LGruDat: Logical Foundations of Databases Lecture 3 — FORC: A reminder on first-order logic continued

Tadeusz Litak

November 15, 2013

In this set of notes, \bigwedge will denote corrections as compared with handouts distributed during the lecture, not homework. See separate document on the webpage for homework

1 Diagrams, homomorphisms, isomorphism

A comment to exercise solutions

One of you was very careful to take care of models with empty universes ...

What happens if we allow these?

- **(** Do we have that whenever $v \# \alpha$, $\models \alpha \lor \exists v. \beta \equiv \exists v. (\alpha \lor \beta)$? $\models \alpha \land \forall v. \beta \equiv \forall v. (\alpha \land \beta)$? Careful with prenex normal form!
- Standard axioms like $\vDash \forall v. \alpha \rightarrow \alpha$?
- Also remember: no valuation into an empty domain

Useful syntactic convention

First, recall once again our lemma: whenever

- $free(\alpha) = \{v_1, \ldots, v_n\}$
- $\kappa(v_1) = \kappa'(v_1), \ldots, \kappa(v_n) = \kappa'(v_n)$

then $\mathfrak{A}, \kappa \vDash \alpha$ iff $\mathfrak{A}, \kappa' \vDash \alpha$. and its corollary:

$$\begin{split} \phi(\mathfrak{A}) &:= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ exists } \kappa.\kappa(\overline{\mathbf{v}}) = \overline{\mathsf{a}} \text{ and } \mathfrak{A}, \kappa \vDash \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ for_all } \kappa.\kappa(\overline{\mathbf{v}}) = \overline{\mathsf{a}} \text{ implies } \mathfrak{A}, \kappa \vDash \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ for_all } \kappa.\mathfrak{A}, \kappa[v_1 := \mathsf{a}_1] \dots [v_n := \mathsf{a}_n] \vDash \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ exists } \kappa.\mathfrak{A}, \kappa[v_1 := \mathsf{a}_1] \dots [v_n := \mathsf{a}_n] \vDash \alpha \} \end{split}$$

Our new syntactic conventions: $\mathfrak{A} \vDash \alpha[\overline{a}]$ and $(\mathfrak{A}, \overline{a}) \vDash \alpha(\overline{a})$.

Not introduced explicitly in the lecture, but the meaning is hopefully clear: $\mathfrak{A} \models \alpha[\overline{a}]$ means that some/any valuation sending the free variables of α to \overline{a} makes α hold. The other notation removes the need for valuations by expanding the signature with (constants for) satisfying elements, so we need to ...

- ... Define reducts and expansions
- Define notions proposed by A. Robinson:
 - Positive diagram: diagp⁺(\mathfrak{A})
 - Diagram: diag(\mathfrak{A})
 - Elementary diagram: $\mathsf{eldiag}(\mathfrak{A})$
- \triangle Our additions: $\exists diagp^+(\mathfrak{A}), \exists diag(\mathfrak{A}) \text{ and } \exists eldiag(\mathfrak{A}).$
- (Equivalent to) single sentences for finite $\mathfrak{A}!$
- During the lecture I forgot at first to introduce ∃eldiag(𝔅). Yet, as you recall, for a finite 𝔅 it's precisely (the single sentence encoding) ∃eldiag(𝔅) which encodes the isomorphism type of 𝔅

Last time we finished with:

- Notion of homomorphism, surjective homomorphism, embedding and isomorphism
- Primitive-positive (CQ) and existential-positive (UCQ—but careful here!) $\longrightarrow \text{diagp}^+ A$

Easy direction of h.p.t.

