Coalgebraic announcement logics

Daniel Gorín joint work with Facundo Carreiro and Lutz Schröder

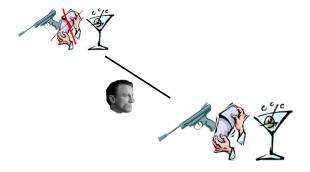
INF8 Seminar

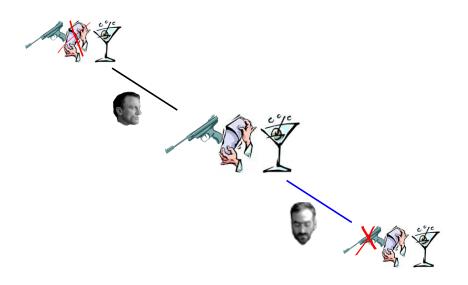
FAU, Erlangen, June 2013

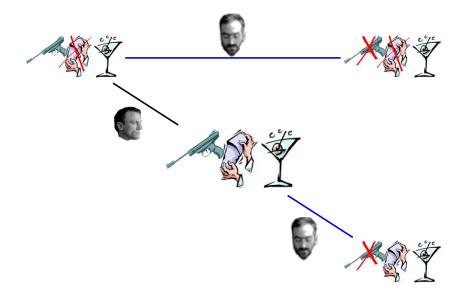
- Modal logics of knowledge and beliefs
- K_{α} light_is_off $\land \neg K_{\alpha}K_{\beta}\alpha_{-}$ is_awake

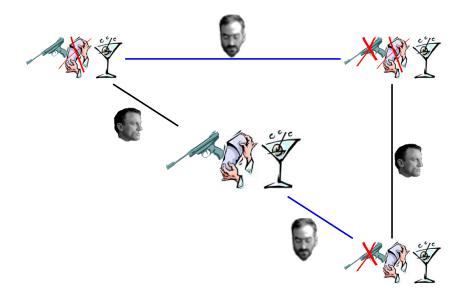
- Modal logics of knowledge and beliefs
- K_{α} light_is_off $\land \neg K_{\alpha}K_{\beta}\alpha_{-}$ is_awake
- · Valid epistemic inferences:

Knowledge:	${\sf K}_{\alpha}\varphi\to\varphi$
Introspection (I):	${\sf K}_{\alpha}\varphi\to{\sf K}_{\alpha}{\sf K}_{\alpha}\varphi$
Introspection (II):	$\negK_{\alpha}\varphi\toK_{\alpha}\negK_{\alpha}\varphi$
Reasoning:	$K_{\alpha}(\varphi\to\psi)\toK_{\alpha}\varphi\toK_{\alpha}\psi$
Implicit:	$K_{\alpha}\phi$, if ϕ is a tautology







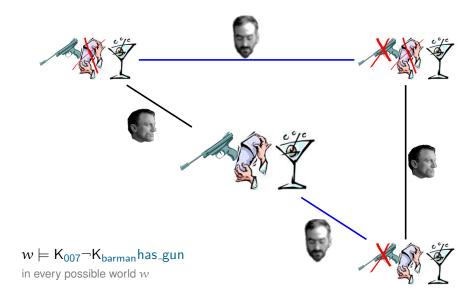


- Epistemic models are Kripke models $\mathcal{A} = \langle W, \{\sim_{\alpha}\}_{\alpha \in A_{\sigma}}, V \rangle$
 - $W \neq \emptyset$ (the set of possible worlds)
 - $\sim_{\alpha} \subset W \times W$
 - $V: W \to \mathcal{P}(\mathsf{Prop})$

(equivalently, $\sim_{\alpha} : W \to \mathcal{P}W$)

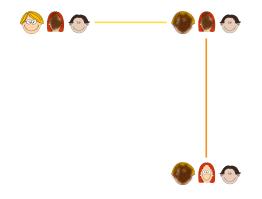
- where each \sim_{α} is an equivalence relation (usually)
- Satisfaction is just relational modal semantics, with K_{α} a "box"

