Generic Effects/Handlers

Generic Programming with Generic Effects
via Effect Handling

Christoph Rauch
(joint work with Sergey Goncharov & Lutz Schroder)

FAU Erlangen-Niirnberg
TCS Seminar SS2014

June 17, 2014



Generic Effects/Handlers

Overview

Monads

N =

Algebraic Operations

[teration

B &

Handling

&

Program normalisation

Operational Semantics

Conclusion

=



What we have so far

Metalanguage with generic effects, iteration, free operations, and
handlers for those operations.

Categorical semantics parametric in an Elgot monad.

Free operations realised using a cofree extension of the monad.

Iteration interpreted using the fixpoint operator of the Elgot monad
which is preserved by this extension.

Interpretation of handling also employs the fixpoint operator.



Generic Effects/Handlers | Monads

(Strong) Monads

As string diagrams
T

Laws




Generic Effects/Handlers | Monads

(Strong) Monads

Kleisli Triple
B T
\@/ B| |T W
_> -
|A Al T T
Al T




Generic Effects/Handlers | Monads

(Strong) Monads

Strength
Let F = A x —. Then, strength is a morphism 7: FT — TF with laws
F T
F T lr (z
- | F - P
T | F

plus a kind of associativity law.



Generic Effects/Handlers | Algebraic Operations

Algebraic Operations

Natural transformations ax : (TX)" — (TX)" (+ coherence conditions)

Generic Effects

Algebraic operations correspond to generic effects ag : w — Tv
(Plotkin, Power, 2003)



Generic Effects/Handlers | Algebraic Operations

Examples for Algebraic Effects

TX = py. (X + (0 xv) ++') (Input/Output)
m ready : (TX)! — TX, equivalently read® : 1 — T/ = TI.
m writex : TX — (TX)©, equivalently write8 : O — T1.

TX = X 4 E (Exceptions)

= E nullary operations raise. for e € E, equivalently raise§ : TO.
m Exception handling is not algebraic!



Generic Effects/Handlers | Algebraic Operations

A Monad for Underspecified Algebraic Operations

Cofree extension

For a monad T and any a, b € |C|, let T2 be given by

TEX = vy, T(X 4+ ax~b)



Generic Effects/Handlers | Algebraic Operations

A Monad for Underspecified Algebraic Operations (cont'd)

m T'(X,A) = T(X + ax AP) is a parameterized Monad in the sense
of Uustalu, 2003.
m = vy. T(X + a x 4P) carries a monad structure.

= Indeed, Tg is a strong monad.

Monad structure

out is the final coalgebra morphism T2X — T(X 4 a x (T2X)).
outon” =noinj,
b]*

outo ¥ =[outof,noinj,oax (f1)P] oout,

outo7” = T(id+a x (7¥)?) o Té o 7 o (id x out)

where 6 : X x (Y +ax (TPY)?) = (X x Y)+ax (X x TLy)b.



Generic Effects/Handlers | Iteration 11/ 32

w-continuous Monads

Definition
An w-continuous monad consists of a monad T and an enrichment of the
Kleisli category Ct of T over the category Cppo of complete partial
orders with bottom and (nonstrict) continuous maps, satisfying the
following conditions.

m Strength is continuous and respects the bottom element:

7(id, | |; i) = ||, 7(id, f), 7(id, L) = L;
m Copairing is continuous in both arguments:

“_l,' fi, |_|,-gi] = Ui[ﬁ,gi]-



Generic Effects/Handlers | Iteration 11/ 32

w-continuous Monads

Definition

An w-continuous monad consists of a monad T and an enrichment of the
Kleisli category Ct of T over the category Cppo of complete partial
orders with bottom and (nonstrict) continuous maps, satisfying the

following conditions.
m Strength is continuous and respects the bottom element:
7(id, | |; i) = ||, 7(id, f), 7(id, L) = L;
m Copairing is continuous in both arguments:

“_l,' fi, |_|,-gi] = |_|i[fi,gi]-

Cofree extension

T2 is not w-continuous!



