
LGruDat: Logical Foundations of Databases

Lecture 1 — Introduction

Tadeusz Litak

November 3, 2013

Remember we do have a webpage!

http://www8.cs.fau.de/ws13:lgrudat

Go there for all the up-to-date information

Literature? Some reference are here:
http://www8.cs.fau.de/ws13:lgrudat#literature

I found (or recalled) a few more:
will add them successively

The lecture will be heavily based on references
I will try to make clear what I took from where . . .

. . . but sometimes it would be unpractical
and sometimes I may simply forget to mention the reference

Any materials for the course are for internal distribution only

Database models

• Relational (our main focus)
think SQL, DB2, relational algebra and tuple calculus

• Semi-structured
think XML, DTD, XPath and XQuery

• Graph-based
think RDF, OrientDB, ontologies and Semantic Web technology

• . . .

1

http://www8.cs.fau.de/ws13:lgrudat
http://www8.cs.fau.de/ws13:lgrudat#literature

Towards database logic dictionary?
database scheme logical signature Σ

(only relational)

database instance finite model A,B,C . . .
(just Herbrand models?)

database queries formulas
(already in this lecture more details)

query containment valid implication/entailment
(over finite models only!)

constraints axioms . . .

“ ” should be read as we translate as (but there are details one should be
careful about). In forthcoming lectures, we will slowly go through the whole list

FORC syntax: a reminder

• Σ = (arityΣ(·) : relΣ→ N, constΣ).

– relΣ is the supply of relational symbols

– constΣ is the supply of indvidual constants
Database schemes provide just relation symbols with arities

We’re being more of logicians than of database theorists here

• We abbreviate P ∈ relΣ to P ∈ Σ

• Let α be a formula in signature/scheme Σ

Recall the definition of FORC(Σ):

(first-order) relational calculus

α, β ::= s = t | P (s) | α ∧ β | ¬α | ∀v.α

– s and t are either elements of the set of variables V ar := x1, x2 . . . or of
constΣ

– P ∈ Σ and s is of length arityΣ(P)

– v is a metavariable ranging over variables x1, x2 . . .

FORC semantics: a reminder

• A is a model adequate for Σ if it is of the form (A, {PA}P∈Σ, {cA}c∈constΣ)
A is the carrier set or the domain of A

For each P , PA is a subset of AarityΣ(P)

For each c, cA is an element of A

• Two settings:

– unrestricted when A may be of arbitrary cardinality

– finite when we allow only finite A
the latter standard for databases, see Kanellakis’ overview

• An A-valuation is a mapping κ : V ar → A

2

• Definition of satisfaction A, κ�α . . .

• . . . an exercise (done on blackboard)

Exercise solution
A, κ� s = t iff κ̂(s) = κ̂(t)
A, κ�P (s1, . . . , sn) iff P (κ̂(s1), . . . , κ̂(sn))
A, κ�α ∧ β iff A, κ�α and A, κ�β
A, κ�¬α iff not (A, κ�α)
A, κ� ∀v.α iff for all a ∈ A,A, κ[v := a]�α

where

κ̂(s) :=

{
κ(v) if s = v,

cA if s = c.

κ[v := a](v′) :=

{
κ(v) if v 6= v′,

a if v′ = v.

FORC queries

• Take α ∈ FORC(Σ)

• Let v = (v1, . . . , vn) be a sequence of variables s.t.

∀v, v ∈ v iff v ∈ free(α)

(see Definition 4.2.7 and Section 5.3 in the Foundations of Databases book . . .

. . . or Definition 2.2.1 in Kanellakis’ overview)

• We will call φ of the form
v | α

a (typed) FORC(Σ) query
(sometimes I will write it in set brackets: {φ})

Effects of queries

• Assume A = (A, {PA}P∈Σ, {cA}c∈constΣ) is a model adequate for Σ

• Assume φ = {(v1, . . . , vn) | α} is a FORC(Σ)-query

• We define then

φ(A) := {(a1, . . . an) ∈ An | exists κ.κ(v) = a and A, κ�α}
= {(a1, . . . an) ∈ An | for all κ.κ(v) = a implies A, κ�α}
= {(a1, . . . an) ∈ An | for all κ.A, κ[v1 := a1] . . . [vn := an]�α}
= {(a1, . . . an) ∈ An | exists κ.A, κ[v1 := a1] . . . [vn := an]�α}

3

• These equalities need to be proved . . .

• by showing that whenever

– free(α) = {v1, . . . , vn}
– κ(v1) = κ′(v1), . . . , κ(vn) = κ′(vn)

then A, κ�α iff A, κ′ �α

• Note we obtain boolean queries as the limit case

Example (simplest possible—see introduction to Libkin’s book)

• Assume relΣ consists only of {Flight } with arityΣ(Flight) = 2
constΣ consists of all names of European cities you can think of

• Each airline has a corresponding instance

• Elements of the domain (carrier set) are cities

•

A pair of cities is in the denotation of Flight

in the instance of the database generated by a given airline

iff

the airline flies between them

• To make our life simpler and our slides more appealing,

we use data from a project based on the Quadrigram tool

4

RyanAir

Malev

5

Alitalia

Iberia

ThomsonFly

6

EasyJet

Lufthansa

7

. . . you get the idea . . .

An aside: first encounter with constraints?