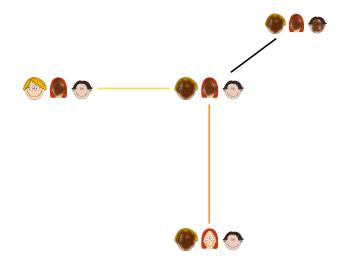
$$\mathcal{A}, w \models K_{\alpha} \phi$$
 iff $\mathcal{A}, w' \models \phi$ every time $w \sim_{\alpha} w'$

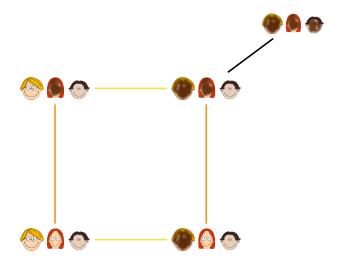


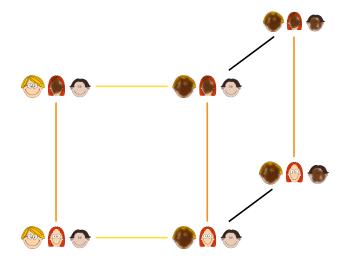
- Logics of knowledge and change
- Incorporate actions with epistemic impact

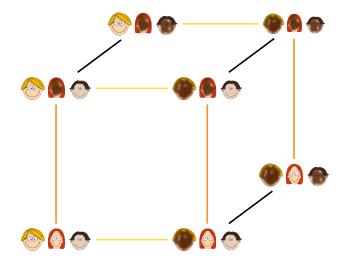
van Ditmarsch, van der Hoek and Kooi. Dynamic Epistemic Logic. Springer, 2006.

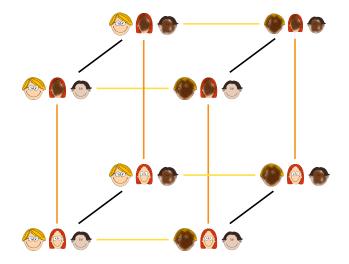


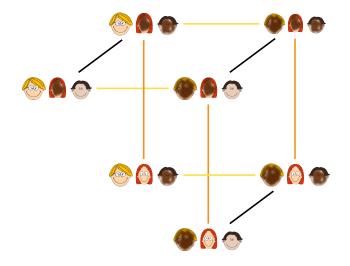


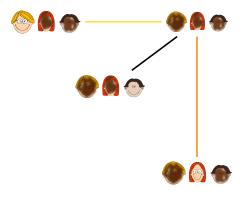












The public announcement operator

- $[\phi]\psi \rightsquigarrow$ "after publicly (and faithfully) announcing ϕ, ψ holds"
- For example:

 $[\neg K_{\bullet}muddy \land \neg K_{\bullet}muddy \land \neg K_{\bullet}muddy](K_{\bullet}muddy \land \neg K_{\bullet}muddy)$

• Semantics:

 $\mathcal{A}, w \models [\phi] \psi$ iff $\mathcal{A}|_{\phi}, w \models \psi$, whenever $\mathcal{A}, w \models \phi$

where $\mathcal{A}|_{\Phi}$ is the restriction of \mathcal{A} to the worlds that satisfy φ

Plaza. Logics of public communication. ISMIS'89.

The public announcement operator

- This is a logic operator that *modifies* the models
 It is well-defined for arbitrary Kripke models

Some properties of the Public Announcement Logic (PAL)

- PAL is not more expressive than the base logic
 - removing nodes <---> disconnecting nodes
 - rewrite rules:

 $[\varphi]p\rightsquigarrow (\varphi\rightarrow p) \qquad [\varphi]K_{\alpha}\rightsquigarrow (\varphi\rightarrow K_{\alpha}[\varphi]\psi) \qquad \ldots$

- But it is exponentially more succinct
 (both on epistemic and arbitrary models)
- While still in the same complexity class for satisfiability:
 - · NP-complete in the (epistemic) single-agent case
 - PSPACE-complete for multi-agents (or arbitrary models)
- Lutz. Complexity and succinctness of public announcement logic. AAMAS'06.
- French, van der Hoek, Iliev and Kooi. Succinctness of Epistemic Languages. IJCAI'11.