Generic Effects/Handlers | Iteration

Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to f : X — TY satisfying the following

conditions:



Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y 4+ X) to f : X — TY satisfying the following

conditions:

Unfolding: T =[n, fi]*of
X Y X .Y vi vy
f' J




Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y 4+ X) to f : X — TY satisfying the following

conditions:

Naturality: g*o fT = ([Tinjyog,n o inj,]* o f)T
X Y z A

—2f—8— Tinjiogl—~

X Y
Bianrd s X




Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —T,
sending any f : X — T(Y + X) to fT : X — TY satisfying the following
conditions:

Dinaturality: ([noinjy, h]* o g)' = [n, ([n o injy, g]* o h)T]* °g

% Y
>

X Ylﬂ_’ X Y
|—>g_Z’hY = g£—>h_>i|g\/$
X r X L&




Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to ff : X — TY satisfying the following
conditions:

Codiagonal: (T(id+V)o g)f = (g




Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to f : X — TY satisfying the following
conditions:

Uniformity: f o h = T(id+h) o g implies fT o h = gf

Z X Y z Y X

X V4
4

Z X Y Z Y
h f —




Elgot Monads

Any w-continuous monad is an Elgot monad (Bloom, Esik).
T? is also a (strong) Elgot monad!

Iteration on T% reduces to iteration on T.

Strength of the involved monads allows us to define

fi = (T((pr2 + Id) o 5Z,Y,X) OTZ Yy+X© <pr1, f>)T,

i.e. an operator — sending any f : Z x X — T(Y + X) to
fl:ZxX—=TY.



Generic Effects/Handlers | Handling

Metalanguage for side-effecting computations

Features:
m Grammar of types (separating value, computational and predicate
types)



Types:

Vi=AeV|1|0|VxV|V+V W=V |V W




Generic Effects/Handlers | Handling

Metalanguage for side-effecting computations

Features:

= Grammar of types (separating value, computational and predicate
types)

m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)



Generic Effects/Handlers | Handling

Metalanguage for side-effecting computations

Features:

= Grammar of types (separating value, computational and predicate
types)

m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case



Coproducts:
_rheeA 0 TR B
N+, inj;t:A+B [+, injpt:A+ B
A||—,XZAI—V/C t: C
F s:A+B A|r»}/13|—\,/cu:C




Generic Effects/Handlers | Handling

Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations



Programs
AT ke p:A A|T,x:Akc g: B N, p:A

A|T ke dox<«p;qg: B AT Fc retp: A




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations

m Signatures of function symbols containing operations for the language



Operations

f:A=-Ber,) . [k t:A
AT by f(t): B

Signature

Y, contains value operations, ¥ contains generic effects




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations

m Signatures of function symbols containing operations for the language

m [teration construction



Iteration
A|T Fep:B+A A|l,x:Akcq:B+A

A|T k¢ iterinjyx < p;qg: B




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

Side-effecting computations

Signatures of function symbols containing operations for the language
Iteration construction

Effect handling



Free operations

f:A—-BeA I+, t:A
AT ke f(t): B

Handling

AFIT Fep:C Afv:iB—=C|TE.h:A—=C
A, f:A— B|T k¢ handle finpwithv.h: C

AFIT Fep:C Afv:iB—=C|TE.h:A—=C
A |T k¢ handlerec finpwithv.h: C




Generic Effects/Handlers | Handling

Handling

Handlers
[A|T,f:A=BviB—ChchiA— Cl=h:L A= Tar,C

AT, f:A=BllFep:C=p:[ = Tar

(o)

Interpretation

The morphism h can be converted to a morphism
w [ — (TAJQ)E — (TAJQ)A.
Using this, we define

Wi, p) = (V5) o (w,p) 1 [ — TaC.



Generic Effects/Handlers | Handling

Recursive Handling

Interpretation

The morphism h can be converted to a morphism
wil = (TarC)F = (TarC)~
Using this, we define
Wi(w,p) = (¥1)" o (w,p) :[ = T,
where

Ya(s,t) = T(id+ ev(id xs)) (out(t))
C((TarC)E = (TarC)) x TarC — T(C+ TarC).

This is used to interpret recursive handling.



