The Locally Finite Fixpoint and its properties

A study of the semantics of finitely generated state and equation systems

Thorsten Wißmann

Stefan Milius, Lutz Schröder, Dirk Pattinson

April 14, 2015
Coalgebras

States, variables

Successor type, Signature

Carrier

Functor

\[c \colon C \rightarrow HC \]
Coalgebras

States, variables

Successor type, Signature

Carrier

Functor

$C \xrightarrow{c} HC$

$\nu H \xrightarrow{\tau} H\nu H$

Final Coalgebra

[AMV06]
Coalgebras

Coalgebras consist of a carrier, a functor, and a successor type along with a signature.

- **Carrier**: States, variables
- **Functor**: H
- **Successor type**: E.g., $\text{HX} = 2 \times (\Sigma - \varepsilon)$

The Coalgebra framework provides a unique solution for the fixpoint equation Hc^\dagger. This is illustrated in the diagram:

- $C \xrightarrow{c} HC$
- $\nu H \xrightarrow{\tau} H\nu H$
- Hc^\dagger

Additionally, the final coalgebra νH is related to $H\nu H$ through a unique solution, mapping c^\dagger.

References:

[AMV06]
Coalgebras

States, variables

Successor type, Signature

Carrier

Functor

E.g. $HX = 2 \times (\tau)^{\Sigma}$

Deterministic Automata

All Formal Languages

[AMV06]
Coalgebras

States, variables → Successor type, Signature

Carrier \rightarrow \text{Functor}

C\ f.p. \rightarrow \nu H \rightarrow H\nu H

E.g. \(HX = 2 \times (\neg)^\Sigma \)

Finite Deterministic Automata

All Formal Languages

[AMV06]
Coalgebras

States, variables

Successor type, Signature

Carrier

Functor

C f.p. \(C \xrightarrow{c} H C \)

Finite Deterministic Automata

Rational Fixpoint

\(\rho H \xrightarrow{r} H \rho H \)

All Formal Languages

\(HX = 2 \times (\neg)_{\Sigma} \)

Final Coalgebra

\(\nu H \xrightarrow{\tau} H \nu H \)

[AMV06]
Coalgebras

States, variables

Successor type, Signature

Coalgebras C f.p. $C \xrightarrow{c} HC$ Finite Deterministic Automata

$\varrho H \xrightarrow{r} H\varrho H$ Regular Languages

$\nu H \xrightarrow{\tau} H\nu H$ All Formal Languages

E.g. $HX = 2 \times (-)^{\Sigma}$

$\rho H \xleftarrow{c^+} HC \xleftarrow{Hc^+} H\rho H \xleftarrow{Hr^+} H\nu H$

[AMV06]
In some scenarios:

- $r^\dagger : \varrho H \to \nu H$ is not monic.
- Not all equal behaviours identified by ϱH.
In some scenarios:

- $r^† : \varrho H \rightarrow \nu H$ is not monic.
- Not all equal behaviours identified by ϱH.

Wanted:

Collection of finite behaviours \cong Subcoalgebra of νH for finite behaviours
In some scenarios:

- $r^\dagger : \varrho H \longrightarrow \nu H$ is not monic.
- Not all equal behaviours identified by ϱH.

Wanted:

Collection of finite behaviours = Subcoalgebra of νH for finite behaviours $\neq \varrho H$
Problems

In some scenarios:

- \(r^\dagger : \rho H \rightarrow \nu H \) is not monic.
- Not all equal behaviours identified by \(\rho H \).

Wanted:

\[
\text{Collection of finite behaviours} = \text{Subcoalgebra of } \nu H \text{ for finite behaviours} \neq \rho H
\]
Problems

In some scenarios:

- \(r^\dagger : \varrho H \rightarrow \nu H \) is not monic.
- Not all equal behaviours identified by \(\varrho H \).

Wanted:

\[
??? = \text{Collection of finite behaviours} = \text{Subcoalgebra of } \nu H \text{ for finite behaviours} \neq \varrho H
\]
Problems

In some scenarios:

- $r^\dagger : \varrho H \rightarrow \nu H$ is not monic.
- Not all equal behaviours identified by ϱH.

Wanted:

- Universal property?
- Fixpoint?

$?? = \text{Collection of finite behaviours} = \text{Subcoalgebra of } \nu H \text{ for finite behaviours } \neq \varrho H$
In some scenarios:

- $r^\dagger : \varrho H \rightarrow \nu H$ is not monic.
- Not all equal behaviours identified by ϱH.

Wanted:

$$?? = \text{Collection of finite behaviours} = \text{Subcoalgebra of } \nu H \text{ for finite behaviours} \neq \varrho H$$
LFP Categories

Finitely presentable objects

\(X \text{ f.p. } \iff \text{Hom}(X, -) \) preserves filtered colimits

\[\Downarrow \]

(Strong) Quotients

Finitely generated objects

\(X \text{ f.g. } \iff \text{Hom}(X, -) \) preserves directed colimits of monos

\[\Downarrow \]

Filtered colimits

All other objects are . . .

assembled of finitely presentable objects

\(\iff \) assembled of finitely generated objects
Assumptions

- Base category \(B \) \(\text{lfp} \)
- Endofunctor \(H : B \to B \) finitary
- \(H \) preserves monos
LFG Coalgebras

\(\text{Coalg}_{\text{fg}} H \)

\(C \overset{c}{\to} HC \) with \(C \) f.g.