- · For an agent, some possible worlds are more likely true
- Probabilistic epistemic models: $\mathcal{A}=\langle W,\{\mu_{\alpha}\}_{\alpha\in\mathsf{Ag}},V\rangle$
 - $\mu_{\alpha}: W \to D_{\omega}(W)$

(subject to frame conditions)

• $B_{\alpha,p} \phi \rightsquigarrow$ "agent α assigns to ϕ a likelihood of at least p"

$$\mathcal{A}, w \models \mathsf{B}_{\alpha, p} \phi \quad \text{iff } \mu_{\alpha}(w)(A) = \sum_{\mathcal{A}, w' \models \phi} \mu_{\alpha}(w)(w') \ge p$$

Announcing (truthfully) a formula amounts to conditioning

$$\begin{split} \mathcal{A}, & \psi \models [\varphi] \psi \text{ iff } \mathcal{A}|_{\varphi}, w \models \psi, \text{ whenever } \mathcal{A}, w \models \psi \\ \text{where } \mathcal{A}|_{\varphi} = \langle W, \{\tilde{\mu}_{\alpha}\}_{\alpha \in \mathsf{Ag}}, V \rangle \text{ with } \end{split}$$

$$\begin{split} \tilde{\mu}_{\alpha}(w) &= \begin{cases} \lambda w'.\mu_{\alpha}(w)(w' \mid \llbracket \varphi \rrbracket) & \text{ if } \mu_{\alpha}(w)(\llbracket \varphi \rrbracket) > 0\\ \mu_{\alpha}(w) & \text{ otherwise} \end{cases}\\ \llbracket \varphi \rrbracket &= \{ w \mid \mathcal{A}, w \models \varphi \} \end{split}$$

- T is an endofunctor on Set
- A T-coalgebra is a tuple $\langle X, \gamma \rangle$ where $\gamma : X \to TX$
- The epistemic models are examples of coalgebras: Bond: Take T := $\mathcal{P} \times \mathcal{P} \times C_{\{gun,martini,was_shaken\}}$ Children: Take T := $\mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \mathcal{C}_{\{muddy,muddy,muddy\}}$ Probabilistic: Take T := $\prod_{\alpha \in Ag} D_{\omega} \times C_{Prop}$
- Other examples: neighborhood models, various kinds of automata, transition systems...

Coalgebraic modal logics

Syntax and semantics

- Λ is a set of modal operators
- Formulas: $\varphi ::= \bot \mid \varphi \rightarrow \varphi \mid \heartsuit_k(\varphi_1, \ldots \varphi_k)$
- A k-ary modality ♡ is interpreted using a predicate lifting [[♡]]:
 - a natural transformation $[\![\heartsuit]\!]:\breve{\mathcal{P}}^k \xrightarrow{\cdot} \breve{\mathcal{P}}\mathsf{T}$

Coalgebraic modal logics

Syntax and semantics

- Λ is a set of modal operators
- Formulas: $\phi ::= \bot | \phi \rightarrow \phi | \heartsuit_k(\phi_1, \dots \phi_k)$
- A k-ary modality ♡ is interpreted using a predicate lifting [[♡]]:
 - a natural transformation $[\![\heartsuit]\!]:\breve{\mathcal{P}}^k \xrightarrow{\cdot} \breve{\mathcal{P}}\mathsf{T}$
- The extension of φ in coalgebra $\langle X, \gamma \rangle$ is:

