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In this set of notes, will denote corrections as compared with
handouts distributed during the lecture, not homework. See

separate document on the webpage for homework

1 Diagrams, homomorphisms, isomorphism

A comment to exercise solutions
One of you was very careful to take care of models with empty universes . . .

What happens if we allow these?

• Do we have that whenever v#α, �α∨∃v.β ≡ ∃v.(α∨β)? �α∧∀v.β ≡
∀v.(α ∧ β) ? Careful with prenex normal form!

• Standard axioms like � ∀v.α→ α ?

• Also remember: no valuation into an empty domain

Useful syntactic convention
First, recall once again our lemma: whenever

• free(α) = {v1, . . . , vn}

• κ(v1) = κ′(v1), . . . , κ(vn) = κ′(vn)

then A, κ�α iff A, κ′ �α.
and its corollary:

φ(A) := {(a1, . . . an) ∈ An | exists κ.κ(v) = a and A, κ�α}
= {(a1, . . . an) ∈ An | for all κ.κ(v) = a implies A, κ�α}
= {(a1, . . . an) ∈ An | for all κ.A, κ[v1 := a1] . . . [vn := an]�α}
= {(a1, . . . an) ∈ An | exists κ.A, κ[v1 := a1] . . . [vn := an]�α}
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Our new syntactic conventions: A�α[a] and (A, a)�α(a).

Not introduced explicitly in the lecture, but the meaning is hopefully
clear: A�α[a] means that some/any valuation sending the free variables of α
to a makes α hold. The other notation removes the need for valuations by
expanding the signature with (constants for) satisfying elements, so we need to
. . .

• . . . Define reducts and expansions

• Define notions proposed by A. Robinson:

– Positive diagram: diagp+(A)

– Diagram: diag(A)

– Elementary diagram: eldiag(A)

• Our additions: ∃diagp+(A), ∃diag(A) and ∃eldiag(A).

• (Equivalent to) single sentences for finite A!

• During the lecture I forgot at first to introduce ∃eldiag(A). Yet, as you
recall, for a finite A it’s precisely (the single sentence encoding) ∃eldiag(A)
which encodes the isomorphism type of A

Last time we finished with:

• Notion of homomorphism, surjective homomorphism, embedding and iso-
morphism

• Primitive-positive (CQ) and existential-positive (UCQ—but careful here!)
−→ diagp+A
Easy direction of h.p.t.

• Positive
Easy direction of Lyndon: surjective homomorphism

• Existential (dual  Loś-Tarski, embeddings) −→ diagA

WE WILL RETURN TO THIS

• For the time being: restate the easy directions in terms of diagrams

• Dualize (reflecting rather than preserving)

2



The role of isomorphism

• Contrast with elementary equivalence

• How about the finite case?

• Return to elementary diagrams for a while

• Classes of models always closed under isomorphism from now on

• Invariance of queries under isomorphism

• Enumerating isomorphism types for finite signatures

• Notions of Th and Mod

• Elementarity and ∆-elementarity Now called EC and EC∆

• Trivialization of the latter in the finite (for finite signature)

Examples of FO Theories and queries

• We haven’t done this during the lecture, but by now they should be
too easy even to be made a part of the homework

• Finite cardinalities.

• Graph-like examples: isolated nodes, having at least two succ, having
exactly two neighbours etc.

• Strict linear order, with smallest and greatest element

Back to universal validity—the last remaining old exercise. Recall
it was:

Exercise 4 (8 pts) How about the converse of 3.b? Assume that Σ

contains a single binary symbol. Can you think of any α s.t. not (
unr

α),

but
fin

α? If so, give an explicit example of such a formula and prove both
statements.

• Most of you solved the exercise and solved it well

• (perhaps one more example)

• What happens if all symbols in Σ are at most unary?

• What if we have at most two variables?
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2 Validity and inference

Entailment: finite and unrestricted, global and local
These definitions were not discussed during the lecture. Do you under-

stand them? See homework.

Γ
loc

unr
α iff for all unrestricted A, κ.(A, κ�Γ implies A, κ�α)

Γ
loc

fin
α iff for all finite A, κ.(A, κ�Γ implies A, κ�α)

Γ
glo

unr
α iff for all unrestricted A.

( for all κ.A, κ�Γ) implies ( for all κ.A, κ�α)

Γ
glo

fin
α iff for all finite A.(∀κ.A, κ�Γ) implies ( for all κ.A, κ�α)

where A, κ�Γ iff for all γ ∈ Γ, A, κ� γ

• ¿
loc

⊆
glo

?

• ¿
glo

⊆
loc

?

• Define universal closure γ∀ and Γ
∀

• What if Γ = Γ
∀
? (empty, sentences only . . . ) See homework for this

and the following two points

• Can we characterize the relationship between
loc

and
glo

in the terms of

universal closure?

• loc

unr
and glo

unr
: inference systems for

loc

unr
and

glo

unr

• The notion of deductive theory and Post-complete theory (MCS)

• Is Th(A) a deductive theory? A Post-complete one?

• Brief sketch of completeness:

loc

unr
=

loc

unr
and glo

unr
=

glo

unr

• What is the relationship between Post-complete theories and those of the
form Th(A)? Not discussed, see homework

• No f.m.p.: this we already know . . .

• How about countable model property? Not discussed

• Other consequences: compactness . . .

• This is where we finished Lecture 3, removed the remaining part
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