LFG Coalgebras \(\text{Coalg}_{\text{lfg}} H \)

\[\forall \text{f.g. } S \overset{f_0}{\longrightarrow} P \overset{p}{\cong} HP P \text{ f.g.} \]

= filtered colimits of f.g.-carried \(H \)-Coalgebras
LFG Coalgebras

Coalg\(_{\text{fg}}\) \(H\)

\[C \xrightarrow{c} HC \text{ with } C \text{ f.g.} \]

LFG Coalgebras Coalg\(_{\text{lfg}}\) \(H\)

\[\forall \text{f.g. } S \xrightarrow{f_0} P \xrightarrow{p} HP \text{ P f.g.} \]

= filtered colimits of f.g.-carried \(H\)-Coalgebras

\[\mathcal{L} \xrightarrow{l} H \mathcal{L} \text{ lfg final for } \text{Coalg}_{\text{fg}} \(H\) \]

\[\mathcal{L} \xrightarrow{l} H \mathcal{L} \text{ lfg final for } \text{Coalg}_{\text{lfg}} \(H\) \]
Construction

Final lfg coalgebra \(= \text{colim} \text{Coalg}_{\text{fg}} H \)

Proposition

\(L \xrightarrow{\ell} H L \text{ lfg} \Rightarrow H L \xrightarrow{\ell} HH L \text{ lfg} \)

\(\Rightarrow \) Final lfg coalgebra is an isomorphism

Definition

\((\nu H, \ell) := \text{final lfg coalgebra}\)

The **locally finite fixpoint** (LFF) of \(H \)

Lfg coalgebras closed under quotients \(\Rightarrow \nu H \) subcoalgebra of \(\nu H \)
What about the inverse

Definition

equation morphism in an A:

$$X \rightarrow HX + A, \text{ with } X \text{ f.g.}$$

Algebra $HA \xrightarrow{a} \text{ is fg-iterative if:}$

$$\begin{align*}
X \xrightarrow{\exists!e^\dagger} & A \\
\forall e \downarrow & \quad [a,A] \\
HX + A \xrightarrow{He^\dagger + A} & HA + A
\end{align*}$$

Category of fg-iterative Algebras + solution preserving morphisms

= Category of fg-iterative Algebras + algebra homomorphisms
The rational image

\[\text{LFF} = \text{Image of } \varrho H \text{ in } \nu H \]

\[\begin{align*}
\varrho H & \xrightarrow{r} H \varrho H \\
q & \downarrow \cong \\
\vartheta H & \xrightarrow{\ell} H \vartheta H \\
\ell \dagger & \downarrow \cong \\
\nu H & \xrightarrow{\tau} H \nu H \\
\end{align*} \]

(under some stronger assumptions...)

Thorsten Wißmann

April 14, 2015
Summary

The locally finite fixpoint

- final lfg coalgebra
- final for f.g.-carried coalgebras
- union of images of f.g.-carried coalgebras
- initial fg-iterative Algebra
- rational image
Applications

Examples

All applications where the rational fixpoint does the job, already.
Applications

Boring Examples
All applications where the rational fixpoint does the job, already.

Interesting Examples
All applications in Categories with

\[\text{f.p. objects} \subsetneq \text{f.g. objects} \]
Generalized powerset construction

T-Automaton

\[X \xrightarrow{x} HTX \]

Computational side effect

\[\text{Lifting} \]

\[H : \text{Set} T \rightarrow \text{Set} T \]

sometimes f.p. \subseteq f.g.
Generalized powerset construction

T-Automaton

\[X \xrightarrow{x} HTX \]

Requirement

Lifting $H^T : \text{Set}^T \rightarrow \text{Set}^T$ of H to Set^T.

Determinization

\[X \xrightarrow{\eta_X} TX \xrightarrow{x^{#\dagger}} \nu H \]

\[HTX \xrightarrow{Hx^{#\dagger}} H\nu H \]
Application of the LFF

Proposition

\[\vartheta H^T = \bigcup_{x: X \to HTX \text{ finite}} \text{Im}(x^{\#^\dagger}) \subseteq \nu H \]

Examples (work in progress...)

- \[T = \mathcal{P}_f((-)^*) \]
 \[\Rightarrow X \to HTX = \text{grammars in Greibach normal form} \]
 \[\Rightarrow \vartheta H^T = \text{context-free languages.} \]

- \[T = \text{Stack monad} \]
 \[\Rightarrow X \to HTX = \text{deterministic stack machines} \]
 \[\Rightarrow \vartheta H^T \approx \text{deterministic context-free languages.} \]
Algebraic trees

Recursive program scheme

\[e : H_\phi \rightarrow F^{H_\Sigma+H_\phi} \]

Example

For the signature \(\Sigma = \{f/2, g/1\} \):

\[\varphi(x) = f(x, \varphi(g(x))) \]

Coalgebraic structure

On finitary Monads + \(H \)-pointing: \(H/Mnd_f(\text{Set}) \):

\[e : H_\phi \rightarrow F^{H_\Sigma+H_\phi} \]

\[F^{H_\Sigma+H_\phi} \rightarrow HF^{H_\Sigma+H_\phi} + \text{Id} \]

\[\mathcal{H}_f B = HB + \text{Id} \]

[AMV11]
Application of the LFF

Coalgebraic structure

On finitary Monads \(+ \) \(H \)-pointing: \(H/\text{Mnd}_f(\text{Set}) \):

\[
e : H_\phi \rightarrow F^{H_\Sigma + H_\phi}
\]

\[
F^{H_\Sigma + H_\phi} \rightarrow HF^{H_\Sigma + H_\phi} + \text{Id}
\]

\[
\mathcal{H}_f B = HB + \text{Id}
\]

Proposition

Algebraic trees = \(\wp \mathcal{H}_f \)
Thank you for your attention!