$$\begin{split} \llbracket \bot \rrbracket_{\gamma} &:= \emptyset \\ \llbracket \varphi \to \psi \rrbracket_{\gamma} &:= \left(X \setminus \llbracket \varphi \rrbracket_{\gamma} \right) \cup \llbracket \psi \rrbracket_{\gamma} \\ \llbracket \heartsuit (\varphi_{1} \dots \varphi_{k}) \rrbracket_{\gamma} &:= \left\{ x \mid \gamma(x) \in \llbracket \heartsuit \rrbracket_{X} \left(\llbracket \varphi_{1} \rrbracket_{\gamma} \dots \llbracket \varphi_{k} \rrbracket_{\gamma} \right) \right\} \end{split}$$

Coalgebraic modal logics Examples

• For
$$T := \mathcal{P}$$
:

$$\llbracket \diamondsuit \rrbracket_X(A) := \{ B \in \mathcal{P}X \mid B \cap A \neq \emptyset \}$$
$$\llbracket \Box \rrbracket_X(A) := \{ B \in \mathcal{P}X \mid B \subseteq A \}$$

• For $\mathsf{T}:=\mathsf{D}_{\varpi}$ and for each $p\in[\mathsf{0};\mathsf{1}]\cap\mathbb{Q}$:

$$\llbracket L_p \rrbracket_X(A) := \{ \mu \in D_{\omega}X \mid \mu(A) \ge p \}$$
$$\llbracket M_p \rrbracket_X(A) := \{ \mu \in D_{\omega}X \mid \mu(A)$$

• For
$$T := \mathfrak{P} \times \mathfrak{P} \times C_{\{gun, martini, was_shaken\}}$$

 $[\![\mathsf{martini}]\!]_X := \{ \langle \mathsf{R}_{\mathsf{Bond}}, \mathsf{R}_{\mathsf{Bartender}}, \mathsf{V} \rangle \in \mathsf{TX} \mid \mathsf{martini} \in \mathsf{V} \}$

Wait! Why would you do such a thing?

- Epistemic models don't arise from a functor! (remember \sim_{α} is an equivalence)
- · But model mutation is meaningful outside epistemic settings:
 - Resiliency checking (cf. sabotage logics)
 - Hypothetical querying and reasoning
- Public announcements are computationally well-behaved

- Π is a set of dynamic modal operators
- Formulas $\varphi:=\perp | \, \varphi \to \varphi \, | \, \heartsuit_k(\varphi_1 \ldots \varphi_k) | \, \bigtriangleup_\varphi \varphi$
- $\Delta_\varphi \psi \rightsquigarrow$ "after announcing/assuming φ, ψ holds"
- How do we give meaning to each Δ ?

- Announcing φ changes $\langle W, R, V\rangle$ to $\langle W, \tilde{R}, V\rangle,$ where:

$$\tilde{\mathsf{R}}(w) = \lambda w' \cdot \mathsf{R}(w)(w') \cap \llbracket \varphi \rrbracket$$

- Announcing φ changes $\langle W, \mu, V\rangle$ to $\langle W, \tilde{\mu}, V\rangle,$ where:

$$\tilde{\mu}(w) = \lambda w'.\mu(w)(w' \mid \llbracket \varphi \rrbracket)$$

- We'd like to interpret Δ_{Φ} using a function $\mathsf{T} X \to \mathsf{T} X$
- Δ would be parametrized by a predicate $\llbracket \varphi \rrbracket$: $\check{\mathbb{P}}X \times TX \to TX$