- Positive Easy direction of Lyndon: surjective homomorphism
- Existential (dual Łoś-Tarski, embeddings) $\longrightarrow \operatorname{\mathsf{diag}} A$

WE WILL RETURN TO THIS

- For the time being: restate the easy directions in terms of diagrams
- Dualize (reflecting rather than preserving)

The role of isomorphism

- Contrast with elementary equivalence
- How about the finite case?
- Return to elementary diagrams for a while
- Classes of models always closed under isomorphism from now on
- Invariance of queries under isomorphism
- Enumerating isomorphism types for finite signatures
- Notions of Th and Mod
- Elementarity and Δ -elementarity Λ Now called EC and EC_{Δ}
- Trivialization of the latter in the finite (for finite signature)

Examples of FO Theories and queries

- A We haven't done this during the lecture, but by now they should be too easy even to be made a part of the homework
- Finite cardinalities.
- Graph-like examples: isolated nodes, having at least two succ, having exactly two neighbours etc.
- Strict linear order, with smallest and greatest element

Back to universal validity—the last remaining old exercise. Recall it was:

Exercise 4 (8 pts) How about the converse of 3.b? Assume that Σ contains a single binary symbol. Can you think of any α s.t. not $(\stackrel{\text{unr}}{\models} \alpha)$, but $\stackrel{\text{fin}}{\models} \alpha$? If so, give an explicit example of such a formula and prove both statements.

- Most of you solved the exercise and solved it well
- (perhaps one more example)
- What happens if all symbols in Σ are at most unary?
- What if we have at most two variables?

2 Validity and inference

Entailment: finite and unrestricted, global and local

These definitions were not discussed during the lecture. Do you understand them? See homework.

$$\begin{split} &\Gamma \left| \frac{\operatorname{unr}}{loc} \alpha \text{ iff for_all unrestricted } \mathfrak{A}, \kappa. (\mathfrak{A}, \kappa \vDash \Gamma \text{ implies } \mathfrak{A}, \kappa \vDash \alpha) \right. \\ &\Gamma \left| \frac{\operatorname{fin}}{loc} \alpha \text{ iff for_all finite } \mathfrak{A}, \kappa. (\mathfrak{A}, \kappa \vDash \Gamma \text{ implies } \mathfrak{A}, \kappa \vDash \alpha) \right. \\ &\Gamma \left| \frac{\operatorname{unr}}{glo} \alpha \text{ iff for_all unrestricted } \mathfrak{A}. \\ & \quad (\text{ for_all } \kappa. \mathfrak{A}, \kappa \vDash \Gamma) \text{ implies } (\text{ for_all } \kappa. \mathfrak{A}, \kappa \vDash \alpha) \\ &\Gamma \left| \frac{\operatorname{fin}}{glo} \alpha \text{ iff for_all finite } \mathfrak{A}. (\forall \kappa. \mathfrak{A}, \kappa \vDash \Gamma) \text{ implies } (\text{ for_all } \kappa. \mathfrak{A}, \kappa \vDash \alpha) \right. \end{split}$$

where $\mathfrak{A}, \kappa \vDash \Gamma$ iff for_all $\gamma \in \Gamma, \mathfrak{A}, \kappa \vDash \gamma$

- i $|_{loc} \subseteq |_{glo}$?
- i $|_{glo} \subseteq |_{loc}$?
- Define universal closure $\overline{\gamma}^\forall$ and $\overline{\Gamma}^\forall$
- What if $\Gamma = \overline{\Gamma}^{\forall}$? (empty, sentences only ...) **A** See homework for this and the following two points
- Can we characterize the relationship between $\left|\frac{1}{loc}\right|$ and $\left|\frac{1}{glo}\right|$ in the terms of universal closure?
- $\left|\frac{\text{unr}}{loc}\right|$ and $\left|\frac{\text{unr}}{glo}\right|$: inference systems for $\left|\frac{\text{unr}}{loc}\right|$ and $\left|\frac{\text{unr}}{glo}\right|$
- The notion of deductive theory and Post-complete theory (MCS)
- Is $Th(\mathfrak{A})$ a deductive theory? A Post-complete one?
- Brief sketch of completeness:

$$\frac{|\operatorname{unr}|}{|\operatorname{loc}|} = \frac{|\operatorname{unr}|}{|\operatorname{loc}|}$$
 and $\frac{|\operatorname{unr}|}{|\operatorname{glo}|} = \frac{|\operatorname{unr}|}{|\operatorname{glo}|}$

- What is the relationship between Post-complete theories and those of the form $Th(\mathfrak{A})$? A Not discussed, see homework
- No f.m.p.: this we already know ...
- How about countable model property? 🛕 Not discussed
- **A** Other consequences: compactness ...
- This is where we finished Lecture 3, removed the remaining part