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What we have so far

Metalanguage with generic effects, iteration, free operations, and
handlers for those operations.

Categorical semantics parametric in an Elgot monad.

Free operations realised using a cofree extension of the monad.

Iteration interpreted using the fixpoint operator of the Elgot monad
which is preserved by this extension.

Interpretation of handling also employs the fixpoint operator.
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(Strong) Monads

As string diagrams
T

Laws
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(Strong) Monads

Kleisli Triple
B T
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(Strong) Monads

Strength
Let F = A x —. Then, strength is a morphism 7: FT — TF with laws
F T
F T lr (z
- | F - P
T | F

plus a kind of associativity law.
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Algebraic Operations

Natural transformations ax : (TX)" — (TX)" (+ coherence conditions)

Generic Effects

Algebraic operations correspond to generic effects ag : w — Tv
(Plotkin, Power, 2003)
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Examples for Algebraic Effects

TX = py. (X + (0 xv) ++') (Input/Output)
m ready : (TX)! — TX, equivalently read® : 1 — T/ = TI.
m writex : TX — (TX)©, equivalently write8 : O — T1.

TX = X 4 E (Exceptions)

= E nullary operations raise. for e € E, equivalently raise§ : TO.
m Exception handling is not algebraic!
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A Monad for Underspecified Algebraic Operations

Cofree extension

For a monad T and any a, b € |C|, let T2 be given by

TEX = vy, T(X 4+ ax~b)
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A Monad for Underspecified Algebraic Operations (cont'd)

m T'(X,A) = T(X + ax AP) is a parameterized Monad in the sense
of Uustalu, 2003.
m = vy. T(X + a x 4P) carries a monad structure.

= Indeed, Tg is a strong monad.

Monad structure

out is the final coalgebra morphism T2X — T(X 4 a x (T2X)).
outon” =noinj,
b]*

outo ¥ =[outof,noinj,oax (f1)P] oout,

outo7” = T(id+a x (7¥)?) o Té o 7 o (id x out)

where 6 : X x (Y +ax (TPY)?) = (X x Y)+ax (X x TLy)b.
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w-continuous Monads

Definition
An w-continuous monad consists of a monad T and an enrichment of the
Kleisli category Ct of T over the category Cppo of complete partial
orders with bottom and (nonstrict) continuous maps, satisfying the
following conditions.

m Strength is continuous and respects the bottom element:

7(id, | |; i) = ||, 7(id, f), 7(id, L) = L;
m Copairing is continuous in both arguments:

“_l,' fi, |_|,-gi] = Ui[ﬁ,gi]-
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w-continuous Monads

Definition

An w-continuous monad consists of a monad T and an enrichment of the
Kleisli category Ct of T over the category Cppo of complete partial
orders with bottom and (nonstrict) continuous maps, satisfying the

following conditions.
m Strength is continuous and respects the bottom element:
7(id, | |; i) = ||, 7(id, f), 7(id, L) = L;
m Copairing is continuous in both arguments:

“_l,' fi, |_|,-gi] = |_|i[fi,gi]-

Cofree extension

T2 is not w-continuous!
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Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to f : X — TY satisfying the following

conditions:
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Axioms of Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y 4+ X) to f : X — TY satisfying the following

conditions:

Unfolding: T =[n, fi]*of
X Y X .Y vi vy
f' J




Generic Effects/Handlers | Iteration

Axioms of Elgot Monads

Definition
A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y 4+ X) to f : X — TY satisfying the following

conditions:

Naturality: g*o fT = ([Tinjyog,n o inj,]* o f)T
X Y z A

—2f—8— Tinjiogl—~

X Y
Bianrd s X
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Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —T,
sending any f : X — T(Y + X) to fT : X — TY satisfying the following
conditions:

Dinaturality: ([noinjy, h]* o g)' = [n, ([n o injy, g]* o h)T]* °g

% Y
>

X Ylﬂ_’ X Y
|—>g_Z’hY = g£—>h_>i|g\/$
X r X L&
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Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to ff : X — TY satisfying the following
conditions:

Codiagonal: (T(id+V)o g)f = (g
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Axioms of Elgot Monads

Definition

A monad T over C is an Elgot monad if it possesses an operator —1,
sending any f : X — T(Y + X) to f : X — TY satisfying the following
conditions:

Uniformity: f o h = T(id+h) o g implies fT o h = gf

Z X Y z Y X

X V4
4

Z X Y Z Y
h f —




Elgot Monads

Any w-continuous monad is an Elgot monad (Bloom, Esik).
T? is also a (strong) Elgot monad!

Iteration on T% reduces to iteration on T.

Strength of the involved monads allows us to define

fi = (T((pr2 + Id) o 5Z,Y,X) OTZ Yy+X© <pr1, f>)T,

i.e. an operator — sending any f : Z x X — T(Y + X) to
fl:ZxX—=TY.
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Metalanguage for side-effecting computations

Features:
m Grammar of types (separating value, computational and predicate
types)



Types:

Vi=AeV|1|0|VxV|V+V W=V |V W
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Metalanguage for side-effecting computations

Features:

= Grammar of types (separating value, computational and predicate
types)

m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)
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Metalanguage for side-effecting computations

Features:

= Grammar of types (separating value, computational and predicate
types)

m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case



Coproducts:
_rheeA 0 TR B
N+, inj;t:A+B [+, injpt:A+ B
A||—,XZAI—V/C t: C
F s:A+B A|r»}/13|—\,/cu:C
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Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations



Programs
AT ke p:A A|T,x:Akc g: B N, p:A

A|T ke dox<«p;qg: B AT Fc retp: A




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations

m Signatures of function symbols containing operations for the language



Operations

f:A=-Ber,) . [k t:A
AT by f(t): B

Signature

Y, contains value operations, ¥ contains generic effects




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B

is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

m Side-effecting computations

m Signatures of function symbols containing operations for the language

m [teration construction



Iteration
A|T Fep:B+A A|l,x:Akcq:B+A

A|T k¢ iterinjyx < p;qg: B




Metalanguage for side-effecting computations

Features:
= Grammar of types (separating value, computational and predicate
types)
m Judgements '+, t: Aand A | k. p: B, where A is value type, B
is computation type, [ is a context of type-variable-pairs, and A is an
operation context of variables f; : A; — B; (both A;, B; value types)

m (Co)product types and operations: projections/pairing,
injections/case

Side-effecting computations

Signatures of function symbols containing operations for the language
Iteration construction

Effect handling



Free operations

f:A—-BeA I+, t:A
AT ke f(t): B

Handling

AFIT Fep:C Afv:iB—=C|TE.h:A—=C
A, f:A— B|T k¢ handle finpwithv.h: C

AFIT Fep:C Afv:iB—=C|TE.h:A—=C
A |T k¢ handlerec finpwithv.h: C
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Handling

Handlers
[A|T,f:A=BviB—ChchiA— Cl=h:L A= Tar,C

AT, f:A=BllFep:C=p:[ = Tar

(o)

Interpretation

The morphism h can be converted to a morphism
w [ — (TAJQ)E — (TAJQ)A.
Using this, we define

Wi, p) = (V5) o (w,p) 1 [ — TaC.
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Recursive Handling

Interpretation

The morphism h can be converted to a morphism
wil = (TarC)F = (TarC)~
Using this, we define
Wi(w,p) = (¥1)" o (w,p) :[ = T,
where

Ya(s,t) = T(id+ ev(id xs)) (out(t))
C((TarC)E = (TarC)) x TarC — T(C+ TarC).

This is used to interpret recursive handling.
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Shallow Handling

Interpretation

Again, given
w:il = (TarC)2 — (TarC)2

we interpret the shallow handling of f in p using
[nc,idT, ] o extodjgo (w,p) : L = TarC,
where 1) is as before and

ext = out_l oTp injl :Th — TA,f:A—)B'
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Work in progress

Program normalisation
Completeness results
Handler elimination
Operational semantics

Adequacy results

Hoare-style verification calculus
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Program normalisation

A Folklore Conjecture

All programs in the simple programming language not containing
handling normalise to a program with only one loop, which is the
outermost part of the term, i.e. to a program of the form

iter inj, x < p; q,

where p and g are loop-free programs. We call this loop normal form.
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Axioms

m The axioms of Elgot monads can be translated into the
metalanguage, e.g. naturality:

do y < (iterinj, x < p; q); r
= iter inj, x < (do k < p; case k of
inj; ¥ — (do I < r;retinjy I);
injp X — retinj, x);
(do k < g; case k of
inj; y — (do [ < r;retinjy /);
injo X > retinj, x)

m Using these axioms (and perhaps others), we prove rules to distribute
loops over other terms.

m This might be indicative for a future completeness result.
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Rules

Distributing loops over case

case c of
inj; k — iter injo, x <— p; q;
injo [ +—r
=iter inj, x < (case c of inj; k — p; inj, | — doinlr);

(case c of inj; k — q; injy [ — doinlr),
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Rules

Distributing loops over do
m Recall that

T (T((pr2 +id) 0 d) o7 o (pryq, f>)T.

m For a morphism f : T x Ax B — T(C + B) we can define
g:TxAxB—T(C+AxB)as

g = T((pro+id) o d) o7 o (pry,f).

m Then, ff = gt and we get a rule for distributing iter over do.
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Rules

Distributing loops over do

do x « p; (iterinjo, y < q; r)
=iterinj, y’ + (do X ¢ p; z < q; (case z of
inj; k — retinj; k;
injo | — retinjy(/,x)));
(do 2’ < rlpryy'/y,pray'/x]; (case 2’ of
inj; k — retinj; k;
injo | — retinjy(/, pray’)))
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Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).
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Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A
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Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;
inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A

m General terms A |, x: B,y : AFc r: C 4+ B+ A therefore need to
be converted to terms

A|T,x:B+Ay:B+At.r:C+(B+A)+(B+A).
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Rules

Collapsing nested loops

m The main tool for this task is the codiagonal axiom

iter inj, x <— p; (iter inj, y < retinj, x; q)
= iter inj, x < p; (do k « q[x/y]; (case k of
inj; [ — retl;

inj, y — retinj, y)).

m To apply it, we need A |, x: Ay : Akcq: C+ A+ A

m General terms A |, x: B,y : AFc r: C 4+ B+ A therefore need to
be converted to terms
A|T,x:B+Ay:B+At.r:C+(B+A)+(B+A).

m The initialisation part of the inner loop needs to be retinj, x. Any
program residing there needs to be shifted into r’ as well.
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Ongoing work

m Find a set of necessary and sufficient axioms in the metalanguage to
prove derivability of the rules.

m Show that loop-free programs also have a normal form (nested case
constructions).

m Show completeness w.r.t. the categorical semantics.



Mid-Step Semantics

m Small-step semantics cannot work in our setting due to atomicity of
the operations in e.g. 2 :

case toss of inj; x — p; inj, * > q.

m Big-step semantics too coarse: handle fin p with v. h does not need
full evaluation of p.

m Therefore, we design a mid-step semantics with rules e.g.

p=rett
handle f in p withv. h = rett

p:>dox<ig(s);p’

handle £ in p with v. h = do x ¢ g(s); handle fin p’ withv. h
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