Generic Effects/Handlers | Handling

Shallow Handling

Interpretation

Again, given
w:il = (TarC)2 — (TarC)2

we interpret the shallow handling of f in p using
[nc,idT, ] o extodjgo (w,p) : L = TarC,
where 1) is as before and

ext = out_l oTp injl :Th — TA,f:A—)B'



Generic Effects/Handlers | Handling

Work in progress

Program normalisation
Completeness results
Handler elimination
Operational semantics

Adequacy results

Hoare-style verification calculus



Generic Effects/Handlers | Program normalisation

Program normalisation

A Folklore Conjecture

All programs in the simple programming language not containing
handling normalise to a program with only one loop, which is the
outermost part of the term, i.e. to a program of the form

iter inj, x < p; q,

where p and g are loop-free programs. We call this loop normal form.



Generic Effects/Handlers | Program normalisation 25 /32
Axioms

m The axioms of Elgot monads can be translated into the
metalanguage, e.g. naturality:

do y < (iterinj, x < p; q); r
= iter inj, x < (do k < p; case k of
inj; ¥ — (do I < r;retinjy I);
injp X — retinj, x);
(do k < g; case k of
inj; y — (do [ < r;retinjy /);
injo X > retinj, x)

m Using these axioms (and perhaps others), we prove rules to distribute
loops over other terms.

m This might be indicative for a future completeness result.



Generic Effects/Handlers | Program normalisation

Rules

Distributing loops over case

case c of
inj; k — iter injo, x <— p; q;
injo [ +—r
=iter inj, x < (case c of inj; k — p; inj, | — doinlr);

(case c of inj; k — q; injy [ — doinlr),



Generic Effects/Handlers | Program normalisation

Rules

Distributing loops over do
m Recall that

T (T((pr2 +id) 0 d) o7 o (pryq, f>)T.

m For a morphism f : T x Ax B — T(C + B) we can define
g:TxAxB—T(C+AxB)as

g = T((pro+id) o d) o7 o (pry,f).

m Then, ff = gt and we get a rule for distributing iter over do.



Generic Effects/Handlers | Program normalisation

Rules

Distributing loops over do

do x « p; (iterinjo, y < q; r)
=iterinj, y’ + (do X ¢ p; z < q; (case z of
inj; k — retinj; k;
injo | — retinjy(/,x)));
(do 2’ < rlpryy'/y,pray'/x]; (case 2’ of
inj; k — retinj; k;
injo | — retinjy(/, pray’)))



Generic Effects/Handlers | Program normalisation

Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).



Generic Effects/Handlers | Program normalisation

Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A



Generic Effects/Handlers | Program normalisation

Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A

m General terms A |, x: B,y : AFc r: C 4+ B+ A therefore need to
be converted to terms

A|T,x:B+Ay:B+At.r:C+(B+A)+(B+A).



Generic Effects/Handlers | Program normalisation

Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;

inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A

m General terms A |, x: B,y : AFc r: C 4+ B+ A therefore need to
be converted to terms
A|T,x:B+Ay:B+At.r:C+(B+A)+(B+A).

m The initialisation part of the inner loop needs to be retinj, x. Any
program residing there needs to be shifted into r’ as well.



Generic Effects/Handlers | Program normalisation

Ongoing work

m Find a set of necessary and sufficient axioms in the metalanguage to
prove derivability of the rules.

m Show that loop-free programs also have a normal form (nested case
constructions).

m Show completeness w.r.t. the categorical semantics.



Mid-Step Semantics

m Small-step semantics cannot work in our setting due to atomicity of
the operations in e.g. 2 :

case toss of inj; x — p; inj, * > q.

m Big-step semantics too coarse: handle fin p with v. h does not need
full evaluation of p.

m Therefore, we design a mid-step semantics with rules e.g.

p=rett
handle f in p withv. h = rett

p:>dox<ig(s);p’

handle £ in p with v. h = do x ¢ g(s); handle fin p’ withv. h



Generic Effects/Handlers | Conclusion

References

@ S. Goncharov, L. Schroder, C. Rauch
(Co-)Algebraic Foundations for Effect Handling and lteration
(submitted)

G S. Goncharov, L. Schréder
A Relatively Complete Generic Hoare Logic for Order-Enriched Effects
(2013)

@ G. Plotkin, M. Pretnar
Handling Algebraic Effects (2013)

@ A. Simpson, G. Plotkin
Complete Axioms for Categorical Fixed-Point Operators (2000)

B T. Uustalu
Generalizing Substitution (2003)



	Monads
	Algebraic Operations
	Iteration
	Handling
	Program normalisation
	Operational Semantics
	Conclusion

