step

It is beneficial to have both small-step and big-step operational semantics

for a language.

Creating small-step operational semantics from scratch is often easier.

There has been a try6 to create such automatic translation.

But the assumptions highly limits the usability of the translation.

⋆We are trying to make such a translation for operational semantics that fits

in HO-GSOS.

6Ciobaca, "From Small-step Semantics to Big-step semantics, Automatically", 2013
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Big-step Format



Starting Point: xCL Combinatory Logic

Our exploration for finding a good big-step format started with having xCL

combinatory logic as a case study.

And we came up with this!:

v ⇓ v
p ⇓ I q ⇓ v

pq ⇓ v
p ⇓ K

pq ⇓ K′(q)
p ⇓ S

pq ⇓ S′(q)

p ⇓ K′(t) t ⇓ v
pq ⇓ v

p ⇓ S′(t)
pq ⇓ S′′(t, q)

p ⇓ S′′(s, t) (sq)(tq) ⇓ v
pq ⇓ v

18 34
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Example

We had SKII →⋆ I. Now, we have SKII ⇓ I:

S ⇓ S
SK ⇓ S′(K)

SKI ⇓ S′′(K, I)

K ⇓ K
KI ⇓ K′(I) I ⇓ I

(KI)(II) ⇓ I
SKII ⇓ I
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Equivalence

We could prove the following:

Theorem

For all terms p and q in xCL combinatory logic, the following proposition

holds:

p →⋆ q ∧ q ↓ ⇐⇒ p ⇓ q

Is not there something missing?!
What does q ↓mean? It is a value.

Values in xCL

All terms v of the following form are values in xCL:
v ::= I | K | S | K′(t) | S′(t) | S′′(s, t)

Values in xCL

20 34
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The Notion of Sound Translation

Our goal is to generalize the result in the previous slide.

How much general?

To the order of rule formats (instead of two operational semantics).

Sound Translation From Small-step to Big-step

For two rule formatsR1 andR2 a sound translation from small-step to

big-step is a construction that maps every specification inR1 to one of its

equivalent big-step specifications inR2. Equivalent in the sense of the

definition of equivalence in the previous slide.

21 34
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Cool HO Specifications: Weakened HO-GSOS

Intermediate step: Cool HO specifications, a limited version of HO-GSOS.

Cool HO Specifications

A rule in the following formats in the cool HO specification format.

f (x1, . . . , xm) → t g(y1, . . . , yn)
x→ s

xj → yj

f (x1, . . . , xj, . . . , xm) → f (x1, . . . , yj, . . . , xm)

(xj
xk→ xk

j )k∈{1,...,m}

f (x1, . . . , xj, . . . , xm) → t

(yi
yl→ yl

i)l∈{1,...,n} yi
x→ yx

i

g(y1, . . . , yi, . . . , yn)
x→ s

22 34
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Active vs Passive

In Cool HO specification we have this division for operators:

Active and Passive Operators

An operator is called passive iff its reduction is specified by a rule without

any premises.

An operator is called active iff it is not passive.

Receiving Position

For an active operator f that its reduction is described in HO Specification,

the receiving position of f is the position of its variable that reduces in the

premise.

23 34
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Computation vs Value

We consider this division for operators: Σ = Σv ∪ Σv̄, whereΣv ∩ Σv̄ = ∅

Ditto for terms (no matter closed or open).

It surprisingly coincides with labeled/unlabeled reductions.

Computation terms only have unlabeled reduction, and value terms only

have labeled reductions. Like in the mentioned Cool example (xCL):

I t→ t K t→ K′(t) K′(p) t→ p S t→ S′(t)

S′(p) t→ S′′(p, t) S′′(p, q) t→ (pt)(qt)
p → p′

pq → p′q
p q→ p′

pq → p′

24 34
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The New Format

This is the big-step format that we are hopeful to find it equivalent with Cool

HO specifications:

v ⇓ v

xj ⇓ g(y1, . . . , yn) t ⇓ v
f (x1, . . . , xj, . . . , xm) ⇓ v

where j is the receiving position for f .

In all judgments p ⇓ v, where p ̸= v, p is a computation term, and v is a value

term.

