LGruDat: Logical Foundations of Databases Lecture 6 — EF games continued

Tadeusz Litak

December 9, 2013

Fraïssé's algebraic formulation

• Recall: $\forall m > 0$.

$$\mathfrak{A}, \overline{\mathbf{a}} \simeq_m \mathfrak{B}, \overline{\mathbf{b}} \text{ iff } \begin{cases} ((\forall \mathbf{a} \in \mathsf{A} \exists \mathbf{b} \in \mathsf{B}, \mathfrak{A}, \overline{\mathbf{a}} \mathbf{a} \simeq_{m-1} \mathfrak{B}, \overline{\mathbf{b}} \mathbf{b}) \text{ (forth)} \\ & \text{and} \\ (\forall \mathbf{b} \in \mathsf{B} \exists \mathbf{a} \in \mathsf{A}, \mathfrak{A}, \overline{\mathbf{a}} \mathbf{a} \simeq_{m-1} \mathfrak{B}, \overline{\mathbf{b}} \mathbf{b})) \text{ (back)} \end{cases}$$

- The notion of *m*-isomorphism $\mathfrak{A} \cong_m \mathfrak{B}$ with $(I_j)_{j \leq m}$ witnessing
- (forth) : extending the domain, (back) : extending the range

Play more games

- Empty signature: games of length $\leq m$ on sets of cardinality $\geq m$
- Does this still work on linear orders? Our transitive example again
- What if the cardinality of both \mathfrak{A} and \mathfrak{B} is at least 2^m ?

Proof by composition

- Note that a winning strategy can be always assumed to pair $\min^{\mathfrak{A}}$ with $\min^{\mathfrak{B}}$ and $\max^{\mathfrak{A}}$ with $\max^{\mathfrak{B}}$
- Observation: whenever $a \in A$ and $b \in B$ are s.t. $\mathfrak{A}^{\leq a} \simeq_m \mathfrak{B}^{\leq b}$, $\mathfrak{A}^{\geq a} \simeq_m \mathfrak{B}^{\geq b}$, it holds that $\mathfrak{A} \simeq_m \mathfrak{B}$

- Now the main step in the inductive proof uses neatly most facts established so far above:
 - using the back-and-forth condition in the inductive step
 - isomorphism for "smaller half" if the spoiler played something closer than 2^{k-1} to either end
 - the above fact about composition \ldots
 - $-\ldots$ and the induction hypothesis, of course
- Discuss the alternative proof via invariance?

Easy direction of EF

Theorem 1. $\mathfrak{A}, \overline{a} \simeq_m \mathfrak{B}, \overline{b}$ implies $\mathfrak{A}, \overline{a} \equiv_m \mathfrak{B}, \overline{b}$

Proof

- Base step: already shown
- Inductive step: assume $\mathfrak{A}, \overline{\mathfrak{a}} \simeq_{m+1} \mathfrak{B}, \overline{\mathfrak{b}}$ and $\mathfrak{A} \models \exists v.\alpha[\overline{\mathfrak{a}}]$. This means exists $\mathfrak{a} \in \mathcal{A}.\mathfrak{A} \models \alpha[\overline{\mathfrak{a}}\mathfrak{a}]$. Now use (forth) to find $\mathfrak{A}, \overline{\mathfrak{a}}\mathfrak{a} \simeq_m \mathfrak{B}, \overline{\mathfrak{b}}\mathfrak{b}$ and use IH.

Assume $\mathfrak{A} \models \forall v.\alpha[\overline{a}]$. This means for_all $a \in A.\mathfrak{A} \models \alpha[\overline{a}a]$. Now pick any $b \in \mathfrak{B}$. By (back), there always is a suitable $a \in A$ s.t. $\mathfrak{A}, \overline{a}a \simeq_m \mathfrak{B}, \overline{b}b$. IH yields that $\mathfrak{B} \models \forall v.\alpha[\overline{b}]$.

Transfer of equivalence via boolean connectives is automatic.