• Flight is in all likelihood a symmetric relation

• Few airlines tend to fly to a city without return flights
. . . although it is imaginable the outgoing flight goes somewhere else . . .

. . . we can neglect this “open jaw” complication . . .

• We would model this with a symmetric (undirected) graph . . .
(a structure we will encounter often, by the way)

• . . . or enforce with a constraint.

In a FO notation:

Flight (x, y)− > Flight (y, x)

or with a more explicit universal closure:

∀x, y.F light (x, y)− > Flight (y, x)

First example query� �
Find all cities with a direct flight to Warszawa (Warsaw)
� �

FO notation:

x | Flight (x,Warsaw)

SQL-like query for comparision:

SELECT Fl i gh t . o r i g i n FROM Fl i gh t
WHERE Fl i gh t . d e s t i n a t i o n = ’ Warsaw ’ ;

8

Iberia

· · · = ∅

Malev

· · · = {Budapest}

SpainAir

9

· · · = {Barcelona,Madrid}

Second example query� �
Find all cities with more than one outgoing flight
� �

FO notation:

x | ∃y1, y2.F light (x, y1) ∧ Flight (x, y2) ∧ y1 6= y2

SQL-like query for comparision:

SELECT F. o r i g i n FROM Fl i gh t F WHERE
(SELECT COUNT(F l i gh t . d e s t i n a t i o n) > 1 FROM Fl i gh t
WHERE Fl i gh t . o r i g i n = F. o r i g i n) ;

In some case, the effect will be easy to guess . . .

AigleAzur

10

· · · = {Paris}

In some cases, just slightly more complicated . . .

Malev

· · · = {Budapest, London}

(if this dodgy connection map of ours can be trusted)

And in some cases . . .

11

RyanAir

. do you really want to know?

Recall again the shape of the query
FO notation:

x | ∃y1, y2.F light (x, y1) ∧ Flight (x, y2) ∧ y1 6= y2

SQL-like query:

SELECT F. o r i g i n FROM Fl i gh t F WHERE
(SELECT COUNT(F l i gh t . d e s t i n a t i o n) > 1 FROM Fl i gh t
WHERE Fl i gh t . o r i g i n = F. o r i g i n) ;

Note we used an SQL construct without a FO counterpart:

counting

In the example in question, it did not matter:
in FO, we could use (in-)equality instead

But what would you do with SQL queries like this one:

SELECT F1 . o r i g in , F2 . d e s t i n a t i o n
FROM Fl i gh t F1 , F l i gh t F2 WHERE

(SELECT COUNT(F l i gh t . d e s t i n a t i o n) FROM Fl i gh t
WHERE Fl i gh t . o r i g i n = F1 . o r i g i n)

=
(SELECT COUNT(F l i gh t . o r i g i n) FROM Fl i gh t

WHERE Fl i gh t . d e s t i n a t i o n =
F2 . d e s t i n a t i o n) ;

(can you see what this query is doing, btw?)

12

Can we show this query is inexpressible
in plain relational calculus (w/o counting)?

Is the latter exactly as expressive as FOL?

And are there queries even worse than that?
I.e., not only inexpressible in FOL,

but also in SQL with counting?

Start with something simple . . .� �
Find all pairs of cities with a direct flight between them
� �

FO notation:

(x, y) | Flight (x, y)

SQL notation:

SELECT ∗ FROM Fl i gh t ;

Rather trivial so far . . .

Up one gear . . .� �
Find all pairs of cities with exactly one interchange
� �

FO notation:

(x, y) | ∃z.(Flight (x, z) ∧ Flight (z, y))

SQL notation:

SELECT F1 . o r i g in , F2 . d e s t i n a t i o n FROM Fl i gh t F1 , F l i gh t F2 WHERE
(F1 . d e s t i n a t i o n = F2 . o r i g i n) ;

Not much more complicated . . .

Up one more gear . . .� �
Find all pairs of cities with at most one interchange
� �

13

FO notation:

(x, y) | Flight (x, y) ∨ ∃z.(Flight (x, z) ∧ Flight (z, y))

SQL notation:

SELECT F1 . o r i g in , F2 . d e s t i n a t i o n FROM Fl i gh t F1 , F l i gh t F2 WHERE
(F1 . d e s t i n a t i o n = F2 . o r i g i n)

OR ((F1 . o r i g i n = F2 . o r i g i n)
AND (F1 . d e s t i n a t i o n = F2 . d e s t i n a t i o n)) ;

So far so good . . .

. . . you probably see how to handle

� �
Find all pairs of cities connected with at most 2 interchanges
� �

. . . but how about reachability?

That is:� �
Find all pairs of cities connected

with finitely many interchanges
� �
Sure, in some cases whatever can be reached, can be reached with at most

one interchange . . .

AigleAzur

. . . in some cases, at most two interchanges would do . . .

14

Malev

. . . but we want a query which would do the job
in any instance!

RyanAir

• Is there any such FOL/SQL expression?

• If not, how can we mathematically prove there is none?

• This is a typical question we will be concerned with

Other examples

• Query containment

• Query equivalence

15

• Query non-emptiness

• Our tools are mainly those of finite model theory

• Our future highlights: http://www8.cs.fau.de/ws13:lgrudat

16

http://www8.cs.fau.de/ws13:lgrudat