- Formally, we interpret each $\Delta \in \Pi$ with an update $\llbracket \Delta \rrbracket$:
 - a natural transformation $\llbracket \Delta \rrbracket : \mathsf{T} \xrightarrow{\cdot} (\check{\mathfrak{P}} \twoheadrightarrow \mathsf{T})$
 - where $\check{\mathfrak{P}} \twoheadrightarrow T$ is the Set-functor such that:

$$\begin{split} (\check{\mathfrak{P}} \twoheadrightarrow T)X &:= (TX)^{\check{\mathfrak{P}}X} \\ (\check{\mathfrak{P}} \twoheadrightarrow T)f &:= \lambda h \,.\, Tf \circ h \circ \check{\mathfrak{P}}f \qquad \quad h : (TX)^{\check{\mathfrak{P}}X} \end{split}$$

• Naturality condition for $\llbracket \Delta \rrbracket$:

$$\mathsf{Tf}\left(\llbracket\Delta\rrbracket_X\left(\mathsf{t},\breve{\mathcal{P}}\mathsf{f}A\right)\right) = \llbracket\Delta\rrbracket_Y\left(\mathsf{Tft},A\right)$$

here $f:X \rightarrow Y, t \in TX$ and $A \subseteq Y.$

- Intuitively, we interpret Δ_{φ} applying $[\![\Delta]\!](-, [\![\varphi]\!])$ everywhere:

$$\begin{split} \llbracket \bot \rrbracket_{\gamma} &:= \emptyset \\ \llbracket \varphi \to \psi \rrbracket_{\gamma} &:= \left(X \setminus \llbracket \varphi \rrbracket_{\gamma} \right) \cup \llbracket \psi \rrbracket_{\gamma} \\ \llbracket \heartsuit (\varphi_{1} \dots \varphi_{k}) \rrbracket_{\gamma} &:= \left\{ x \mid \gamma(x) \in \llbracket \heartsuit \rrbracket_{X} \left(\llbracket \varphi_{1} \rrbracket_{\gamma} \dots \llbracket \varphi_{k} \rrbracket_{\gamma} \right) \right\} \\ & \llbracket \Delta_{\varphi} \psi \rrbracket_{\gamma} &:= \llbracket \psi \rrbracket_{\llbracket \Delta \rrbracket_{X}(-, \llbracket \varphi \rrbracket_{\gamma}) \circ \gamma} \end{split}$$

NB. $\langle X, \llbracket \Delta \rrbracket_X(-, \llbracket \varphi \rrbracket_\gamma) \circ \gamma \rangle$ is a T-coalgebra!

Examples of updates

• For
$$T := \check{\mathcal{P}}$$
:

$$\llbracket \Delta \rrbracket_X(S, A) := S \cap A$$

• For $T := D_{\omega}$:

$$\llbracket \Delta \rrbracket_X(\mu,A) := \begin{cases} \lambda x. \mu(x \mid A) & \text{if } \mu(A) > 0 \\ \mu & \text{otherwise} \end{cases}$$

• For $T := \breve{P}\breve{P}$: (the **neighborhood** functor)

$$\llbracket \Delta \rrbracket_X(\mathsf{t},\mathsf{A}) := \mathsf{t} \cap \check{\mathcal{P}} \mathsf{A}$$

• For $T := \mathcal{B}_{\omega}$ (the **bag** functor of graded modal logic)

 $[\![\Delta]\!]_X(b,A):=\lambda x.\texttt{if}\ x\in A$ then 0 else b(x)

- One may expect more conditions from an "announcement":
 - a. It disconnects all elements not satisfying the announcement

$$\llbracket \Delta \rrbracket_X(-, A) : \mathsf{T}X \to \mathsf{T}A$$

b. The "essential" truth of the announcement doesn't change

$$t\in [\![\heartsuit]\!]_X(C) \text{ iff } [\![\Delta]\!]_X(t,A)\in [\![\heartsuit]\!]_X(C)$$

for all $t \in TX$, $C \subseteq A$, $\heartsuit \in \Lambda$

- A strong announcement on Λ is an update satisfying a and b
- NB. Condition b for Λ separating already guarantees naturality

Let Λ consist of monotone operators. There is at most one strong announcement on Λ .

Let Λ consist of monotone operators. There is at most one strong announcement on Λ .