Finite types

- For the converse, recall the notion of FORC[m]
- For a fixed $\overline{\mathbf{v}}$, (up to logical equivalence) only finitely many $\alpha \in \mathsf{FORC}[m]$ with $free(\alpha) \subseteq \overline{\mathbf{v}}$
- Assume $\overline{\mathbf{a}} = \mathbf{a}_1 \dots \mathbf{a}_{\ell(\overline{\mathbf{a}})}$. Then $\mathsf{tp}_{\overline{\mathbf{a}}}^m := \{\alpha \in \mathsf{FORC}[m] \mid A \vDash \alpha[\overline{\mathbf{a}}]\}$ is only superficially infinite (assuming the indices of free variables $x_1 \dots x_{\ell(\overline{\mathbf{a}})}$ form an initial interval $(1, \dots, \ell(\overline{\mathbf{a}}))$ of \mathbb{N})

• Define

$$\nabla_{\overline{\mathbf{a}}}^{0} := \bigwedge \{ \alpha \in \mathsf{tp}_{\overline{\mathbf{a}}}^{0}, \alpha \text{ atomic or negated atomic} \}$$
$$\nabla_{\overline{\mathbf{a}}}^{m+1} := (\bigwedge_{\mathbf{a} \in \mathsf{A}} \exists x_{\ell(\overline{\mathbf{a}})+1}. \nabla_{\overline{\mathbf{a}}\mathbf{a}}^{m}) \land (\forall x_{\ell(\overline{\mathbf{a}})+1}. \bigvee_{\mathbf{a} \in \mathsf{A}} \nabla_{\overline{\mathbf{a}}\mathbf{a}}^{m})$$

Obviously, $\mathfrak{A} \vDash \nabla_{\overline{a}}^{m}[\overline{a}]$ and $\nabla_{\overline{a}}^{m} \in \mathsf{FORC}[m]$. Hence,

$$\mathfrak{A}, \overline{\mathsf{a}} \equiv_m \mathfrak{B}, \overline{\mathsf{b}} \text{ implies } | \frac{\mathsf{unr}}{\mathsf{loc}} \nabla^m_{\overline{\mathsf{a}}} \leftrightarrow \nabla^m_{\overline{\mathsf{b}}} \text{ and } \mathfrak{B} \vDash \nabla^m_a[\overline{\mathsf{b}}]$$

- Our usual assumption of finiteness of Σ guarantees $\nabla_{\overline{a}}^{m}$ is a finite formula for arbitrary m and \overline{a} :
 - Whenever ${\mathfrak A}$ is finite, all conjunctions and disjunctions are finite
 - Actually, even for unrestricted \mathfrak{A} it's finite up to logical equivalence using the above observation
- $\nabla^m_{\overline{a}}$ is called *m*-Hintikka formula of \overline{a}
- **Theorem**: $\mathfrak{B} \vDash \nabla^m_{\overline{\mathsf{a}}}[\overline{\mathsf{b}}]$ implies $\mathfrak{A}, \overline{\mathsf{a}} \simeq_m \mathfrak{B}, \overline{\mathsf{b}}$
- *Proof.* Base step: $\mathfrak{B} \models \nabla^0_{\overline{a}}[\overline{b}]$ easily entails $f(a_k) := b_k$ is a partial isomorphism
 - Inductive step: assume $\mathfrak{B} \vDash \nabla^{m+1}_{\overline{a}}[\overline{b}]$ and assume spoiler picks $a \in A$. Then
 - $\mathfrak{A} \vDash \nabla_{\overline{\mathsf{a}}\mathsf{a}}^{m}[\overline{\mathsf{a}}\mathsf{a}], \text{ hence } \mathfrak{A} \vDash \exists x_{\ell(\overline{\mathsf{a}})+1} . \nabla_{\overline{\mathsf{a}}\mathsf{a}}^{m}[\overline{\mathsf{a}}].$
 - This is a conjunct of $\nabla_{\overline{a}}^{m+1}$, hence $\mathfrak{B} \models \exists x_{\ell(\overline{a})+1} \cdot \nabla_{\overline{a}a}^m[\overline{b}]$
 - Pick any witness **b** for this existential sentence: $\mathfrak{B} \models \nabla^m_{\overline{aa}}[\overline{b}b]$
 - By IH, $\mathfrak{A}, \overline{\mathsf{a}} \mathrel{\simeq}_m \mathfrak{B}, \overline{\mathsf{b}} \mathsf{b}$. We proved the forth condition
 - Now assume spoiler picks $b \in B$. Then

$$-\mathfrak{B}\vDash \forall x_{\ell(\overline{a})+1}.\bigvee_{a\in A}\nabla_{\overline{a}a}^{m}[\overline{b}]$$

- In particular, $\mathfrak{B} \vDash \bigvee_{\mathsf{a} \in \mathsf{A}} \nabla^m_{\overline{\mathsf{a}} \mathsf{a}} [\overline{\mathsf{b}} \mathsf{b}]$
- Use the satisfaction clause for disjunction, pick the witnessing $\mathsf{a} \in \mathsf{A}$ and use IH

Corollaries

- Undefinability of evenness on linear orders
- Undefinability of connectedness as a corollary of the above
- Possibly a more complicated example: trees \blacktriangle