LGruDat: Logical Foundations of Databases Exercise 1, Deadline 8 Nov 2013

Tadeusz Litak

I realize that the deadline is rather short. However

- 1. None of these exercises should be really new to you—this is a reminder of whatever basic logic course you were taking
- 2. More importantly, you don't have to do the whole thing! In fact, I would even ask you not to do all of it: given that this should not be new for you, it'd be a waste of paper, your time and my time. Just pick any exercises that would sum up to 13 points. You can pick single items from separate exercises, this is not a problem. This 13 points is 100 %. Don't worry, it is not a problem if you lose a point or two somewhere. Also, in every exercise you can treat all preceding ones as solved and use their results.
- 3. Finally, you can submit until the beginning of the lecture (10:30 on Fri) either by email or in person, whatever you prefer.

1 Exercises from the lecture

The corrected lecture notes were published online—please note that they contain a number of changes to conventions and notation we are going to follow. Please familiarize yourself with the document, as well as the correction list.

- Exercise 1.a (5 pts) The slide *Effects of queries*, page 3/4, contained a number of unsolved exercises marked by 1. The central one was a basic exercise from model theory: show that whenever
 - $free(\alpha) = \{v_1, \ldots, v_n\}$
 - $\kappa(v_1) = \kappa'(v_1), \ldots, \kappa(v_n) = \kappa'(v_n)$

then $\mathfrak{A}, \kappa \vDash \alpha$ iff $\mathfrak{A}, \kappa' \vDash \alpha$.

Exercise 1.b (1 pts) Derive as a corollary another exercise from this slide: show equalities

$$\begin{split} \phi(\mathfrak{A}) &:= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ exists } \kappa.\kappa(\overline{\mathbf{v}}) = \overline{\mathsf{a}} \text{ and } \mathfrak{A}, \kappa \models \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ for_all } \kappa.\kappa(\overline{\mathbf{v}}) = \overline{\mathsf{a}} \text{ implies } \mathfrak{A}, \kappa \models \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ for_all } \kappa.\mathfrak{A}, \kappa[v_1 := \mathsf{a}_1] \dots [v_n := \mathsf{a}_n] \models \alpha \} \\ &= \{ (\mathsf{a}_1, \dots, \mathsf{a}_n) \in \mathsf{A}^n \mid \text{ exists } \kappa.\mathfrak{A}, \kappa[v_1 := \mathsf{a}_1] \dots [v_n := \mathsf{a}_n] \models \alpha \} \end{split}$$

- Exercise 1.c (1 pts) Recall that according to one of corrections, we disposed of our *existential convention* allowing "underquantified" queries: that is, those for which $\overline{\mathbf{v}} \subsetneq free(\alpha)$. Choose an example of an equality in the previous exercise which would break down if underquantified queries are allowed and formally show its failure. That it, define a model and give an example of differing results of a single underquantified query.
- Exercise 1.d (1 pts) The last comment on the slide in question says we obtain boolean queries as the limit case. We call a query ϕ boolean iff for any \mathfrak{A} , $\phi(\mathfrak{A}) \in \{\text{TRUE}, \text{FALSE}\}$, where $\text{TRUE} = \{\emptyset\}$ and $\text{FALSE} = \emptyset$. What is the necessary and sufficient condition for a FORC query to be boolean?

2 Defining remaining connectives

Exercise 2. (4 pts) Recall that

$$\begin{aligned} \alpha &\to \beta := \neg (\alpha \land \neg \beta) \\ \alpha &\lor \beta := \neg (\neg \alpha \land \neg \beta) \\ \alpha &\leftrightarrow \beta := (\alpha \to \beta) \land (\beta \to \alpha) \\ \exists v.\alpha := \neg \forall v. \neg \alpha \end{aligned}$$

Formulate satisfaction condition for these connectives using metalinguistic implies, or, iff and exists and show that under the above definitions, these condition are indeed necessary and sufficient for satisfaction by \mathfrak{A}, κ .

3 Unrestricted validity

Write

$$\stackrel{|\operatorname{unr}}{\models} \alpha \text{ iff for_all unrestricted } \mathfrak{A} \text{ and } \kappa. \mathfrak{A}, \kappa \vDash \alpha$$
$$\stackrel{|\operatorname{fin}}{\models} \alpha \text{ iff for_all finite } \mathfrak{A} \text{ and } \kappa. \mathfrak{A}, \kappa \vDash \alpha$$

(of course, the tacit assumption is that the universal quantification is restricted to models adequate for Σ where $\alpha \in \mathsf{FORC}(\Sigma)$). We will read these two symbols as *(finite) validity* and *unrestricted validity*—later on, we will also use them for *(finite) entailment* and *unrestricted entailment*. For the time being, let us focus on unrestricted validity: the notion which is the main subject of study of *classical model theory* (as opposed to *finite model theory*) and which was the main concern at your basic logic courses like *cluster*.

Exercise **3.a** (4 pts)Which of the following schemes are valid and for which cases you can find a countermodel? In both cases provide an explicit argument. Remember that you can use the results of all previous exercises here:

i unr	$\forall v.(\alpha \land \beta) \leftrightarrow ((\forall v.\alpha) \land (\forall v.\beta))$?
i unr	$((\forall v.\alpha) \lor (\forall v.\beta)) \to \forall v.(\alpha \lor \beta)$?
i unr	$(\forall v.(\alpha \lor \beta)) \to ((\forall v.\alpha) \lor (\forall v.\beta))$?
i unr	$(\forall v.(\alpha \lor \beta)) \to ((\forall v.\alpha) \lor \beta)$	\Leftarrow	assuming v fresh_for β ?

Recall that a variable v is fresh for α if either does not occur in α at all or all its occurrences are within the scope of a quantifier.

Exercise **3.b** (1 pts) Different symbols for $\stackrel{\text{unr}}{\models}$ and $\stackrel{\text{fin}}{\models}$ already suggest they don't coincide, but it is natural to expect that at least implication in one direction would hold. Can you show that whenever we have $\stackrel{\text{unr}}{\models} \alpha$, we have also $\stackrel{\text{fin}}{\models} \alpha$?

4 A kind of Bonusaufgabe

Of course, with the scheme adopted for this Blatt, there is no point in using the work *Bonusaufgabe*, as strictly speaking no exercise is obligatory. But this one is demanding enough to merit such a name. Or maybe it isn't?

Exercise 4. (8 pts) How about the converse of the previous exercise? Assume that Σ contains a single binary symbol. Can you think of any α s.t. not $(\stackrel{\text{unr}}{=} \alpha)$, but $\stackrel{\text{fin}}{=} \alpha$? If so, give an explicit example of such a formula and prove both statements. As a bonus to Bonusaufgabe (i.e., you don't have to find the answer to get the full mark for this exercise), what happens if all symbols in Σ are at most unary?