25 34
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Construction (Under Construction!)

Inspired by our motivational example (xCL) our approach is to create a

big-step rule for every pair consisting of one computation former and one

value former.

We have three cases for the pair (f , g), where f ∈ Σv̄ and g ∈ Σv:

1. (f is active, g is passive)

2. (f is active, g is active)

3. (f is passive, g can be passive or active)
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Construction (Continue)

For the first case:

xj → yj

f (x1, . . . , xj, . . . , xm) → f (x1, . . . , yj, . . . , xm) &

(xj
xk→ xk

j )k∈{1,...,m}

f (x1, . . . , xj, . . . , xm) → t

& g(y1, . . . , yn)
x→ s

⇓
xj ⇓ g(y1, . . . yn) t[g(ȳ)/xj, s[xk/x]/xk

j ]k∈{1,...,m}[g(ȳ)/xj] ⇓ v
f (x1, . . . , xj, . . . , xm) ⇓ v

The second case is very similar to this case.
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Some Explanation

It is like that we are taking one step of the reduction by using a rule, and

letting other rules to handle the rest (t[...]).

For

xj → yj

f (x1, . . . , xj, . . . , xm) → f (x1, . . . , yj, . . . , xm) &

(xj
xk→ xk

j )k∈{1,...,m}

f (x1, . . . , xj, . . . , xm) → t

& g(y1, . . . , yn)
x→ s

we have

g(ȳ)
g(ȳ)−−→ s[g(ȳ)/x] (g(ȳ) xk→ s[xk/x])k∈{1,...,m}\{j}

f (x1, . . . , g(ȳ), . . . , xm) → t[g(ȳ)/xj, s[g(ȳ)/x]/xj
j, s[xk/x]/xk

j ]k∈{1,...,m}\{j}
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Example

Y t→ t(Yt)
t t→ s

D(t) → s
t → t′

D(t) → D(t′)

p → p′

pq → p′q
p q→ p′

pq → p′

⇓

v ⇓ v
p ⇓ Y p(Yp) ⇓ v

pq ⇓ v
t ⇓ Y t(Yt) ⇓ v

D(t) ⇓ v
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More Definitions (For the Third Case)

Active Term

We call an (open) term t active if

1. t = x, where x is a variable, or

2. t = f (t1, . . . , tn)with f being an active opertation whose receiving

position is i and such that ti is active again.

Active-Computation Term

We call an (open) term t active-computation if

1. t = x, where x is a variable, or

2. t = f (t1, . . . , tn)with f being an active-computation former whose

receiving position is i and such that ti is active-computation again.
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More Definitions (Continue)

Receiving Variable

Let t be an active term and let x be a variable that occurs in t precisely once.

We call x a receiving variable for t if

1. t = x, or

2. t = f (t1, . . . , tn) and x is a receiving variable for ti where i is the

recieving position of f .
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Another case division

Actually, we have already given the third case of construction only for passive

computation formers that reduce to active terms, where we have these two

mutually exclusive cases:

1. t is an active-computation term.

2. t has the form s[r/x]where r is a value and s is an active-computaition

term, whose receiving variable is x.

We are hopeful that rules for operations that reduce to non-active terms, can

be exchanged with rules for the operations in which they reduce to active or

active-computation terms.
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Construction (Continue)

For the first subcase:

f (x1, . . . , xm) → t &

(
g(y1, . . . , yn)

x→ s ⊕

(yi
yl→ yl

i)l∈{1,...,n} yi
x→ yx

i

g(y1, . . . , yi, . . . , yn)
x→ s

)

⇓(t = t′[xj/x])

xj ⇓ g(y1, . . . , yn) t′[g(y1, . . . , yn)/x] ⇓ v
f (x̄) ⇓ v
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Further Steps

This is a perspective for further steps IF we succeed in the current step:

Equivalent format for HO-GSOS (not limited to Cool).

Nondeterministic format.

Categorical expression and framework.

Translation in the opposite direction.

Labeled big-step transitions.

Languages with variable-binders, likeλ-calculus.

Stateful semantics.
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Vielen Dank! :-)
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