Theorem

Let Δ be a strong announcement on Λ and let $\heartsuit \in \Lambda$. Then:

$$\Delta_{\Phi} \heartsuit \psi \equiv \heartsuit \left(\psi \land \Delta_{\Phi} \psi \right)$$

Corollary

If Π consists of strong announcements on Λ , then every formula ϕ is equivalent to an announcement-free formula ϕ^* over Λ .

Strong announcements - examples and counterexamples

• For $T := \breve{P}$, this is a strong announcement on $\{\diamondsuit\}$ (not for $\{\Box\}$!):

$$\llbracket \Delta \rrbracket_X(S, A) := S \cap A$$

• For $T := D_{\omega}$, this is not a strong announcement on any $\{L_p\}$:

$$\llbracket \Delta \rrbracket_X(\mu, A) := \begin{cases} \lambda x. \mu(x \mid A) & \text{if } \mu(A) > 0 \\ \mu & \text{otherwise} \end{cases}$$

• For $T := \breve{P}\breve{P}$, this is a strong announcement on $\{\Box\}$:

$$\llbracket \Delta \rrbracket_X(t, A) := t \cap \check{\mathbb{P}} A$$

• For $T := \mathcal{B}_{\omega}$, this is a strong announcement on $\{\diamondsuit_0, \diamondsuit_1, \ldots\}$:

 $[\![\Delta]\!]_X(b,A):=\lambda x.\texttt{if}\ x\in A$ then 0 else b(x)

- The updates so far were *deterministic* in nature
- Consider instead a transformation $T \rightarrow (\breve{P} \twoheadrightarrow PT)$:
 - + $[\![\Delta]\!]_X(t,A)$ would give us a choice of transformations to t
 - Two readings for $\Delta_{\varphi}\psi$:

angelic: On *some* transformation induced by ϕ , ψ holds demonic: On *all* transformations induced by ϕ , ψ holds

• The type $T \rightarrow (\check{P} \rightarrow PT)$ is not enough to specify the behavior (but we can use predicate liftings!)

Announcements with effects - examples

- F = Id, $\lambda = id$ the updates discussed earlier
- Non-deterministic updates:

- .
 - $\mathsf{F} = \breve{\mathcal{P}}, \lambda \in \{ \llbracket \diamondsuit \rrbracket, \llbracket \Box \rrbracket \}$
- $T = \check{P}, \tau_X(S, A) := \{S \cap A, S\}$ lossy announcements
- $T = \check{\Phi}, \tau_X(S, A) := \{S \setminus A, S\}$ controlled sabotage

•
$$\begin{split} \textbf{T} &= S_{\omega}, \tau^{\epsilon}_X(\mu, A) = \{ \tilde{\mu}_p \mid 0 \leqslant p \leqslant \epsilon, \tilde{\mu}_p \in S_{\omega}X \}, \\ & \text{where } \tilde{\mu}_p(x) \coloneqq \text{if } x \in A \text{ then } \mu(x) + p \text{ else } \mu(x) \\ & \text{unstable (pseudo-)Markov chains} \end{split}$$

• Probabilistic updates $F = D_{\omega}, \lambda \in \{ \llbracket L_p \rrbracket \mid p \in [0; 1] \cap \mathbb{Q} \}$

Announcements with effects via regenerators

- We interpret Δ with a regenerator $\llbracket \Delta \rrbracket : \check{\mathbb{P}} \times \check{\mathbb{P}}\mathsf{T} \to \check{\mathbb{P}}\mathsf{T}$
- Given $\langle X, \gamma \rangle$ and a map $\rho: 2^{\mathsf{T}X} \to 2^{\mathsf{T}X}$ we define:

$$\begin{split} \llbracket \bot \rrbracket_{\rho,\gamma} &:= \emptyset \\ \llbracket \varphi \to \psi \rrbracket_{\rho,\gamma} &:= \left(X \setminus \llbracket \varphi \rrbracket_{\rho,\gamma} \right) \cup \llbracket \psi \rrbracket_{\rho,\gamma} \\ \llbracket \Delta_{\varphi} \psi \rrbracket_{\rho,\gamma} &:= \llbracket \psi \rrbracket_{\llbracket \Delta \rrbracket_{X} (\llbracket \varphi \rrbracket_{\rho,\gamma}, -) \circ \rho, \gamma} \\ \llbracket \heartsuit \varphi \rrbracket_{\rho,\gamma} &:= \left\{ x \mid \gamma(x) \in \rho \llbracket \heartsuit \rrbracket_{X} \llbracket \varphi \rrbracket_{\rho,\gamma} \right\} \end{split}$$

- $\left[\!\left[\varphi\right]\!\right]_{\gamma}$ is then short for $\left[\!\left[\varphi\right]\!\right]_{\text{id},\gamma}$
- $\tau: T \rightarrow (\check{\mathcal{P}} \rightarrow FT)$ and $\lambda: (\check{\mathcal{P}} \rightarrow \check{\mathcal{P}}F)$ induce a regenerator $\rho_{\chi}(A, S) := \check{\mathcal{P}}(\tau_{\chi}(-)(A))\lambda_{T\chi}(S)$

Non-deterministic announcement

non-deterministically picking a model

(except on tree-models) (but the choice is always per state)

Invariance under behavioral equivalence

- Let $\lambda_X'(A,B_1,\ldots B_n):=\rho_X(A,\lambda_X(B_1,\ldots B_n))$
- NB. λ' is a predicate lifting! (of higher arity)

• Let
$$\lambda'_X(A, B_1, \dots B_n) := \rho_X(A, \lambda_X(B_1, \dots B_n))$$

- NB. λ' is a predicate lifting! (of higher arity)
- This gives a principle for eliminating "dynamic" modalities:

$$\Delta_{\psi} \heartsuit(\varphi_1, \ldots, \varphi_n) \equiv \boxtimes_{(\Delta \cdot \heartsuit)}(\psi, \Delta_{\psi} \varphi_1, \ldots, \Delta_{\psi} \varphi_n)$$

Coalgebraic announcement logics are coalgebraic modal logics

Corollary

CALs are invariant under behavioral equivalence

- Coalgebraic modal logics have the exponential model property
- The (exponential) reduction of CAL to CML gives us a double-exponential model property
- But a filtration argument improves this result

Every satisfiable formula of CAL has a model of exponential size

Corollary

Under very mild assumptions, the satisfiability problem (with global assumptions) for a CAL is in NEXPTIME

- Intuitively, we say that Λ is closed for Π if every $\boxtimes_{\Delta_1 \circ \heartsuit_1 \circ \dots \circ \Delta_k \circ \heartsuit_k} (a_1, \dots a_n)$ can be expressed with a Λ -formula of polynomial size (in n)
- E.g. when Π consists of strong announcements for $\Lambda !$

If Λ is closed for Π , the satisfiability problem with global assumptions for CAL(Π , Λ) has the complexity of that for CML(Λ)

Theorem

If Λ is closed for Π and has a mater modality, the satisfiability problem for CAL(Π , Λ) has the complexity of that for CML(Λ)

(\odot is master if $\odot \top$ and $\odot \varphi \rightarrow (\heartsuit \psi \leftrightarrow \heartsuit (\varphi \land \psi)$ both hold)

- We regain the known complexity for standard PAL
- Graded ML + strong announcements: PSPACE/EXPTIME
- (Monotone) Neighborhood logic + strong announcements: NP
- Non-example probabilistic conditioning:
 - there is a master modality \checkmark
 - but announcements are not strong \times
 - we get optimum PSPACE complexity with an ad-hoc argument

- More examples!
- · Generic succinctness results?
- Logics for hypothetical reasoning
 - · Nominals to make them well-behaved?